Is there a neater linq way to 'Union' a single item? - c#

If I have two sequences and I want to process them both together, I can union them and away we go.
Now lets say I have a single item I want to process between the two sequencs. I can get it in by creating an array with a single item, but is there a neater way? i.e.
var top = new string[] { "Crusty bread", "Mayonnaise" };
string filling = "BTL";
var bottom = new string[] { "Mayonnaise", "Crusty bread" };
// Will not compile, filling is a string, therefore is not Enumerable
//var sandwich = top.Union(filling).Union(bottom);
// Compiles and works, but feels grungy (looks like it might be smelly)
var sandwich = top.Union(new string[]{filling}).Union(bottom);
foreach (var item in sandwich)
Process(item);
Is there an approved way of doing this, or is this the approved way?
Thanks

One option is to overload it yourself:
public static IEnumerable<T> Union<T>(this IEnumerable<T> source, T item)
{
return source.Union(Enumerable.Repeat(item, 1));
}
That's what we did with Concat in MoreLINQ.

The new way of doing this, supported in .NET Core and .NET Framework from version 4.7.1, is using the Append extension method.
This will make your code as easy and elegant as
var sandwich = top.Append(filling).Union(bottom);

Consider using even more flexible approach:
public static IEnumerable<T> Union<T>(this IEnumerable<T> source, params T[] items)
{
return source.Union((IEnumerable<T>)items);
}
Works for single as well as multiple items.
You may also accept null source values:
public static IEnumerable<T> Union<T>(this IEnumerable<T> source, params T[] items)
{
return source != null ? source.Union((IEnumerable<T>)items) : items;
}

I tend to have the following somewhere in my code:
public static IEnumerable<T> EmitFromEnum<T>(this T item)
{
yield return item;
}
While it's not as neat to call col.Union(obj.EmitFromEnum()); as col.Union(obj) it does mean that this single extension method covers all other cases I might want such a single-item enumeration.
Update: With .NET Core you can now use .Append() or .Prepend() to add a single element to an enumerable. The implementation is optimised to avoid generating too many IEnumerator implementations behind the scenes.

Related

Which is more efficient in this case? LINQ Query or FOREACH loop?

In my project, I implemented a service class which has a function naming GetList() which is as follows:
IList<SUB_HEAD> GetList(string u)
{
var collection = (from s in context.DB.SUB_HEAD where (s.head_code.Equals(u))
select s);
return collection.ToList();
}
which can also be implemented as
Arraylist unitlist= new Arraylist();
ObjectSet<SUB_HEAD> List = subheadService.GetAll();
foreach(SUB_HEAD unit in List)
{
unitlist.Add(unit.sub_head_code);
}
Purpose of doing this is to populate dropdown menu.
My question is that "which of the above method will be more efficient with respect to processing?" because my project have lot of places where i have to use drop down menu.
Please, just use the LINQ version. You can perform optimizations later if you profile and determine this is too slow (by the way, it won't be). Also, you can use the functional-style LINQ to make a single expression that I think reads better.
IList<SUB_HEAD> GetList(string u)
{
return context.DB.SUB_HEAD.Where(s => s.head_code == u).ToList();
}
The ToList() method is going to do exactly the same thing as you're doing manually. The implementation in the .NET framework looks something like this:
public static class Enumerable
{
public static List<T> ToList<T>(this IEnumerable<T> source)
{
var list = new List<T>();
foreach (var item in source)
{
list.Add(item);
}
return list;
}
}
If you can express these 4 lines of code with the characters "ToList()" then you should do so. Code duplication is bad, even when it's for something this simple.

How to collect a single property in a list of objects?

Is it possible to create an extension method to return a single property or field in a list of objects?
Currently I have a lot of functions like the following.
public static List<int> GetSpeeds(this List<ObjectMotion> motions) {
List<int> speeds = new List<int>();
foreach (ObjectMotion motion in motions) {
speeds.Add(motion.Speed);
}
return speeds;
}
This is "hard coded" and only serves a single property in a single object type. Its tedious and I'm sure there's a way using LINQ / Reflection to create an extension method that can do this in a generic and reusable way. Something like this:
public static List<TProp> GetProperties<T, TProp>(this List<T> objects, Property prop){
List<TProp> props = new List<TProp>();
foreach (ObjectMotion obj in objects) {
props.Add(obj.prop??);
}
return props;
}
Apart from the easiest method using LINQ, I'm also looking for the fastest method. Is it possible to use code generation (and Lambda expression trees) to create such a method at runtime? I'm sure that would be faster than using Reflection.
You could do:
public static List<TProp> GetProperties<T, TProp>(this IEnumerable<T> seq, Func<T, TProp> selector)
{
return seq.Select(selector).ToList();
}
and use it like:
List<int> speeds = motions.GetProperties(m => m.Speed);
it's questionable whether this method is better than just using Select and ToList directly though.
It is, no reflection needed:
List<int> values = motions.Select(m=>m.Speed).ToList();
A for loop would be the fastest I think, followed closely by linq (minimal overhead if you don't do use closures). I can't image any other mechanism would be any better than that.
You could replace the List<int> with a int[] or initialize the list with a certain capacity. That would probably do more to speed up your code than anything else (though still not much).

Update IEnumerable with new object in extension method

I would like to add new iEnumerable object to original one. Can I do this updating original object in extenstion method like following?
public static void AddItems<TSource>(this IEnumerable<TSource> orginalColl,
IEnumerable<TSource> collectionToAdd)
{
foreach (var item in collectionToAdd)
{
orginalColl.ToList<TSource>().Add(item);
}
}
I am calling like this: OrgCollecation.AddItems(newCollection).
But this does not seems to work. Any idea?
An IEnumerable[<T>] is not intended for adding. You can concatenate (generating a new sequence), but that doesn't change the original sequence (/list/array/etc). You can do that with Enumerable.Concat, i.e. return orginalColl.Concat(...). But emphasis: this does not update the original collection.
What you could do would be to cast to IList[<T>] or similar, but that would be abusive (and will only work for some scenarios, not all). It won't work, for example, for anything that is based on an iterator block (or any other IEnumerable<T> that is not also an IList<T>) - for example it won't work on someSource.Where(predicte).
If you expect to change the source, then you should be passing in something like IList[<T>]. For example:
public static void AddItems<TSource>(this IList<TSource> orginalColl,
IEnumerable<TSource> collectionToAdd)
{
foreach (var item in collectionToAdd)
{
orginalColl.Add(item);
}
}
(btw, AddRange would be an alternative name for the above, to match List<T>.AddRange)
No you can not.
In your code you are cloning the source enumerable into list, then adding elements to it and forgetting, because you are not returning anything.
Try
var result = orginalColl.Concat(collectionToAdd);
Take a look at http://msdn.microsoft.com/en-us/library/bb302894.aspx for more information and examples.
In short, an IEnumerable<T> should be considered immutable, and you can't add to it. You don't know what kind of collection is implementing it, it may for example be a serial port input or a read only file in the file system you're enumerating from.
What you're trying to do to the collection matches the use case of ICollection<T> better; it's implemented by generic (mutable) collections in the framework.
public static void AddItems<TSource>(this ICollection<TSource> orginalColl,
IEnumerable<TSource> collectionToAdd)
{
foreach (var item in collectionToAdd)
{
orginalColl.Add(item);
}
}

Create an enumeration of one

If I want an empty enumeration, I can call Enumerable.Empty<T>(). But what if I want to convert a scalar type to an enumeration?
Normally I'd write new List<string> {myString} to pass myString to a function that accepts IEnumerable<string>. Is there a more LINQ-y way?
You can use Repeat:
var justOne = Enumerable.Repeat(value, 1);
Or just an array of course:
var singleElementArray = new[] { value };
The array version is mutable of course, whereas Enumerable.Repeat isn't.
Perhaps the shortest form is
var sequence = new[] { value };
There is, but it's less efficient than using a List or Array:
// an enumeration containing only the number 13.
var oneIntEnumeration = Enumerable.Repeat(13, 1);
You can also write your own extension method:
public static class Extensions
{
public static IEnumerable<T> AsEnumerable<T>(this T item)
{
yield return item;
}
}
Now I haven't done that, and now that I know about Enumerable.Repeat, I probably never will (learn something new every day). But I have done this:
public static IEnumerable<T> MakeEnumerable<T>(params T[] items)
{
return items;
}
And this, of course, works if you call it with a single argument. But maybe there's something like this in the framework already, that I haven't discovered yet.

How can I add an item to a IEnumerable<T> collection?

My question as title above. For example
IEnumerable<T> items = new T[]{new T("msg")};
items.ToList().Add(new T("msg2"));
but after all it only has 1 item inside. Can we have a method like items.Add(item) like the List<T>?
You cannot, because IEnumerable<T> does not necessarily represent a collection to which items can be added. In fact, it does not necessarily represent a collection at all! For example:
IEnumerable<string> ReadLines()
{
string s;
do
{
s = Console.ReadLine();
yield return s;
} while (!string.IsNullOrEmpty(s));
}
IEnumerable<string> lines = ReadLines();
lines.Add("foo") // so what is this supposed to do??
What you can do, however, is create a new IEnumerable object (of unspecified type), which, when enumerated, will provide all items of the old one, plus some of your own. You use Enumerable.Concat for that:
items = items.Concat(new[] { "foo" });
This will not change the array object (you cannot insert items into to arrays, anyway). But it will create a new object that will list all items in the array, and then "Foo". Furthermore, that new object will keep track of changes in the array (i.e. whenever you enumerate it, you'll see the current values of items).
The type IEnumerable<T> does not support such operations. The purpose of the IEnumerable<T> interface is to allow a consumer to view the contents of a collection. Not to modify the values.
When you do operations like .ToList().Add() you are creating a new List<T> and adding a value to that list. It has no connection to the original list.
What you can do is use the Add extension method to create a new IEnumerable<T> with the added value.
items = items.Add("msg2");
Even in this case it won't modify the original IEnumerable<T> object. This can be verified by holding a reference to it. For example
var items = new string[]{"foo"};
var temp = items;
items = items.Add("bar");
After this set of operations the variable temp will still only reference an enumerable with a single element "foo" in the set of values while items will reference a different enumerable with values "foo" and "bar".
EDIT
I contstantly forget that Add is not a typical extension method on IEnumerable<T> because it's one of the first ones that I end up defining. Here it is
public static IEnumerable<T> Add<T>(this IEnumerable<T> e, T value) {
foreach ( var cur in e) {
yield return cur;
}
yield return value;
}
Have you considered using ICollection<T> or IList<T> interfaces instead, they exist for the very reason that you want to have an Add method on an IEnumerable<T>.
IEnumerable<T> is used to 'mark' a type as being...well, enumerable or just a sequence of items without necessarily making any guarantees of whether the real underlying object supports adding/removing of items. Also remember that these interfaces implement IEnumerable<T> so you get all the extensions methods that you get with IEnumerable<T> as well.
In .net Core, there is a method Enumerable.Append that does exactly that.
The source code of the method is available on GitHub..... The implementation (more sophisticated than the suggestions in other answers) is worth a look :).
A couple short, sweet extension methods on IEnumerable and IEnumerable<T> do it for me:
public static IEnumerable Append(this IEnumerable first, params object[] second)
{
return first.OfType<object>().Concat(second);
}
public static IEnumerable<T> Append<T>(this IEnumerable<T> first, params T[] second)
{
return first.Concat(second);
}
public static IEnumerable Prepend(this IEnumerable first, params object[] second)
{
return second.Concat(first.OfType<object>());
}
public static IEnumerable<T> Prepend<T>(this IEnumerable<T> first, params T[] second)
{
return second.Concat(first);
}
Elegant (well, except for the non-generic versions). Too bad these methods are not in the BCL.
No, the IEnumerable doesn't support adding items to it. The alternative solution is
var myList = new List(items);
myList.Add(otherItem);
To add second message you need to -
IEnumerable<T> items = new T[]{new T("msg")};
items = items.Concat(new[] {new T("msg2")})
I just come here to say that, aside from Enumerable.Concat extension method, there seems to be another method named Enumerable.Append in .NET Core 1.1.1. The latter allows you to concatenate a single item to an existing sequence. So Aamol's answer can also be written as
IEnumerable<T> items = new T[]{new T("msg")};
items = items.Append(new T("msg2"));
Still, please note that this function will not change the input sequence, it just return a wrapper that put the given sequence and the appended item together.
Not only can you not add items like you state, but if you add an item to a List<T> (or pretty much any other non-read only collection) that you have an existing enumerator for, the enumerator is invalidated (throws InvalidOperationException from then on).
If you are aggregating results from some type of data query, you can use the Concat extension method:
Edit: I originally used the Union extension in the example, which is not really correct. My application uses it extensively to make sure overlapping queries don't duplicate results.
IEnumerable<T> itemsA = ...;
IEnumerable<T> itemsB = ...;
IEnumerable<T> itemsC = ...;
return itemsA.Concat(itemsB).Concat(itemsC);
Others have already given great explanations regarding why you can not (and should not!) be able to add items to an IEnumerable. I will only add that if you are looking to continue coding to an interface that represents a collection and want an add method, you should code to ICollection or IList. As an added bonanza, these interfaces implement IEnumerable.
you can do this.
//Create IEnumerable
IEnumerable<T> items = new T[]{new T("msg")};
//Convert to list.
List<T> list = items.ToList();
//Add new item to list.
list.add(new T("msg2"));
//Cast list to IEnumerable
items = (IEnumerable<T>)items;
Easyest way to do that is simply
IEnumerable<T> items = new T[]{new T("msg")};
List<string> itemsList = new List<string>();
itemsList.AddRange(items.Select(y => y.ToString()));
itemsList.Add("msg2");
Then you can return list as IEnumerable also because it implements IEnumerable interface
Instances implementing IEnumerable and IEnumerator (returned from IEnumerable) don't have any APIs that allow altering collection, the interface give read-only APIs.
The 2 ways to actually alter the collection:
If the instance happens to be some collection with write API (e.g. List) you can try casting to this type:
IList<string> list = enumerableInstance as IList<string>;
Create a list from IEnumerable (e.g. via LINQ extension method toList():
var list = enumerableInstance.toList();
IEnumerable items = Enumerable.Empty(T);
List somevalues = new List();
items.ToList().Add(someValues);
items.ToList().AddRange(someValues);
Sorry for reviving really old question but as it is listed among first google search results I assume that some people keep landing here.
Among a lot of answers, some of them really valuable and well explained, I would like to add a different point of vue as, to me, the problem has not be well identified.
You are declaring a variable which stores data, you need it to be able to change by adding items to it ? So you shouldn't use declare it as IEnumerable.
As proposed by #NightOwl888
For this example, just declare IList instead of IEnumerable: IList items = new T[]{new T("msg")}; items.Add(new T("msg2"));
Trying to bypass the declared interface limitations only shows that you made the wrong choice.
Beyond this, all methods that are proposed to implement things that already exists in other implementations should be deconsidered.
Classes and interfaces that let you add items already exists. Why always recreate things that are already done elsewhere ?
This kind of consideration is a goal of abstracting variables capabilities within interfaces.
TL;DR : IMO these are cleanest ways to do what you need :
// 1st choice : Changing declaration
IList<T> variable = new T[] { };
variable.Add(new T());
// 2nd choice : Changing instantiation, letting the framework taking care of declaration
var variable = new List<T> { };
variable.Add(new T());
When you'll need to use variable as an IEnumerable, you'll be able to. When you'll need to use it as an array, you'll be able to call 'ToArray()', it really always should be that simple. No extension method needed, casts only when really needed, ability to use LinQ on your variable, etc ...
Stop doing weird and/or complex things because you only made a mistake when declaring/instantiating.
Maybe I'm too late but I hope it helps anyone in the future.
You can use the insert function to add an item at a specific index.
list.insert(0, item);
Sure, you can (I am leaving your T-business aside):
public IEnumerable<string> tryAdd(IEnumerable<string> items)
{
List<string> list = items.ToList();
string obj = "";
list.Add(obj);
return list.Select(i => i);
}

Categories