Stack overflow when using the System.Net.Sockets.Socket.AcceptAsync model - c#

With respect to C# and .NET's System.Net.Sockets.Socket.AcceptAsync method, one would be required to handle a return value of "false" in order to handle the immediately available SocketAsyncEventArgs state from the synchronously processed connection. Microsoft provides examples (found on the System.Net.Sockets.SocketAsyncEventArgs class page) which will cause a stack overflow if there are a large amount of pending connections, which can be exploited on any system that implements their handling model.
Other ideas for getting around this issue are to make a loop that calls the handler method, with the condition being that the value Socket.AcceptAsync returns is equal to false, and to break the loop (to allow deferred processing) if the value is indicating that the operation is being completed asynchronously (true). However, this solution also causes a stack overflow vulnerability because of the fact that the callback associated with the SocketAsyncEventArgs passed to Socket.AcceptAsync has at the end of the method, a call to Socket.AcceptAsync, which also has a loop for immediately available, synchronously accepted, connections.
As you can see, this is a pretty solid problem, and I've yet to find a good solution that does not involve System.Threading.ThreadPool and creating tons of other methods and scheduling processing. As far as I can see, the asynchronous socket model relating to Socket.AcceptAsync requires more than what is demonstrated in the examples on MSDN.
Does anyone have a clean and efficient solution to handling immediately pending connections that are accepted synchronously from Socket.AcceptAsync without going into creating separate threads to handle the connections and without utilizing recursion?

I wouldn't use AcceptAsync, but rather BeginAccept/EndAccept, and implement the common async pattern correctly, that is, checking for CompletedSynchronously to avoid callbacks in the callback thread on operations which completed .
See also AsyncCallBack CompletedSynchronously
Edit regarding the requirement to use AcceptAsync:
The MSDN documentation explicitly says that the callback will NOT be invoked for operations which completed synchronously. This is different to the common async pattern where the callback is always invoked.
Returns true if the I/O operation is
pending. The
SocketAsyncEventArgs.Completed event
on the e parameter will be raised upon
completion of the operation. Returns
false if the I/O operation completed
synchronously. The
SocketAsyncEventArgs.Completed event
on the e parameter will not be raised
and the e object passed as a parameter
may be examined immediately after the
method call returns to retrieve the
result of the operation.
I currently don't see how a loop would not solve the stack overflow issue. Maybe you can be more specific on the code that causes the problem?
Edit 2: I'm thinking of code like this (only in regard to AcceptAsync, the rest was just to get a working app to try it out with):
static void Main(string[] args) {
Socket listenSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
listenSocket.Bind(new IPEndPoint(IPAddress.Loopback, 4444));
listenSocket.Listen(100);
SocketAsyncEventArgs e = new SocketAsyncEventArgs();
e.Completed += AcceptCallback;
if (!listenSocket.AcceptAsync(e)) {
AcceptCallback(listenSocket, e);
}
Console.ReadKey(true);
}
private static void AcceptCallback(object sender, SocketAsyncEventArgs e) {
Socket listenSocket = (Socket)sender;
do {
try {
Socket newSocket = e.AcceptSocket;
Debug.Assert(newSocket != null);
// do your magic here with the new socket
newSocket.Send(Encoding.ASCII.GetBytes("Hello socket!"));
newSocket.Disconnect(false);
newSocket.Close();
} catch {
// handle any exceptions here;
} finally {
e.AcceptSocket = null; // to enable reuse
}
} while (!listenSocket.AcceptAsync(e));
}

I have resolved this problem by simply changing the placement of the loop. Instead of recursively calling the accept handler from within itself, wrapping the code in a do-while loop with the condition being "!Socket.AcceptAsync(args)" prevents a stack overflow.
The reasoning behind this is that you utilize the callback thread for processing the connections which are immediately available, before bothering to asynchronously wait for other connections to come across. It's re-using a pooled thread, effectively.
I appreciate the responses but for some reason none of them clicked with me and didn't really resolve the issue. However, it seems something in there triggered my mind into coming up with that idea. It avoids manually working with the ThreadPool class and doesn't use recursion.
Of course, if someone has a better solution or even an alternative, I'd be happy to hear it.

I haven't looked carefully, but it smells like this might be helpful (see the section called "stack dive"):
http://blogs.msdn.com/b/mjm/archive/2005/05/04/414793.aspx

newSocket.Send(Encoding.ASCII.GetBytes("Hello socket!"));
newSocket.Disconnect(false);
newSocket.Close();
The problem with this snippet above is that this will block your next accept operation.
A better way is like this:
while (true)
{
if (e.SocketError == SocketError.Success)
{
//ReadEventArg object user token
SocketAsyncEventArgs readEventArgs = m_readWritePool.Pop();
Socket socket = ((AsyncUserToken)readEventArgs.UserToken).Socket = e.AcceptSocket;
if (!socket.ReceiveAsync(readEventArgs))
ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessReceiveEx), readEventArgs); .
}
else
{
HadleBadAccept(e);
}
e.AcceptSocket = null;
m_maxNumberAcceptedClients.WaitOne();
if (listenSocket.AcceptAsync(e))
break;
}

The SocketTaskExtensions contains useful method overloads for the Socket class. Rather than using the AsyncCallback pattern, the AcceptAsync extension method can be called with ease. It is also compatible with the task asynchronous programming (TAP) model.
There is two basic operation to consider:
Start the listening: As usual socket needs to Bind to a specific IP address and port. Then place the socket in listening state (Listen method). After that it is ready to handle the incoming communication.
Stop the listening: It stops accepting the incoming requests.
bool _isListening = false;
public Task<bool> StartListening()
{
Socket listeningSocket = new Socket(SocketType.Stream, ProtocolType.Tcp);
listeningSocket.Bind(new IPEndPoint(IPAddress.Any, 0));
listeningSocket.Listen(10);
return HandleRequests(listeningSocket);
}
public void StopListening()
{
_isListening = false;
}
In order to handle incoming requests, the listening socket accepts (AcceptAsync) the incoming client connection. Then Send or Receive message from the accepted socket. It accepts incoming connection until StopListening was called.
internal async Task<bool> HandleRequests(Socket listeningSocket)
{
try
{
_isListening = true;
while (_isListening)
{
byte[] message = Encoding.UTF8.GetBytes("Message");
byte[] receivedMessage = new byte[1024];
using (Socket acceptedSocket = await listeningSocket.AcceptAsync())
{
// Send messages
acceptedSocket.Send(message);
// Receive messagges
acceptedSocket.Receive(receivedMessage);
}
}
}
catch (SocketException)
{
// Handle error during communication.
return false;
}
return true;
}
Note:
Messages could be exceed the buffer size. In that case try continuously receive until end of the data. Stephen Clearly message framing blog post is good starting point.
Sending and receiving also could be asynchronous. NetworkStream can be created from the accepted socket then we can await to the ReadAsnyc and WriteAsync operations.

Related

What is the best way to cancel a socket receive request?

In C# you have 3 ways to try and receive TCP data on a Socket:
Socket.Receive is a synchronous, blocking method. It doesn't return until it succeeds, barring failure or [optionally] timeout.
Socket.BeginReceive is asynchronous, a supplied callback/delegate is called when there is data to receive, using the now-antiquated Begin/End pattern
Socket.ReceiveAsync begins an asynchronous request to receive data
However my understanding is none of these actually let you cancel the receive operation? The docs suggest EndReceive is used for completing a read, not something one could call to terminate the request?
You often see code like
while(socket.Available==0 && !cancel)Sleep(50); if(!cancel)socket.Receive(...);
But that's pretty terrible.
If I want to sit waiting for data but at some point cancel the receive, say the user hits "stop" button how can this neatly be done so I don't get a callback triggered later on when unexpected?
I had wondered about closing the socket, which would cause the Receive operation to fail, but it seems somewhat ugly. Am I thinking along the right lines or do the various API methods listed above allow a direct cancellation so I don't risk dangling async operations?
There is no known way to cancel it (AFAIK)
One thing you can do it set the Socket.Blocking = false. The receive will return immediately when there is no data. This way it will not hang.
You should check the Socket.Blocking property.
I advise you to use the BeginReceive(IList<ArraySegment<Byte>>, SocketFlags, SocketError, AsyncCallback, Object) overload to prevent it throwing exceptions.
Check the SocketError on "Would Block", meaning "there is not data". So you can try again.
Didn't tested it but ->
A nice idea is using the non-async version Receive to receive 0 bytes (use a static byte[] emptyBuffer = new byte[0]) , and if the sockerError returns with a 'would block', you can have a short delay and retry it. When it doesn't return a socketError there is probably data. So you can start an async version.
What you could do is get a NetworkStream from the socket being read and use it's ReadTimeout property, for example:
// Get stream from socket:
using NetworkStream ns = new NetworkStream(socket);
// Set timeout:
stream.ReadTimeout = 10 * 1000; // 10 sec
var buffer = new List<byte>();
try
{
do
{
buffer.Add((byte) stream.ReadByte());
}
while (stream.DataAvailable);
}
catch (IOException)
{
// Timeout
}
return buffer.ToArray();

Can a TCP c# client receive and send continuously/consecutively without sleep?

This is to a degree a "basics of TCP" question, yet at the same time I have yet to find a convincing answer elsewhere and believe i have a ok/good understanding of the basics of TCP. I am not sure if the combination of questions (or the one questions and while i'm at it the request for confirmation of a couple of points) is against the rules. Hope not.
I am trying to write a C# implementation of a TCP client, that communicates with an existing app containing a TCP server (I don't have access to its code, so no WCF). How do I connect to it, send and receive as needed as new info comes in or out, and ultimately disconnect. Using the following MSDN code as an example where they list "Send" and "Receive" asynchronous methods (or just TcpClient), and ignoring the connect and disconnect as trivial, how can I best go about continuously checking for new packets received and at the same time send when needed?
I initially used TCPClient and GetStream(), and the msdn code still seems to require the loop and sleep described in a bit (counter intuitively), where I run the receive method in a loop in a separate thread with a sleep(10) milliseconds, and Send in the main (or third) thread as needed. This allows me to send fine, and the receive method effectively polls at regular intervals to find new packets. The received packets are then added to a queue.
Is this really the best solution? Shouldn't there be a DataAvailable event equivalent (or something i'm missing in the msdn code) that allows us to receive when, and only when, there is new data available?
As an afterthought I noticed that the socket could be cut from the other side without the client becoming aware till the next botched send. To clarify then, the client is obliged to send regular keepalives (and receive isn't sufficient, only send) to determine if the socket is still alive. And the frequency of the keepalive determines how soon I will know that link is down. Is that correct? I tried Poll, socket.connected etc only to discover why each just doesn't help.
Lastly, to confirm (i believe not but good to make sure), in the above scenario of sending on demand and receiving if tcpclient.DataAvailable every ten seconds, can there be data loss if sending and receiving at the same time? If at the same time I am receiving I try and send will one fail, overwrite the other or any other such unwanted behaviour?
There's nothing wrong necessarily with grouping questions together, but it does make answering the question more challenging... :)
The MSDN article you linked shows how to do a one-and-done TCP communication, that is, one send and one receive. You'll also notice it uses the Socket class directly where most people, including myself, will suggest using the TcpClient class instead. You can always get the underlying Socket via the Client property should you need to configure a certain socket for example (e.g., SetSocketOption()).
The other aspect about the example to note is that while it uses threads to execute the AsyncCallback delegates for both BeginSend() and BeginReceive(), it is essentially a single-threaded example because of how the ManualResetEvent objects are used. For repeated exchange between a client and server, this is not what you want.
Alright, so you want to use TcpClient. Connecting to the server (e.g., TcpListener) should be straightforward - use Connect() if you want a blocking operation or BeginConnect() if you want a non-blocking operation. Once the connection is establish, use the GetStream() method to get the NetworkStream object to use for reading and writing. Use the Read()/Write() operations for blocking I/O and the BeginRead()/BeginWrite() operations for non-blocking I/O. Note that the BeginRead() and BeginWrite() use the same AsyncCallback mechanism employed by the BeginReceive() and BeginSend() methods of the Socket class.
One of the key things to note at this point is this little blurb in the MSDN documentation for NetworkStream:
Read and write operations can be performed simultaneously on an
instance of the NetworkStream class without the need for
synchronization. As long as there is one unique thread for the write
operations and one unique thread for the read operations, there will
be no cross-interference between read and write threads and no
synchronization is required.
In short, because you plan to read and write from the same TcpClient instance, you'll need two threads for doing this. Using separate threads will ensure that no data is lost while receiving data at the same time someone is trying to send. The way I've approached this in my projects is to create a top-level object, say Client, that wraps the TcpClient and its underlying NetworkStream. This class also creates and manages two Thread objects, passing the NetworkStream object to each during construction. The first thread is the Sender thread. Anyone wanting to send data does so via a public SendData() method on the Client, which routes the data to the Sender for transmission. The second thread is the Receiver thread. This thread publishes all received data to interested parties via a public event exposed by the Client. It looks something like this:
Client.cs
public sealed partial class Client : IDisposable
{
// Called by producers to send data over the socket.
public void SendData(byte[] data)
{
_sender.SendData(data);
}
// Consumers register to receive data.
public event EventHandler<DataReceivedEventArgs> DataReceived;
public Client()
{
_client = new TcpClient(...);
_stream = _client.GetStream();
_receiver = new Receiver(_stream);
_sender = new Sender(_stream);
_receiver.DataReceived += OnDataReceived;
}
private void OnDataReceived(object sender, DataReceivedEventArgs e)
{
var handler = DataReceived;
if (handler != null) DataReceived(this, e); // re-raise event
}
private TcpClient _client;
private NetworkStream _stream;
private Receiver _receiver;
private Sender _sender;
}
Client.Receiver.cs
private sealed partial class Client
{
private sealed class Receiver
{
internal event EventHandler<DataReceivedEventArgs> DataReceived;
internal Receiver(NetworkStream stream)
{
_stream = stream;
_thread = new Thread(Run);
_thread.Start();
}
private void Run()
{
// main thread loop for receiving data...
}
private NetworkStream _stream;
private Thread _thread;
}
}
Client.Sender.cs
private sealed partial class Client
{
private sealed class Sender
{
internal void SendData(byte[] data)
{
// transition the data to the thread and send it...
}
internal Sender(NetworkStream stream)
{
_stream = stream;
_thread = new Thread(Run);
_thread.Start();
}
private void Run()
{
// main thread loop for sending data...
}
private NetworkStream _stream;
private Thread _thread;
}
}
Notice that these are three separate .cs files but define different aspects of the same Client class. I use the Visual Studio trick described here to nest the respective Receiver and Sender files under the Client file. In a nutshell, that's the way I do it.
Regarding the NetworkStream.DataAvailable/Thread.Sleep() question. I would agree that an event would be nice, but you can effectively achieve this by using the Read() method in combination with an infinite ReadTimeout. This will have no adverse impact on the rest of your application (e.g., UI) since it's running in its own thread. However, this complicates shutting down the thread (e.g., when the application closes), so you'd probably want to use something more reasonable, say 10 milliseconds. But then you're back to polling, which is what we're trying to avoid in the first place. Here's how I do it, with comments for explanation:
private sealed class Receiver
{
private void Run()
{
try
{
// ShutdownEvent is a ManualResetEvent signaled by
// Client when its time to close the socket.
while (!ShutdownEvent.WaitOne(0))
{
try
{
// We could use the ReadTimeout property and let Read()
// block. However, if no data is received prior to the
// timeout period expiring, an IOException occurs.
// While this can be handled, it leads to problems when
// debugging if we are wanting to break when exceptions
// are thrown (unless we explicitly ignore IOException,
// which I always forget to do).
if (!_stream.DataAvailable)
{
// Give up the remaining time slice.
Thread.Sleep(1);
}
else if (_stream.Read(_data, 0, _data.Length) > 0)
{
// Raise the DataReceived event w/ data...
}
else
{
// The connection has closed gracefully, so stop the
// thread.
ShutdownEvent.Set();
}
}
catch (IOException ex)
{
// Handle the exception...
}
}
}
catch (Exception ex)
{
// Handle the exception...
}
finally
{
_stream.Close();
}
}
}
As far as 'keepalives' are concerned, there is unfortunately not a way around the problem of knowing when the other side has exited the connection silently except to try sending some data. In my case, since I control both the sending and receiving sides, I've added a tiny KeepAlive message (8 bytes) to my protocol. This is sent every five seconds from both sides of the TCP connection unless other data is already being sent.
I think I've addressed all the facets that you touched on. I hope you find this helpful.

A non-blocking socket operation could not be completed immediately on send

I'm writing a server for a game, and I want to be able to handle thousands of concurrent users. For this reason, I went with non-blocking sockets and use the poll method. However, I do create multiple threads to handle database and web calls, and some of these threads will send a response to the user. In one of these threads, on send, I get the error "A non-blocking socket operation could not be completed immediately". What could cause this problem? I imagine it's because a poll is occurring at the same time as send is called. If I used beginAsync, would it take stop this error? I thought about locking the socket, but I don't want my main thread to be blocked for this.
I don't know what kind of non-blocking-polling socket calls are you using, but I would recommend that you use the Async socket calls (instead of the Begin). For more information on the difference between Async calls vs Begin see: What's the difference between BeginConnect and ConnectAsync?
The asynchronous calls automatically do "polling" on the OS level, which will be much more efficient than your polling. As a matter of fact, they use IO completion ports, which are probably the fastest and most efficient thing you can use on Windows to handle a large amount of client connections/requests.
As far as the error, I would consider this to be the normal operation of non-blocking sockets, so you just have to handle it gracefully.
Update
Your server should probably do something like this:
// Process the accept for the socket listener.
private void ProcessAccept(SocketAsyncEventArgs e)
{
Socket s = e.AcceptSocket;
if (s.Connected)
{
try
{
SocketAsyncEventArgs readEventArgs = this.readWritePool.Pop();
if (readEventArgs != null)
{
// Get the socket for the accepted client connection and put it into the
// ReadEventArg object user token.
readEventArgs.UserToken = new Token(s, this.bufferSize);
Interlocked.Increment(ref this.numConnectedSockets);
Console.WriteLine("Client connection accepted.
There are {0} clients connected to the server",
this.numConnectedSockets);
if (!s.ReceiveAsync(readEventArgs))
{
this.ProcessReceive(readEventArgs);
}
}
else
{
Console.WriteLine("There are no more available sockets to allocate.");
}
}
catch (SocketException ex)
{
Token token = e.UserToken as Token;
Console.WriteLine("Error when processing data received from {0}:\r\n{1}",
token.Connection.RemoteEndPoint, ex.ToString());
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
// Accept the next connection request.
this.StartAccept(e);
}
}
Code sample courtesy of code project: http://www.codeproject.com/Articles/22918/How-To-Use-the-SocketAsyncEventArgs-Class
When a non-blocking socket tries to read data but finds none you get that error: the socket would like to wait for data but can't because it has to return immediately, being non-blocking.
I'd suggest you switch to blocking sockets, find out why data is missing, adjust accordingly then revert to non-blocking ones. Or, you could handle the error and retry the operation.
I was also receiving this exception on sending data and just found the solution.
You get the exception because the socket's send buffer is full. Because you are trying to send the data via a non-blocking send, the exception is raised to let you know that you MUST send it via a blocking send.
The data is not sent once the exception is raised, so you have to resend it. Your individual send call now becomes;
try
{
m_socket.Send(buffer, bufferSize, SocketFlags.None);
}
catch (SocketException e)
{
if(e.SocketErrorCode == WouldBlock)
{
m_socket.Blocking = true;
m_socket.Send(buffer, bufferSize, SocketFlags.None);
m_socket.Blocking = false;
}
}
It would also be a good idea to increase the socket's SendBufferSize. By default I think it is 8kb. For my needs I had to increase it to 2MB, and afterwards the Send call no longer threw that exception.
This exception is too general. Per MSDN,
If you receive a SocketException, use the SocketException.ErrorCode property to obtain the specific error code. After you have obtained this code, refer to the Windows Sockets version 2 API error code documentation in the MSDN library for a detailed description of the error.
Sockets error codes are here.

Thread and TcpListener in C#

I need to write some code that uses TcpListener. The object that using the TcpListener has 3 possibilities: Listen, Stop Listen, Send message. This is how my code looks:
public class someClass
{
public bool listenerEnable {get; set; }
public void StartListen()
{
.
.
.
while (listenerEnable)
{
// Block until client connected
TcpClient client = server.AcceptTcpClient();
// code that doing something with the client message ...
}
}
}
Now, I'm not sure I know how I can keep the thread safe when I want to stop the listener state (change the listenerEnable to be false).
Also I'm not sure I know how to keep this thread safe when I want to send some message to the client (in some separated method) without stopping the server listener state.
Thanks for any help.
I would suggest waiting on an event rather than waiting on a variable. In your current scheme, consider the case when your loop test for whether listener variable is true. If it is it enters the loop and waits for a incoming connection, and blocks. So now even if another thread sets the listener variable to be false, your loop will not exit till someone connects to it and it processes that connection.
One way of working around the problem above will be to have code like:
WaitHandle[] waitHandles = new WaitHandle[] {endlLoopEvent};
while(true)
{
int ret = WaitHandle.WaitAny(waitHandles, 100);
if(WaitTimeout == ret) continue;
else if(0 == ret) break; //our event has been signaled.
else
{
if(!server.Pending()) continue; //Go back to the loop if no connection pending
TcpClient client = server.AcceptTcpClient();
// You can spawn a thread to service the request.
}
}
Sending would not affect the loop above, provided it is not in response to a request for connection above.
Writing a correct, scalable socket server is not simple - I suggest you find / buy one - this has been done many times before.
To answer your question, your problem is that AcceptTcpClient is a blocking call. You will want to use the APM ( Asyncronous Programming Model ) methods that start with BeginXXX and EndXXXlike MSDN BeginAcceptTcpClient.
These methods don't block threads, but you will have to handle the concurrency.

How to abort socket's BeginReceive()?

Naturally, BeginReceive() will never end if there's no data.
MSDN suggests that calling Close() would abort BeginReceive().
However, calling Close() on the socket also performs a Dispose() on it, as figured out in this great answer, and consequently EndReceive() would throw an exception because the object is already disposed (and it does!).
How should I proceed?
It seems like this is by (the very dumb) design. You must have this exception thrown and caught in your code.
MSDN looks silent about it indeed, but if you look at the documentation of another asynchronous socket method, BeginConnect(), here's what we find:
To cancel a pending call to the
BeginConnect() method, close the
Socket. When the Close() method is
called while an asynchronous operation
is in progress, the callback provided
to the BeginConnect() method is
called. A subsequent call to the
EndConnect(IAsyncResult) method will
throw an ObjectDisposedException to
indicate that the operation has been
cancelled.
If it is the proper way of doing for BeginConnect, it is probably so for BeginReceive as well. This is certainly a poor design on the part of Microsoft's async API, because making the user necessarily throw and catch exception as a part of a normal flow would annoy the debugger. You have really no way to "wait" until the operation is completed, because Close() is what completes it in the first place.
I am surprised no one recommended using SocketOptions.
Once the stack has the send or receive operation it is bound by the socket options of the socket.
Use a small send or receive timeout and use it before the operation so you don't care if it's changed during that same operation to something shorter or longer.
This will cause more context switching but will not require closing the socket under any protocol.
For example:
1) Set a small timeout
2) Perform operations
3) Set timeout larger
This is similar to using Blocking = false but with an automatic timeout that you specify.
You can read my solution of this problem here(using comment of Pavel Radzivilovsky here):
UdpClient.ReceiveAsync correct early termination
For TCP socket connections, you can use the Connected property to determine the state of the socket before trying to access any disposed methods. Per MSDN:
"The Connected property gets the connection state of the Socket as of the last I/O operation. When it returns false, the Socket was either never connected, or is no longer connected."
Since it says "no longer connected" it implies that a Close() was previously called on the socket. If you check whether the socket is Connected at the start of the receive callback, there will be no exception.
In the ReceiveCallback I checked client.Connected within the try block.
Now, when data is received after BeginReceive, I can call client.Close();
This way, I do not see exceptions. I send modbus-TCP requests every 200mS, and get responses in time. The console output looks clean. I used a windows forms app, to test this.
private static void ReceiveCallback(IAsyncResult ar)
{
try
{
// Retrieve the state object and the client socket
// from the asynchronous state object.
StateObject state = (StateObject)ar.AsyncState;
Socket client = state.workSocket;
if (client.Connected)
{
// Read data from the remote device.
state.dataSize = client.EndReceive(ar);
if (state.dataSize > 0)
{
Console.WriteLine("Received: " + state.dataSize.ToString() + " bytes from server");
// There might be more data, so store the data received so far.
state.sb.Append(Encoding.ASCII.GetString(state.buffer, 0, state.dataSize));
// Get the rest of the data.
client.BeginReceive(state.buffer, 0, StateObject.BUFFER_SIZE, 0,
new AsyncCallback(ReceiveCallback), state);
state.dataSizeReceived = true; //received data size?
dataSize = state.dataSize;
buffer = state.buffer.ToArray();
dataSizeReceived = state.dataSizeReceived;
string hex = ByteArrayToString(state.buffer, state.dataSize);
Console.WriteLine("<- " + hex);
receiveDone.Set();
client.Close();
}
else
{
Console.WriteLine("All the data has arrived");
// All the data has arrived; put it in response.
if (state.sb.Length > 1)
{
Console.WriteLine("Length: " + state.sb.Length.ToString());
}
// Signal that all bytes have been received.
receiveDone.Set();
}
}
}
catch (Exception e)
{
Console.WriteLine(e.ToString());
}
}
Another solution would be to send "yourself" a "control message" using a socket bound to a different port. It's not exactly an abort, but it would end your async operation.
I was struggling with this as well but as far as I can tell using a simple boolean flag before calling .BeginReceive() will work as well (so there'll be no need for exception handling). Since I already had start/stop handling, this fix was a matter of one if statement (scroll down to the bottom of the OnReceive() method).
if (_running)
{
_mainSocket.BeginReceive(_data, 0, _data.Length, SocketFlags.None, OnReceive, null);
}
Should I have overlooked something with this approach, let me know!

Categories