How to decide between MEF and any IoC container? - c#

In which scenario should we use which? How to decide on which one to choose? And under which circumstances would we choose to use both together?
I have previously worked with Unity Container (unity-container).

Tricky question - since the two do indeed overlap to a certain degree.
I would say this:
use any useful IoC if you're primarily concerned about dependency injection for the sake of decoupling your components, e.g. for the ability to be able to inject a mock instead (for testing)
use MEF especially if you're more into being extensible, e.g. be able to "load all assemblies from that directory that export a certain interface", and if you need to be extensible and open for third parties (like Visual Studio: offer a public API so others can write an extension for your app). This is where MEF really shines
For MEF and Unity, there's also the MEF and Unity Integration Layer to combine the strengths of both tools together.
I would also recommend you check out Ayende's excellent blog post on what differentiates MEF from an IoC.

MEF shines when you have 3rd parties writing plug-ins, that implement interfaces and you wish to be able to version your interface without breaking the 3rd party plug in you can’t recompile. In exchange MEF is more complex than a raw IoC.
So I would say IoC if everything is compiled as part of the same build system, and MEF if you need to cope with add-ins you can’t recompile yourself.

Glen Block (former Product Manager of MEF) has covered this pretty well on his blog:
Should I use MEF for my general IoC needs?
Should I use MEF with an IoC container? - Part 1

I heard a great explanation of this (apologies to the author, I've forgotten who it was): At a very high level, IoC is good when you want one thing for a given interface, MEF is good for when you want all things from a given interface.
For instance in IoC you want to return a specific single concrete class for an interface:
For<ICarFactory>().Use<CarFactory>();
Whenever you want to use a ICanFactory you will get a CarFactory.
MEF is good for saying give me all the car factories:
CheapCarFactory : ICarFactory
FamilyCarFactory : ICarFactory
LuxuryCarFactory : ICarFactory
Etc.

Related

What framework uses `IServiceProvider`?

Is the IServiceProvider basically just a generic interface for any IOC container, or is it used for a specific framework? I'm rolling my own light weight IOC container and I am wanting to know if I should implement it. Are there any other interfaces that I should implement? I'm not really interested in either MEF or Unity. I've used both extensively and they don't really work for my current project.
IServiceProvider is an imported (or perhaps held-over) COM interface that is intended to be used for private features in the context of the object whom you interrogate for a Service. The term 'Service' is applied rather loosely here, it originally meant any COM object that could be returned based upon what GUID is given.
IServiceProvider # MSDN (.NET reference)
IServiceProviderImpl Class # MSDN (C++ ATL reference)
In .NET, you don't need to implement it unless you have a client that specifically supports it, and in many cases you won't need to add yet another level of indirection that is implied by using IServiceProvider. Also, you can devise your own scheme to share common objects or implement other use patterns based upon IoC / Dependency Injection that are more flexible or more rigid as dictated by your needs.
One good historical context for IServiceProvider is the IE Browser Plugin Spec. Here, it is used to allow plugin components to use Browser Host features in-context. In a COM context, this interface is useful because it hides the details of instantiation and also can be used as part of a object construction and utilization strategy to avoid reference loops.
WebBrowser Customization (Part 2) # MSDN
I think it is a pretty general use interface, so you can use it with anything. It almost should not even be in the Framework Class Library. For one specific use, Alex D. James of the WCF Data Services team has a blog about it.
http://blogs.msdn.com/b/alexj/archive/2010/01/07/creating-a-data-service-provider-part-2-iserviceprovider-datasources.aspx
I do not think it has anything to do with IoC containers. I have used Unity and Autofac quite a bit and have never seen it used with either. As for rolling your own, I would suggest you define your own container interface in the more standard generic way:
public interface IContainer
{
T Resolve<T>();
}
That is pretty standard with some variation, but you could also just use IServiceProvider if that fits your needs.
And on that note, unless this is just an academic exercise, you might want to read "Dependency Injection". Mark Seemann covers every container out there and quite a bit of theory and practice. That is, I highly recommend it.
https://www.amazon.com/Dependency-Injection-NET-Mark-Seemann/
ASP.NET 5 uses IServiceProvider in "self-hosted" mode, that is, when hosting an ASP.NET application and the runtime in a console application or service.
(An object of type Microsoft.Framework.Runtime.Common.DependencyInjection.ServiceProvider -- which implements IServiceProvider -- is passed to your console app constructor.)
Thus, if you wanted to use a different IoC container in ASP.NET 5, you might want to implement this interface. Or wrap the other IoC container in a class which implements this interface.
The new (as of .NET 4) Runtime Caching API also uses it: http://msdn.microsoft.com/en-us/library/system.runtime.caching.objectcache.host.aspx.
And also Visual Studio designer.

ASP.NET MVC3 Hand coding IoC

Ninject, Sprint.NET, Unity, Autofac, Castle.Windsor are all examples are IoC frameworks that are available. However, I like the learning curve and control of writing my own. It is definitely common practice to not "re-invent the wheel" and just use pre-existing structures. If your comment is along those lines please be gentle.
Can IoC be implemented without the use of XML? It seems to me most, if not all, of the aforementioned frameworks use XML but I would much rather just write mine in C# instead of using XML to load a .dll. The C# is all converted into one .dll eventually anyway.
From my understanding, if wrong please correct, IoC can be used with DI to make the functionality of classes be based off of their definition and implementation while allowing for a separation of concerns.
This is accomplished in C# using microsoft's library System.ComponentModel.IContainer by having a class which inherits it. A class, such as Product, would have an interface IProduct. A generic constructor would then inherit from IContainer and in the constructor, allow a repository to be passed in, an instantiated object to be passed in, and a function to be passed in. This would allow a controller action to then instantiate an interface (IProduct), instantiate the generic constructor with the current repository instance, and then pass it the interface and function.
Is this setup accurate?
I am still trying to learn more about this topic, and have read the wiki articles on IoC, DI, and read about Castle.Windsor, ninject, Unity, and looked over multiple definitions from the MSDN regarding C# libraries which are used. Any assistance, corrections, or suggestions, are greatly appreciated. Thanks
Can IoC be implemented without the use of XML?
Yes, Ninject, Unity, Castle Windsor and Autofac can be configured without using any XML at all. (not sure about Spring.NET, last time I used it it was impossible, version 1.3)
From my understanding, if wrong please correct, IoC can be used with
DI to make the functionality of classes be based off of their
definition and implementation while allowing for a separation of
concerns.
If under "IoC" you mean "IoC container" then yes, it can be used with DI, but since DI is a particular case of Inversion Of Control your IoC container will be just a container for you dependencies. By just having it your will not magically get any DI-friendly types. It's just a support for managing your inverted dependencies.
Edit
As Mystere Man pointed in his answer you need to improve you understanding of the IoC containers. So I would recommend to read this wonderful book (from Mark Seeman) about all that stuff.
I think it is a great exercise to start without a DI container. Before focusing on using a DI framework, focus on best patterns and practices. Especially, design all classes around Dependency Injection and make sure your code follows the SOLID principles. Both sounds pretty easy, but this takes a shift in mindset and a lot of practice before you will get this right (but is well worth it).
When you do this, and do this well, you will quickly notice that your application will evolve in amazing ways. Your code will be testable and extendable in ways that you never imagined before, without your code to rot over time (however, it keeps constant focus to prevent code from rotting).
Still, when you do all this right (which –again- takes a lot of practice), you will still have one part of your application that, despite your best efforts, will get more complex and harder to maintain, as the application grows. This is the part of the application where you wire all dependencies together: the Composition Root.
And this is where DI containers come in. They have fancy names and compete with each other over features, but their goal can be stated in a single sentence:
The goal of a DI container is to keep the Composition Root
maintainable.
Although you can write your own simple DI container to wire up your dependencies, to prevent your Composition Root to become a big fragile, ever changing ball of mud, the container must at least have one crucial feature: Automatic Constructor Injection (a.k.a. auto-wiring). With auto-wiring, the container will look at the constructor arguments of a type that it needs to create, and it will inject the dependencies in it based on the types of those arguments. This feature will make the difference between a maintenance nightmare and a healthy Composition Root. Although creating your own container that supports auto-wiring isn't that hard (with expression trees it takes about 20 lines of code), the moment you start needing auto-wiring is the time to start using one of the existing DI frameworks.
So in conclusion, if you feel it helps you in the learning experience by doing this by hand, please do, as long as you stick to SOLID, DI, DRY, and TDD. When the burden of changing your Composition Root for each change in the application gets too big (which will be sooner than you might expect), switch to an established framework.
I would suggest using an existing DI container first, to understand how it works from the end user perspective. Then you can go about re-designing the wheel. My favorite saying is "You have to know the rules before you can break them".
Some of what you've said doesn't make a lot of sense. you don't have to use System.ComponentModel.IContainer in any framekwork i know of. Maybe Unity requires that (Microsoft's container) but none of the others do. I'm not familiar with Unity thogh.

Should I try to hide IoC container (if so, any tips)?

I'm building a CMS and it has many extension points (Data/ContentTypes, Plugins, Macros, Themes) and some of those extensions need to register services. So far extensions only depend on 'MyProject.Core' library and it would be nice if they wouldn't be dependant on any specific IoC framework. Now I'm thinking if I should build another layer to hide IoC specific registrations. The problem is that I need some advanced functionality.
E.g. NHibernate implementation of 'Data/ContentType' services (Castle Windsor style)
container.Register(Component.For<IPageRepository>().ImplementedBy<NHPageRepository>());
container.Register(Component.For<ISessionFactory>().Instance(NHibernateHelper.CreateSessionFactory()));
container.Register(Component.For<ISession>().UsingFactoryMethod(c => c.Resolve<ISessionFactory>().OpenSession()).LifeStyle.PerWebRequest);
Third line is the "hard one". I could make an interface like
interface IMyContainer
{
Register<TService>(Func<IMyContainer,TService> factoryMethod)
Register<TService>(Func<IMyContainer,TService> factoryMethod, LifeStyle lifeStyle)
// ...
}
but "translating" this registration (my IoC abstraction)
public class NHInstaller : IInstaller
{
public void Install(IMyContainer container)
{
container.Register<ISession>(c => c.Resolve<ISessionFactory>().OpenSession(), LifeStyle.PerRequest);
}
}
to this (Windsor)
container.Register(Component.For<ISession>().UsingFactoryMethod(c => c.Resolve<ISessionFactory>().OpenSession()).LifeStyle.PerWebRequest);
could be quite hard.
So, should I try to make that abstraction? Any helpful resources?
Or should I just pick a IoC container and stick with it?
I could also make source code of an existing tool (Castle Windsor or Ninject) a part of my library, but I don't really understand those licenses. Can I do that? Can I change namespaces and class names to fit the structure of my app? I'm going to release the source code and I don't really care what the license is going to be.
It depends on what you mean by "hide." Best practice is that only one place in your application (the Composition Root) knows about the IoC container. Stick to the Hollywood Principle - avoid having multiple classes that know about the IoC container. In other words don't pass the container around; if a non-root class needs to create other objects then inject a factory into it.
If you're writing a framework and want to allow consumers to plug in their IoC container framework of choice, you could use the Common Service Locator library. That is likely overkill for most projects. (See Mark Seemann's excellent link for the reason I changed the wording).
Short answer - no, the abstraction is useless, you'd be wasting your employer's money. Use Installers to partition the registration instead.

Can MEF on asp.net be used for Dependency Injection?

I know what Dependency Injection is in theory, but I haven't ever actually used Dependency Injection in any of my projects yet. So consider me to be a DI noob.
The straightforward question is; Can MEF be used for Dependency Injection?
If it can, my follow up question is; Is it a good idea to use MEF for dependency Injection?
I understand that my follow up question may be viewed as being subjective. But, I am looking for best practices and reasons for and against. So, I hope that my follow up question doesn't rustle too many feathers.
The context of all this is I feel a little lost trying to figure out how to make a plugin framework for asp.net mvc.
As I explain in my book MEF can be used as a DI Container, but in its current incarnation it's not particularly well-suited for the task.
MEF was designed to address extensibility scenarios, and while it has a lot of overlapping features, it's quite limited when it comes to configuration and lifetime management.
MEF can, I believe, be used for dependency injection; at least I use it in my own small home WPF project currently. I suspect it might get messy when you need to inject different types for an interface for different deployments of your application, if you require this. It would require going to some effort to add the right classes to your catalog.
Where I work, using ASP.NET MVC2, we use Castle Windsor for dependency injection. We make use then of the XML configuration to initialize the container. This means we can inject different types for an interface without having to rebuild.
I believe .NET offers another option to MEF, similarly called MAF. It's supposed to be more complex, but offer much more control. I don't however know anything more about it.
(I'm not very experienced (1 year employed), so if someone disagrees with my on something, they're probably more correct)
Glenn Block (former product manager of MEF) answered this FAQ in a blog post.
Most of the shortcomings of MEF mentioned in his post have been addressed by MEFContrib: it contains additional catalog and export provider implementations to add support for POCOs, open generics and interception.
update: the recently released MEF2 Preview3 adds support for open generics and attribute-less registration out of the box. The APIs of preview releases aren't final but this is a good indication that those features will be in the next (>v4.0) .NET release .

Using IoC with internal objects

I am currently writing an open source SDK for a program that I use and I'm using an IoC container internally(NInject) to wire up all my internal dependencies.
I have some objects that are marked as internal so that I don't crowd the public API as they are only used internally and shouldn't been seen by the user, stuff like factories and other objects. The problem that I'm having is that NInject can't create internal objects which means that I have to mark all my internal objects public which crowds up the public API.
My question is: Is there someway to get around this problem or am I doing it all wrong?
PS. I have thought about using InternalsVisiableTo attribute but I feel like that is a bit of a smell.
Quick look at the other answers: it doesn't seem like you are doing something so different that there is something fundamentally wrong with Ninject that you would need to modify it or replace it. In many cases, you can't "go straight for [the] internals" because they rely upon unresolved dependency injection; hence the usage of Ninject in the first place. Also it sounds like you already do have an internal set of interfaces which is why the question was posed.
Thoughts: one problem with using Ninject directly in your SDK or library is that then your users will have to use Ninject in their code. This probably isn't an issue for you because it is your IoC choice so you were going to use it anyway. What if they want to use another IoC container, then now they effectively have two running duplicating efforts. Worse yet what if they want to use Ninject v2 and you've used v1.5 then that really complicates the situation.
Best case: if you can refactor your classes such that they get everything they need through Dependency Injection then this is the cleanest because the library code doesn't need any IoC container. The app can wire up the dependencies and it just flows. This isn't always possible though, as sometimes the library classes need to create instances which have dependencies that you can't resolve through injection.
Suggestion: The CommonServiceLocator (and the Ninject adapter for it) were specifically designed for this situation (libraries with dependencies). You code against the CommonServiceLocator and then the application specifies which DI/IoC actually backs the interface.
It is a bit of a pain in that now you have to have Ninject and the CommonServiceLocator in your app, but the CommonServiceLocator is quite lightweight. Your SDK/library code only uses the CommonServiceLocator which is fairly clean.
I guess you don't even need that. IoC is for public stuff. Go straight for internals.
But - that's just my intuition...
Create a secondary, internal API which is different from the external API. You may need to do the split manually...
I'm going to vote for the InternalsVisibleTo solution. Totally not a smell, really. The point of the attribute is to enable the sort of behavior you are wanting, so rather than jumping through all sorts of elaborate hoops to make things work without it, just use the functionality provided by the framework for solving this particular problem.
I would also suggest, if you want to hide your choice of container from the user, using ILMerge to combine the Ninject assemblies with your SDK assembly, and apply the /internalize argument to change the visibility of the Ninject assemblies to internal, so the Ninject namespaces don't leak out of your library (sorry, couldn't find a link to the ILMerge docs online, but there is a doc file in the download). There is also this nice blog post about integrating ILMerge into your build process.
You can
modify Ninject
pick a different container

Categories