C# LINQ/Object Initializers Example from C# 4.0 in a Nutshell - c#

I'm not sure I quite understand how the following example works. It's from C# 4.0 in a Nutshell.
class Program
{
static void Main(string[] args)
{
string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<TempProjectionItem> temp =
from n in names
select new TempProjectionItem
{
Original = n,
Vowelless = n.Replace("a", "").Replace("e", "").Replace("i", "")
.Replace("o", "").Replace("u", "")
};
IEnumerable<string> query = from item in temp
where item.Vowelless.Length > 2
select item.Original;
foreach (string item in query)
{
Console.WriteLine(item);
}
}
class TempProjectionItem
{
public string Original;
public string Vowelless;
}
}
IEnumerable is an interface, isn't it? What kind of object is temp and query? Why does TempProjectionItem not need to implement IEnumerable?

TempProjectionItem is the element type of the sequence... just like an IEnumerable<int> (such as a List<int>) is a sequence of int values without int itself implementing IEnumerable.
Note that there are two sequence interfaces: System.Collections.IEnumerable and System.Collections.Generic.IEnumerable<T>. Obviously the latter is generic, representing a sequence of a particular type. So temp is a sequence of TempProjectionItem elements, and query is a sequence of string elements.
Neither of these is really a collection as such - the queries are executed lazily - it's only evaluated (starting with names) when you iterate over the data. Iterating over query involves iterating over temp which then iterates over names.

IEnumerable is an interface, isn't it?
Yes, it is. Actually in your code you are using IEnumerable<T> which is a generic interface.
What kind of object is temp and query?
In your code we can see temp is type of IEnumerable<TempProjectionItem>, while query is an IEnumerable<string>, both of which come from IEnumerable<T>.
Why does TempProjectionItem not need to implement IEnumerable?
TempProjectionItem is not IEnumerable, it's just an item of the IEnumerable<TempProjectionItem> which is a "container".

Related

OrderBy without lambda for simple IEnumerables

Is there a simpler way to write the following? I.E., without the lambda.
var strings = new[] { "Alabama", "Mississippi", "Louisiana" };
var ordered = strings.OrderBy(x => x);
Seems like it should be possible, since string implements IEquatable<string>.
It's IComparable that matters more thanIEquatable here, but it is possible:
Array.Sort(strings);
This works because strings is already an array. Since you asked for any IEnumerable:
var ary = strings.ToArray();
Array.Sort(ary);
Note the extra variable is also important in this second sample, because Array.Sort() sorts the actual object passed without returning the results, and calling .ToArray() created a new array that was then thrown away. Without the extra variable, you lose your work.
There is a similar sort method on the List<T> object you can use, as well.
You can also make your own extension method for this:
public static class MyExtensions
{
public static IOrderedEnumerable<T> Sort(this IEnumerable<T> items) where T : IComparable
{
return items.OrderBy(i => i);
}
}
And now you could just say:
var ordered = strings.Sort();
For .NET 7 or higher, use Order.
var strings = new[] { "Alabama", "Mississippi", "Louisiana" };
var ordered = strings.Order();
dotnet/runtime#67194

C# foreach on IEnumerable vs. List - element modification persistent only for array - Why?

In C#, I have noticed that if I am running a foreach loop on a LINQ generated IEnumerable<T> collection and try to modify the contents of each T element, my modifications are not persistent.
On the other hand, if I apply the ToArray() or ToList() method when creating my collection, modification of the individual elements in the foreach loop are persistent.
I suspect that this is in some way related to deferred execution, but exactly how is not entirely obvious to me. I would really appreciate an explanation to this difference in behavior.
Here is some example code - I have a class MyClass with a constructor and auto-implemented property:
public class MyClass
{
public MyClass(int val) { Str = val.ToString(); }
public string Str { get; set; }
}
In my example application I use LINQ Select() to create two collections of MyClass objects based on a collection of integers, one IEnumerable<MyClass>, and one IList<MyClass> by applying the ToList() method in the end.
var ints = Enumerable.Range(1, 10);
var myClassEnumerable = ints.Select(i => new MyClass(i));
var myClassArray = ints.Select(i => new MyClass(i)).ToList();
Next, I run a foreach loop over each of the collections, and modify the contents of the looped-over MyClass objects:
foreach (var obj in myClassEnumerable) obj.Str = "Something";
foreach (var obj in myClassArray) obj.Str = "Something else";
Finally, I output the Str member of the first element in each collection:
Console.WriteLine(myClassEnumerable.First().Str);
Console.WriteLine(myClassArray.First().Str);
Somewhat counter-intuitively, the output is:
1
Something else
Deferred execution is the indeed the key point.
Executing myClassEnumerable.First().Str will reexecute your query ints.Select(i => new MyClass(i)); and so it will give you a new IEnumerable with a new list of integers.
You can see this in action using your debugger. Put a breakpoint at the new MyClass(i) part of the IEnumerable select and you will see that this part get's hit again when you execute it for Console.WriteLine
You are right, it is deferred execution. A new MyClass instance is created each time you iterate the IEnumerable. By calling ToList or ToArray you then create a List or Array and populate it with the new MyClass instances created from the iteration of the IEnumerable.

Does IEnumerable always imply a collection?

Just a quick question regarding IEnumerable:
Does IEnumerable always imply a collection? Or is it legitimate/viable/okay/whatever to use on a single object?
The IEnumerable and IEnumerable<T> interfaces suggest a sequence of some kind, but that sequence doesn't need to be a concrete collection.
For example, where's the underlying concrete collection in this case?
foreach (int i in new EndlessRandomSequence().Take(5))
{
Console.WriteLine(i);
}
// ...
public class EndlessRandomSequence : IEnumerable<int>
{
public IEnumerator<int> GetEnumerator()
{
var rng = new Random();
while (true) yield return rng.Next();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
It is always and mandatory that IEnumerable is used on a single object - the single object is always the holder or producer of zero or more other objects that do not necessarily have any relation to IEnumerable.
It's usual, but not mandatory, that IEnumerable represents a collection.
Enumerables can be collections, as well as generators, queries, and even computations.
Generator:
IEnumerable<int> Generate(
int initial,
Func<int, bool> condition,
Func<int, int> iterator)
{
var i = initial;
while (true)
{
yield return i;
i = iterator(i);
if (!condition(i))
{
yield break;
}
}
}
Query:
IEnumerable<Process> GetProcessesWhereNameContains(string text)
{
// Could be web-service or database call too
var processes = System.Diagnostics.Process.GetProcesses();
foreach (var process in processes)
{
if (process.ProcessName.Contains(text))
{
yield return process;
}
}
}
Computation:
IEnumerable<double> Average(IEnumerable<double> values)
{
var sum = 0.0;
var count = 0;
foreach (var value in values)
{
sum += value;
yield return sum/++count;
}
}
LINQ is itself a series of operators that produce objects that implement IEnumerable<T> that don't have any underlying collections.
Good question, BTW!
NB: Any reference to IEnumerable also applies to IEnumerable<T> as the latter inherits the former.
Yes, IEnumerable implies a collection, or possible collection, of items.
The name is derived from enumerate, which means to:
Mention (a number of things) one by one.
Establish the number of.
According to the docs, it exposes the enumerator over a collection.
You can certainly use it on a single object, but this object will then just be exposed as an enumeration containing a single object, i.e. you could have an IEnumerable<int> with a single integer:
IEnumerable<int> items = new[] { 42 };
IEnumerable represents a collection that can be enumerated, not a single item. Look at MSDN; the interface exposes GetEnumerator(), which
...[r]eturns an enumerator that iterates through a collection.
Yes, IEnumerable always implies a collection, that is what enumerate means.
What is your use case for a single object?
I don't see a problem with using it on a single object, but why do want to do this?
I'm not sure whether you mean a "collection" or a .NET "ICollection" but since other people have only mentioned the former I will mention the latter.
http://msdn.microsoft.com/en-us/library/92t2ye13.aspx
By that definition, All ICollections are IEnumerable. But not the other way around.
But most data structure (Array even) just implement both interfaces.
Going on this train of thought: you could have a car depot (a single object) that does not expose an internal data structure, and put IEnumerable on it. I suppose.

How to change a LINQ list into an arraylist

I have to write a query in a web application using LINQ but I need to change that query into an array list. How can I change the query below to do this?
var resultsQuery =
from result in o["SearchResponse"]["Web"]["Results"].Children()
select new
{
Url = result.Value<string>("Url").ToString(),
Title = result.Value<string>("Title").ToString(),
Content = result.Value<string>("Description").ToString()
};
If you really need to create an ArrayList, you can write new ArrayList(resultsQuery.ToArray()).
However, you should use a List<T> instead, by writing resultsQuery.ToList().
Note that, in both cases, the list will contain objects of anonymous type.
There is a .ToArray() method that'll convert IEnumerable to an Array.
ArrayList doesn't have a constructor or Add(Range) method that takes an IEnumerable. So that leaves two choices:
Use an intermediate collection that does implement ICollection: as both Array and List<T> implement ICollection can be used via the ToArray() or ToList() extension methods from LINQ.
Create an instance of ArrayList and then add each element of the result:
var query = /* LINQ Expression */
var res = new ArrayList();
foreach (var item in query) {
res.Add(item);
}
The former method is simple to do but does mean creating the intermediate data structure (which of the two options has a higher overhead is an interesting question and partly depends on the query so there is no general answer). The latter is more code and does involve growing the ArrayList incrementally (so more memory for the GC, as would be the case for an intermediate Array or List<T>).
If you just need this in one place you can just do the code inline, if you need to do it in multiple places create your own extension method over IEnumerable<T>:
public static class MyExtensions {
public static ArrayList ToArrayList<T>(this IEnumerable<T> input) {
var col = input as ICollection;
if (col != null) {
return new ArrayList(col);
}
var res = new ArrayList();
foreach (var item in input) {
res.Add(item);
}
return res;
}
}

How can I add an item to a IEnumerable<T> collection?

My question as title above. For example
IEnumerable<T> items = new T[]{new T("msg")};
items.ToList().Add(new T("msg2"));
but after all it only has 1 item inside. Can we have a method like items.Add(item) like the List<T>?
You cannot, because IEnumerable<T> does not necessarily represent a collection to which items can be added. In fact, it does not necessarily represent a collection at all! For example:
IEnumerable<string> ReadLines()
{
string s;
do
{
s = Console.ReadLine();
yield return s;
} while (!string.IsNullOrEmpty(s));
}
IEnumerable<string> lines = ReadLines();
lines.Add("foo") // so what is this supposed to do??
What you can do, however, is create a new IEnumerable object (of unspecified type), which, when enumerated, will provide all items of the old one, plus some of your own. You use Enumerable.Concat for that:
items = items.Concat(new[] { "foo" });
This will not change the array object (you cannot insert items into to arrays, anyway). But it will create a new object that will list all items in the array, and then "Foo". Furthermore, that new object will keep track of changes in the array (i.e. whenever you enumerate it, you'll see the current values of items).
The type IEnumerable<T> does not support such operations. The purpose of the IEnumerable<T> interface is to allow a consumer to view the contents of a collection. Not to modify the values.
When you do operations like .ToList().Add() you are creating a new List<T> and adding a value to that list. It has no connection to the original list.
What you can do is use the Add extension method to create a new IEnumerable<T> with the added value.
items = items.Add("msg2");
Even in this case it won't modify the original IEnumerable<T> object. This can be verified by holding a reference to it. For example
var items = new string[]{"foo"};
var temp = items;
items = items.Add("bar");
After this set of operations the variable temp will still only reference an enumerable with a single element "foo" in the set of values while items will reference a different enumerable with values "foo" and "bar".
EDIT
I contstantly forget that Add is not a typical extension method on IEnumerable<T> because it's one of the first ones that I end up defining. Here it is
public static IEnumerable<T> Add<T>(this IEnumerable<T> e, T value) {
foreach ( var cur in e) {
yield return cur;
}
yield return value;
}
Have you considered using ICollection<T> or IList<T> interfaces instead, they exist for the very reason that you want to have an Add method on an IEnumerable<T>.
IEnumerable<T> is used to 'mark' a type as being...well, enumerable or just a sequence of items without necessarily making any guarantees of whether the real underlying object supports adding/removing of items. Also remember that these interfaces implement IEnumerable<T> so you get all the extensions methods that you get with IEnumerable<T> as well.
In .net Core, there is a method Enumerable.Append that does exactly that.
The source code of the method is available on GitHub..... The implementation (more sophisticated than the suggestions in other answers) is worth a look :).
A couple short, sweet extension methods on IEnumerable and IEnumerable<T> do it for me:
public static IEnumerable Append(this IEnumerable first, params object[] second)
{
return first.OfType<object>().Concat(second);
}
public static IEnumerable<T> Append<T>(this IEnumerable<T> first, params T[] second)
{
return first.Concat(second);
}
public static IEnumerable Prepend(this IEnumerable first, params object[] second)
{
return second.Concat(first.OfType<object>());
}
public static IEnumerable<T> Prepend<T>(this IEnumerable<T> first, params T[] second)
{
return second.Concat(first);
}
Elegant (well, except for the non-generic versions). Too bad these methods are not in the BCL.
No, the IEnumerable doesn't support adding items to it. The alternative solution is
var myList = new List(items);
myList.Add(otherItem);
To add second message you need to -
IEnumerable<T> items = new T[]{new T("msg")};
items = items.Concat(new[] {new T("msg2")})
I just come here to say that, aside from Enumerable.Concat extension method, there seems to be another method named Enumerable.Append in .NET Core 1.1.1. The latter allows you to concatenate a single item to an existing sequence. So Aamol's answer can also be written as
IEnumerable<T> items = new T[]{new T("msg")};
items = items.Append(new T("msg2"));
Still, please note that this function will not change the input sequence, it just return a wrapper that put the given sequence and the appended item together.
Not only can you not add items like you state, but if you add an item to a List<T> (or pretty much any other non-read only collection) that you have an existing enumerator for, the enumerator is invalidated (throws InvalidOperationException from then on).
If you are aggregating results from some type of data query, you can use the Concat extension method:
Edit: I originally used the Union extension in the example, which is not really correct. My application uses it extensively to make sure overlapping queries don't duplicate results.
IEnumerable<T> itemsA = ...;
IEnumerable<T> itemsB = ...;
IEnumerable<T> itemsC = ...;
return itemsA.Concat(itemsB).Concat(itemsC);
Others have already given great explanations regarding why you can not (and should not!) be able to add items to an IEnumerable. I will only add that if you are looking to continue coding to an interface that represents a collection and want an add method, you should code to ICollection or IList. As an added bonanza, these interfaces implement IEnumerable.
you can do this.
//Create IEnumerable
IEnumerable<T> items = new T[]{new T("msg")};
//Convert to list.
List<T> list = items.ToList();
//Add new item to list.
list.add(new T("msg2"));
//Cast list to IEnumerable
items = (IEnumerable<T>)items;
Easyest way to do that is simply
IEnumerable<T> items = new T[]{new T("msg")};
List<string> itemsList = new List<string>();
itemsList.AddRange(items.Select(y => y.ToString()));
itemsList.Add("msg2");
Then you can return list as IEnumerable also because it implements IEnumerable interface
Instances implementing IEnumerable and IEnumerator (returned from IEnumerable) don't have any APIs that allow altering collection, the interface give read-only APIs.
The 2 ways to actually alter the collection:
If the instance happens to be some collection with write API (e.g. List) you can try casting to this type:
IList<string> list = enumerableInstance as IList<string>;
Create a list from IEnumerable (e.g. via LINQ extension method toList():
var list = enumerableInstance.toList();
IEnumerable items = Enumerable.Empty(T);
List somevalues = new List();
items.ToList().Add(someValues);
items.ToList().AddRange(someValues);
Sorry for reviving really old question but as it is listed among first google search results I assume that some people keep landing here.
Among a lot of answers, some of them really valuable and well explained, I would like to add a different point of vue as, to me, the problem has not be well identified.
You are declaring a variable which stores data, you need it to be able to change by adding items to it ? So you shouldn't use declare it as IEnumerable.
As proposed by #NightOwl888
For this example, just declare IList instead of IEnumerable: IList items = new T[]{new T("msg")}; items.Add(new T("msg2"));
Trying to bypass the declared interface limitations only shows that you made the wrong choice.
Beyond this, all methods that are proposed to implement things that already exists in other implementations should be deconsidered.
Classes and interfaces that let you add items already exists. Why always recreate things that are already done elsewhere ?
This kind of consideration is a goal of abstracting variables capabilities within interfaces.
TL;DR : IMO these are cleanest ways to do what you need :
// 1st choice : Changing declaration
IList<T> variable = new T[] { };
variable.Add(new T());
// 2nd choice : Changing instantiation, letting the framework taking care of declaration
var variable = new List<T> { };
variable.Add(new T());
When you'll need to use variable as an IEnumerable, you'll be able to. When you'll need to use it as an array, you'll be able to call 'ToArray()', it really always should be that simple. No extension method needed, casts only when really needed, ability to use LinQ on your variable, etc ...
Stop doing weird and/or complex things because you only made a mistake when declaring/instantiating.
Maybe I'm too late but I hope it helps anyone in the future.
You can use the insert function to add an item at a specific index.
list.insert(0, item);
Sure, you can (I am leaving your T-business aside):
public IEnumerable<string> tryAdd(IEnumerable<string> items)
{
List<string> list = items.ToList();
string obj = "";
list.Add(obj);
return list.Select(i => i);
}

Categories