Garbage collection request? - c#

As we know that during run time garbage collection request automatically when there is not enough space in memory to forming object. In my knowledge garbage collection call automatically, but when we do some programming in real world then it become indespensible to call garbage collection.let a example if we are making a programm in first step i want to call garbage collection for optimizing memory for further creation of object that means during run time. So how we will call garbage collector ?

Generally you should not call GC.Collect yourself. The GC is self-tuning and will most likely do a much better job than you can as it can take account of the entire managed heap and its usage.
However, you may want to check the answers to this question as well.

GC.Collect()
Be aware though!
Generally .NET does a good job of managing the memory for you, and this should be used with care! IMO

GC.Collect().
You really should not ever have to do this. As long as you properly dispose of your objects you really have no need to invoke the GC. Also remember on any IDisposable object that you do not need to maintain a lifetime for, the using statement is your friend.

but when we do some programming in
real world then it become
indespensible to call garbage
collection.
This is not true.
The .NET garbage collector does a very good job determining when it should run, what to free etc., it is adopted to a wide range of real-world scenarios and performs very well in those.
For emphasis, let me phrase this quite clear, as most of the people posting before me already have: In a typical application, there is not need to ever force the garbage collector to run manually. Forcing the GC to run will usually hinder performance, not improve it.

You can force the garbage collector to collect by calling GC.Collect(), but I highly recommend against it.
Have a read of this question and answer: GC.Collect()

Related

How can I tell if the .Net 3.5 garbage collector has run?

I have an application that creates trees of nodes, then tosses them and makes new trees.
The application allocates about 20 MB upon startup. But I tried loading a large file of nodes many times, and the allocated memory went above 700 MB. I thought I would see memory being freed by the garbage collector on occasion.
The machine I'm on has 12 GB of RAM, so maybe it's just that such a "small" amount of memory being allocated doesn't matter to the GC.
I've found a lot of good info on how the GC works, and that it's best not to tell it what to do. But I wanted to verify that it's actually doing anything, and that I'm not somehow doing something wrong in the code that prevents my objects from being cleaned up.
The GC generally runs when either of the scenarios below occur:
You call GC.Collect (which you shouldn't)
Gen0's budget is exhausted
There are some other scenarios as well, but I'll skip those for now.
You didn't tell us how you measured the memory usage, but if you're looking at the memory usage of process itself (e.g. through task manager), then you may not see the numbers you expect. Remember that the .NET runtime essentially has its own memory manager that handles memory usage on behalf of you managed application. The runtime tries to be smart about it so it doesn't allocate and free memory to the OS all the time (those are expensive operations). This question may be relevant as well.
If you're concerned about memory leaks have a look at some of the answers here.
When does the .Net 3.5 garbage collector run?
I thought I would see memory being freed by the garbage collector on occasion.
Since the GC is non-deterministic, you won't be able to necessarily determine when it is going to issue a collection. Short answer: It will run when needed. Trying to analyze your code and predict or assume it should be running at a certain time usually ends up down a rabbit hole.
Answer to: do I leak objects or GC have not need to run yet?
Use memory profiler to see what objects are allocated. As basic step - force garbage collection (GC.Collect) and check out if allocated memory (GC.GetTotalMemory) seems to be reasonable.
If you want to make sure that you're not leaving any unwanted object behind you can use dotTrace memory profiler. It allows you to take two snapshots of objects in memory (taken some time apart) and compare them. You will can clearly see if any old nodes are still hanging around and what is keeping a reference to them and stops them from being collected.
You may have the managed equivalent of a memory leak. Are you maintaining stale references to these objects (i.e., do you have a List<T> or some other object which tracks these nodes)?
Are the subscribing to an event of an object that is not going out of scope? A reference to the subscribee of an event is maintained, so if you don't detach it will keep your objects alive.
You may also be forgetting to Dispose of objects that implement IDisposable. Can't say without seeing your code.
The exact behavior of the GC is implementation defined. You should design your application such that it does not matter. If you need deterministic memory management then you are using the wrong language. Use a tool (RedGate's ANTS profiler will do) to see if you are leaking references somewhere.
This comic is the best way to explain this topic :)
You can monitor the garbage collector activity in .NET 4.0 and beyond with GC.RegisterForFullGCNotification as described in this link: http://www.abhisheksur.com/2010/08/garbage-collection-notifications-in-net.html

C# - Garbage Collection

Ok so I understand about the stack and the heap (values live on the Stack, references on the Heap).
When I declare a new instance of a Class, this lives on the heap, with a reference to this point in memory on the stack. I also know that C# does it's own Garbage Collection (ie. It determines when an instanciated class is no longer in use and reclaims the memory).
I have 2 questions:
Is my understanding of Garbage Collection correct?
Can I do my own? If so is there any real benefit to doing this myself or should I just leave it.
I ask because I have a method in a For loop. Every time I go through a loop, I create a new instance of my Class. In my head I visualise all of these classes lying around in a heap, not doing anything but taking up memory and I want to get rid of them as quickly as I can to keep things neat and tidy!
Am I understanding this correctly or am I missing something?
Ok so I understand about the stack and the heap (values live on the Stack, references on the Heap
I don't think you understand about the stack and the heap. If values live on the stack then where does an array of integers live? Integers are values. Are you telling me that an array of integers keeps its integers on the stack? When you return an array of integers from a method, say, with ten thousand integers in it, are you telling me that those ten thousand integers are copied onto the stack?
Values live on the stack when they live on the stack, and live on the heap when they live on the heap. The idea that the type of a thing has to do with the lifetime of its storage is nonsense. Storage locations that are short lived go on the stack; storage locations that are long lived go on the heap, and that is independent of their type. A long-lived int has to go on the heap, same as a long-lived instance of a class.
When I declare a new instance of a Class, this lives on the heap, with a reference to this point in memory on the stack.
Why does the reference have to go on the stack? Again, the lifetime of the storage of the reference has nothing to do with its type. If the storage of the reference is long-lived then the reference goes on the heap.
I also know that C# does it's own Garbage Collection (ie. It determines when an instanciated class is no longer in use and reclaims the memory).
The C# language does not do so; the CLR does so.
Is my understanding of Garbage Collection correct?
You seem to believe a lot of lies about the stack and the heap, so odds are good no, it's not.
Can I do my own?
Not in C#, no.
I ask because I have a method in a For loop. Every time I go through a loop, I create a new instance of my Class. In my head I visualise all of these classes lying around in a heap, not doing anything but taking up memory and I want to get rid of them as quickly as I can to keep things neat and tidy!
The whole point of garbage collection is to free you from worrying about tidying up. That's why its called "automatic garbage collection". It tidies for you.
If you are worried that your loops are creating collection pressure, and you wish to avoid collection pressure for performance reasons then I advise that you pursue a pooling strategy. It would be wise to start with an explicit pooling strategy; that is:
while(whatever)
{
Frob f = FrobPool.FetchFromPool();
f.Blah();
FrobPool.ReturnToPool(f);
}
rather than attempting to do automatic pooling using a resurrecting finalizer. I advise against both finalizers and object resurrection in general unless you are an expert on finalization semantics.
The pool of course allocates a new Frob if there is not one in the pool. If there is one in the pool, then it hands it out and removes it from the pool until it is put back in. (If you forget to put a Frob back in the pool, the GC will get to it eventually.) By pursuing a pooling strategy you cause the GC to eventually move all the Frobs to the generation 2 heap, instead of creating lots of collection pressure in the generation 0 heap. The collection pressure then disappears because no new Frobs are allocated. If something else is producing collection pressure, the Frobs are all safely in the gen 2 heap where they are rarely visited.
This of course is the exact opposite of the strategy you described; the whole point of the pooling strategy is to cause objects to hang around forever. Objects hanging around forever is a good thing if you're going to use them.
Of course, do not make these sorts of changes before you know via profiling that you have a performance problem due to collection pressure! It is rare to have such a problem on the desktop CLR; it is rather more common on the compact CLR.
More generally, if you are the kind of person who feels uncomfortable having a memory manager clean up for you on its schedule, then C# is not the right language for you. Consider C instead.
values live on the Stack, references on the Heap
This is an implementation detail. There is nothing to stop a .NET Framework from storing both on the stack.
I also know that C# does it's own Garbage Collection
C# has nothing to do with this. This is a service provided by the CLR. VB.NET, F#, etc all still have garbage collection.
The CLR will remove an object from memory if it has no strong roots. For example, when your class instance goes out of scope in your for loop. There will be a few lying around, but they will get collected eventually, either by garbage collection or the program terminating.
Can I do my own? If so is there any real benefit to doing this myself or should I just leave it?
You can use GC.Collect to force a collection. You should not do it because it is an expensive operation. More expensive than letting a few objects occupy memory a little bit longer than they are absolutely needed. The GC is incredibly good at what it does on its own. You will also force short lived objects to promote to generations they wouldn't get normally.
First off, to Erics seminal post about The truth about value types
Secondly on Garbage collection, the collector knows far more about your running program than you do, don't try to second guess it unless you're in the incredibly unlikely situation that you have a memory leak.
So to your second question, no don't try to "help" the GC.
I'll find a post to this effect on the CG and update this answer.
Can I do my own? If so is there any real benefit to doing this myself or should I just leave it.
Yes you can with GC.Collect but you shouldn't. The GC is optimized for variables that are short lived, ones in a method, and variables that are long lived, ones that generally stick around for the life time of the application.
Variables that are in-between aren't as common and aren't really optimum for the GC.
By forcing a GC.Collect you're more likely to cause variables in scope to be in forced into that in-between state which is the opposite from you are trying to accomplish.
Also from the MSDN article Writing High-Performance Managed Applications : A Primer
The GC is self-tuning and will adjust itself according to applications
memory requirements. In most cases programmatically invoking a GC will
hinder that tuning. "Helping" the GC by calling GC.Collect will more
than likely not improve your applications performance
Your understanding of Garbage Collection is good enough. Essentially, an unreferenced instance is deemed as being out-of-scope and no longer needed. Having determined this, the collector will remove an unreferenced object at some future point.
There's no way to force the Garbage Collector to collect just a specific instance. You can ask it to do its normal "collect everything possible" operation GC.Collect(), but you shouldn't.; the garbage-collector is efficient and effective if you just leave it to its own devices.
In particular it excels at collecting objects which have a short lifespan, just like those that are created as temporary objects. You shouldn't have to worry about creating loads of objects in a loop, unless they have a long lifespan that prevents immediate collection.
Please see this related question with regard to the Stack and Heap.
In your specific scenario, agreed, if you new up objects in a for-loop then you're going to have sub-optimal performance. Are the objects stored (or otherwise used) within the loop, or are they discarded? If the latter, can you optimize this by newing up one object outside the loop and re-using it?
With regard to can you implement your own GC, there is no explicit delete keyword in C#, you have to leave it to the CLR. You can however give it hints such as when to collect, or what to ignore during collection, however I'd leave that unless absolutely necessary.
Best regards,
Read the following article by Microsoft to get a level of knowledge about Garbage Collection in C#. I'm sure it'll help anyone who need information regarding this matter.
Memory Management and Garbage Collection in the .NET Framework
If you are interested in performance of some areas in your code when writing C#, you can write unsafe code. You will have a plus of performance, and also, in your fixed block, the garbage collector most likely will not occur.
Garbage collection is basically reference tracking. I can't think of any good reason why you would want to change it. Are you having some sort of problem where you find that memory isn't being freed? Or maybe you are looking for the dispose pattern
Edit:
Replaced "reference counting" with "reference tracking" to not be confused with the Increment/Decrement Counter on object Reference/Dereference (eg from Python).
I thought it was pretty common to refer to the object graph generation as "Counting" like in this answer:
Why no Reference Counting + Garbage Collection in C#?
But I will not pick up the glove of (the) Eric Lippert :)

Want to understand how a managed language like C# has memory leaks

Since C# is a managed language that performs garbage collection automatically to clean up objects etc, ...
what are the ways one can introduce a memory leak?
Are there some non-obvious ways that one should look out for?
How can you detect or look for memory leaks (once you understand how they are generated etc.)
Usually leaks show up in the form of a developer writing code that "holds on" to objects when they shouldn't be, which subsequently disallows the garbage collector from collecting on those objects.
The garbage collector is pretty good at what it does, but if you don't understand what it's doing, the likelihood of you introducing memory issues into your program is pretty high.
I would suggest reading up on the GC and understanding how it works.
Here's something to get you started:
http://www.simple-talk.com/dotnet/.net-framework/understanding-garbage-collection-in-.net/
Two.
First, building up referenced objects. Like creating objects that subscribe to an event on a form. The form is active, so can not be collected, and the event subscriptions... keep the objects alive.
Second, block the garbage colelctor in native code. Like the oracle ODP.NET driever does under certain conditions. Stops the finalizer, so any object requiring finalization WILL NOT GET IT - and thus never be released.
The obvious "memory leak" one could cause in a GC-ed language would be caused simply be retaining a reference to an object after it's needed - this is especially likely if you roll your own caching or keep other global state.
Another way would be leaking memory in unmanaged resources that weren't disposed of, although most of the standard library classes will probably dispose of those in destructors so the memory will be reclaimed sooner or later.
(I'm marking the post as CW because of the open-ended nature of the question.)
A memory leak means keeping in memory objects you don't need anymore. In C#, considering the GC collects unreferenced objects, it's equivalent to say keeping references to objects you don't need.
Think about uncorrectly scoped declarations, infinite recursion or iteration...

Question about the garbage collector in .NET (memory leak)

I guess this is very basic but since I'm learning .NET by myself, I have to ask this question.
I'm used to coding in C, where you have to free() everything. In C++/.NET, I have read about the garbage collector. From what I understand, when an instance is no longer used (in the scope of the object), it is freed by the garbage collector.
So, having that in mind, I built a little testing application. But, it seems I didn't get something because when doing the same things a few times (like, opening a form, closing it, reopening it, etc), memory leaks. And big time.
I tried to look this up on Google but I didn't find anything good for a beginner.
Is the garbage collector really freeing every objects when no longer used or there are exceptions that I have to handle? What am I missing?
Are there free tools to look up for memory leaks?
Yeah, the garbage collector is freeing your objects when they're not used anymore.
What we usually call a memory leak in .NET is more like:
You're using external resources (that are not garbage collected) and forgetting to free them. This is solved usually by implementing the IDisposable interface.
You think there aren't references to a given object but indeed there are, somewhere and you're not using them any more but the garbage collector does not know about them.
In addition, memory is only reclaimed when needed, meaning the garbage collector activates at given times and performs a collection determining them what memory can be freed and freeing it. Until it does, the memory isn't claimed so it might look like memory is being lost.
Here, I think I'll provide a more complex answer just to clarify.
First, the garbage collector runs in its own thread. You have to understand that, in order do reclaim memory the garbage collector needs to stop all other threads so that he can follow up the reference chain an determine what depends on what. That's the reason memory isn't freed right away, a garbage collector imply certain costs in performance.
Internally the garbage collector manage memory in generations. In a very simplified way there are several generations for long lived, short lived and big size objects. The garbage collector moves the object from one generation to another each time its performs a collection which happens more often for short lived generation that for long lived one. It also reallocates objects to get you the most possible contiguous space so again, performing a collection is a costly process.
If you really want to see the effects of you freeing the form (when getting out of scope and having no more reference to it) you can call GC.Collect(). Do that just for testing, it's highly unwise to call Collect except for a very few cases where you know exactly what you're doing and the implications it will have.
A little more explaining about the Dispose method of the IDispose interface.
Dispose isn't a destructor in the usual C++ way, it isn't a destructor at all. Dispose is a way to deterministically get rid of unmanaged objects. An example: Suppose you call an external COM library that happens to allocate 1GB of memory due to what it is doing. If you have no Dispose that memory will sit there, wasting space until the GC inits a collection and reclaims the unmanaged memory by calling the actual object destructor. So if you want to free the memory right away you have to call the Dispose method but you're not "forced" to do so.
If you don't use IDisposable interface then you have to free you're unmanaged resources in the Finalize method. Finalize is automatically called from the object destructor when the GC attempts to reclaim the object. So if you have a proper finalize method the unmanaged memory will get freed either way. Calling Dispose will only make it deterministic.
What leads you to conclude that there are memory leaks? Under garbage collection, there is no guarantee that memory is freed immediately, and in general the GC doesn't kick in until your process memory reaches some threshold, or the available heap has been exhausted. (The exact heuristic is complicated and not important.) So the fact that your process's memory goes up and doesn't go down doesn't necessarily mean that there's a bug. It might just be that the GC didn't get around to cleaning up your process yet.
Additionally, are you sure that there are no references to your objects? It's possible that you have references that you aren't aware of. Most memory leaks in .NET applications are because people don't realize that their memory is still being referenced somewhere.
Task Manager is a terrible way to examine your memory usage. If you want to study how the garbage collector works, install the CLR Profiler and use it to analyze your application. It will tell you exactly what the garbage collector is doing.
See How To: Use CLR Profiler.
I'm adding this as an answer rather than a comment on the question, but this follows-up a question asked by the OP in a comment:
using statement on MSDN.
IDisposable interface on MSDN.
Here is the crux of the issue: what you're used to as far as object destructors is gone. Everything you've been told about how to code correctly is screaming up from your subconscious, saying this can't be true, and if it is true, it's wrong and terrible. It's very different; it's hard to remember how much I really despised it at first (I was a proud C++ developer).
I personally promise you: it's going to be OK!
Here's another good thing to read:
Destructors and Finalizers in Visual C++.
The GC will not necessarily actually free things at the moment the object is no longer referenced. The GC will collect it at some time in the future - you don't know exactly when, but if memory is needed, the GC will perform a collection if necessary.
If you just want to figure out if you have a memory leak or not, have a look at perfmon which ships with your copy of windows:
In particular the .NET CLR Memory counter bytes in all heaps, if this number is steadily growing you have a leak.
You can even dig deeper by comparing the Gen 2 heap size to the Large Object Heap Size. If the former is growing steadily you have a large blobs of data leaking.
Once you confirm there is a leak, you can attach with windbg and use the sos extensions to determine what is leaking.
If you can afford to spend a few bucks have a look at the .NET Memory Profiler.
There are free tools available to look at the managed heap in .Net, using the SOSEX extensions to WinDBG and SOS, it is possible to run a program, pause it, then look at which objects exist on the stack and (more importantly) which other objects are holding references to them (roots) which will be preventing the the GC from collecting them.

Garbage Collection on one object, C#

I need to dispose of an object so it can release everything it owns, but it doesn't implement the IDisposable so I can't use it in a using block. How can I make the garbage collector collect it?
You can force a collection with GC.Collect(). Be very careful using this, since a full collection can take some time. The best-practice is to just let the GC determine when the best time to collect is.
Does the object contain unmanaged resources but does not implement IDisposable? If so, it's a bug.
If it doesn't, it shouldn't matter if it gets released right away, the garbage collector should do the right thing.
If it "owns" anything other than memory, you need to fix the object to use IDisposable. If it's not an object you control this is something worth picking a different vendor over, because it speaks to the core of how well your vendor really understands .Net.
If it does just own memory, even a lot of it, all you have to do is make sure the object goes out of scope. Don't call GC.Collect() — it's one of those things that if you have to ask, you shouldn't do it.
You can't perform garbage collection on a single object. You could request a garbage collection by calling GC.Collect() but this will effect all objects subject to cleanup. It is also highly discouraged as it can have a negative effect on the performance of later collections.
Also, calling Dispose on an object does not clean up it's memory. It only allows the object to remove references to unmanaged resources. For example, calling Dispose on a StreamWriter closes the stream and releases the Windows file handle. The memory for the object on the managed heap does not get reclaimed until a subsequent garbage collection.
Chris Sells also discussed this on .NET Rocks. I think it was during his first appearance but the subject might have been revisited in later interviews.
http://www.dotnetrocks.com/default.aspx?showNum=10
This article by Francesco Balena is also a good reference:
When and How to Use Dispose and Finalize in C#
http://www.devx.com/dotnet/Article/33167/0/page/1
Garbage collection in .NET is non deterministic, meaning you can't really control when it happens. You can suggest, but that doesn't mean it will listen.
Tells us a little bit more about the object and why you want to do this. We can make some suggestions based off of that. Code always helps. And depending on the object, there might be a Close method or something similar. Maybe the useage is to call that. If there is no Close or Dispose type of method, you probably don't want to rely on that object, as you will probably get memory leaks if in fact it does contain resourses which will need to be released.
If the object goes out of scope and it have no external references it will be collected rather fast (likely on the next collection).
BEWARE: of f ra gm enta tion in many cases, GC.Collect() or some IDisposal is not very helpful, especially for large objects (LOH is for objects ~80kb+, performs no compaction and is subject to high levels of fragmentation for many common use cases) which will then lead to out of memory (OOM) issues even with potentially hundreds of MB free. As time marches on, things get bigger, though perhaps not this size (80 something kb) for LOH relegated objects, high degrees of parallelism exasperates this issue due simply due to more objects in less time (and likely varying in size) being instantiated/released.
Array’s are the usual suspects for this problem (it’s also often hard to identify due to non-specific exceptions and assertions from the runtime, something like “high % of large object heap fragmentation” would be swell), the prognosis for code suffering from this problem is to implement an aggressive re-use strategy.
A class in Systems.Collections.Concurrent.ObjectPool from the parallel extensions beta1 samples helps (unfortunately there is not a simple ubiquitous pattern which I have seen, like maybe some attached property/extension methods?), it is simple enough to drop in or re-implement for most projects, you assign a generator Func<> and use Get/Put helper methods to re-use your previous object’s and forgo usual garbage collection. It is usually sufficient to focus on array’s and not the individual array elements.
It would be nice if .NET 4 updated all of the .ToArray() methods everywhere to include .ToArray(T target).
Getting the hang of using SOS/windbg (.loadby sos mscoreei for CLRv4) to analyze this class of issue can help. Thinking about it, the current garbage collection system is more like garbage re-cycling (using the same physical memory again), ObjectPool is analogous to garbage re-using. If anybody remembers the 3 R’s, reducing your memory use is a good idea too, for performance sakes ;)

Categories