Generate large prime number with specified last digits - c#

Was wondering how is it possible to generate 512 bit (155 decimal digits) prime number, last five decimal digits of which are specified/fixed (eg. ***28071) ??
The principles of generating simple primes without any specifications are quite understandable, but my case goes further.
Any hints for, at least, where should I start?
Java or C# is preferable.
Thanks!

I guess the only way would be to first generate a random number of 150 decimal digits, then append the 28071 behind it by doing number = randomnumber * 100000 + 28071 then just brute force it out with something like
while (!IsPrime(number))
number += 100000;
Of course this could take awhile to compute ;-)

Did you try just generating such numbers and checking them? I would expect that to be acceptably fast. The prime density decreases only as the logarithm of the number, so I'd expect you to try a few hundred numbers until you hit a prime. ln(2^512) = 354 so about one number in 350 will be prime.
Roughly speaking, the prime number theorem states that if a random number nearby some large number N is selected, the chance of it being prime is about 1 / ln(N), where ln(N) denotes the natural logarithm of N. For example, near N = 10,000, about one in nine numbers is prime, whereas near N = 1,000,000,000, only one in every 21 numbers is prime. In other words, the average gap between prime numbers near N is roughly ln(N)
(from http://en.wikipedia.org/wiki/Prime_number_theorem)
You just need to take care that a number exists for your final digits. But I think that's as easy as checking that the last digit isn't divisible by 2 or 5 (i.e. it is 1, 3, 7 or 9).
According to this performance data you can do about 2000 ModPow operations on 512 bit data per second, and since a simple prime-test is checking 2^(p-1) mod p=1 which is one ModPow operation, you should be able to generate several primes with your properties per second.
So you could do (pseudocode):
BigInteger FindPrimeCandidate(int lastDigits)
{
BigInteger i=Random512BitInt;
int remainder = i % 100000;
int increment = lastDigits-remainder;
i += increment;
BigInteger test = BigInteger.ModPow(2, i - 1, i);
if(test == 1)
return i;
else
return null;
}
And do more extensive prime checks on the result of that function.

As #Doggot said, but start from least possible 150 digit number which ends with 28071, means 100000....0028071, now add it up with 100000 each time and for testing primarily use miller rabin like the code I provided here, It needs some customization. If the return value is true, check it for exact primarily.

You can use a sieve which contains only numbers satisfying your special condition to filter out numbers divisible by small primes.
For each small prime p you need to find the correct starting point and step by taking into account that only each 100000th number is present in the sieve.
For the numbers that survive the sieve you can use BigInteger.isProbablePrime() to check whether it is prime with sufficient probability.

Let ABCDE be the five digits number in base ten, which you are considering. Based on Dirichlet's theorem on arithmetic progressions, if ABCDE and 100000 are coprime, then there are infinitely many primes of the form 100000*k+ABCDE. Since you are looking for prime numbers, neither 2 nor 5 would divide ABCDE anyway, thus ABCDE and 100000 are coprime. So there are infinitely many primes of the form you are considering.

You could extend one of the standard methods for generating large primes by adding an extra constraint, i.e. that the last 5 decimal digits must be correct. Naively, you can just add this as an extra test but it will increase the time to find a suitable prime by 10^5.
Not-so-naively: generate a random 512-bit number then set sufficient low-order bits so that the decimal representation ends with the required sequence. Then continue with the normal primality tests.

I rewrote the brute-force algorithm from the int world to the BigDecimal one with the help of the BigSquareRoot class from http://www.merriampark.com/bigsqrt.htm. (Note that from 1 to 1000 there is said to be exactly 168 primes.)
Sorry, but if you put there your range, i.e. <10154; 10155-1>, you can let your computer work and when you have retired, you may have the result... it is damn slow!
However, you can somehow find at least a part of this useful in combination with the other answers in this thread.
package edu.eli.test.primes;
import java.math.BigDecimal;
public class PrimeNumbersGenerator {
public static void main(String[] args) {
// BigDecimal lowerLimit = BigDecimal.valueOf(10).pow(154); /* 155 digits */
// BigDecimal upperLimit = BigDecimal.valueOf(10).pow(155).subtract(BigDecimal.ONE);
BigDecimal lowerLimit = BigDecimal.ONE;
BigDecimal upperLimit = new BigDecimal("1000");
BigDecimal prime = lowerLimit;
int i = 1;
/* http://www.merriampark.com/bigsqrt.htm */
BigSquareRoot bsr = new BigSquareRoot();
upperLimit = upperLimit.add(BigDecimal.ONE);
while (prime.compareTo(upperLimit) == -1) {
bsr.setScale(0);
BigDecimal roundedSqrt = bsr.get(prime);
boolean isPrimeNumber = false;
BigDecimal upper = roundedSqrt;
while (upper.compareTo(BigDecimal.ONE) == 1) {
BigDecimal div = prime.remainder(upper);
if ((prime.compareTo(upper) != 0) && (div.compareTo(BigDecimal.ZERO) == 0)) {
isPrimeNumber = false;
break;
} else if (!isPrimeNumber) {
isPrimeNumber = true;
}
upper = upper.subtract(BigDecimal.ONE);
}
if (isPrimeNumber) {
System.out.println("\n" + i + " -> " + prime + " is a prime!");
i++;
} else {
System.out.print(".");
}
prime = prime.add(BigDecimal.ONE);
}
}
}

Let's consider brute-force. Take a look at this very interesting text called "The prime number lottery":
http://plus.maths.org/content/prime-number-lottery
Given the last entry in the last table, there are ~2.79*10^14 primes less then 10^16. Thus, approximately every 35th number is a prime in that range.
EDIT: See the comment by CodeInChaos - if you just walk a few thousand 512bit numbers with last 5 digits fixed, you'll find one quickly.

Related

What is the sum of the digits of the number 2^1000?

This is a problem from Project Euler, and this question includes some source code, so consider this your spoiler alert, in case you are interested in solving it yourself. It is discouraged to distribute solutions to the problems, and that isn't what I want. I just need a little nudge and guidance in the right direction, in good faith.
The problem reads as follows:
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^1000?
I understand the premise and math of the problem, but I've only started practicing C# a week ago, so my programming is shaky at best.
I know that int, long and double are hopelessly inadequate for holding the 300+ (base 10) digits of 2^1000 precisely, so some strategy is needed. My strategy was to set a calculation which gets the digits one by one, and hope that the compiler could figure out how to calculate each digit without some error like overflow:
using System;
using System.IO;
using System.Windows.Forms;
namespace euler016
{
class DigitSum
{
// sum all the (base 10) digits of 2^powerOfTwo
[STAThread]
static void Main(string[] args)
{
int powerOfTwo = 1000;
int sum = 0;
// iterate through each (base 10) digit of 2^powerOfTwo, from right to left
for (int digit = 0; Math.Pow(10, digit) < Math.Pow(2, powerOfTwo); digit++)
{
// add next rightmost digit to sum
sum += (int)((Math.Pow(2, powerOfTwo) / Math.Pow(10, digit) % 10));
}
// write output to console, and save solution to clipboard
Console.Write("Power of two: {0} Sum of digits: {1}\n", powerOfTwo, sum);
Clipboard.SetText(sum.ToString());
Console.WriteLine("Answer copied to clipboard. Press any key to exit.");
Console.ReadKey();
}
}
}
It seems to work perfectly for powerOfTwo < 34. My calculator ran out of significant digits above that, so I couldn't test higher powers. But tracing the program, it looks like no overflow is occurring: the number of digits calculated gradually increases as powerOfTwo = 1000 increases, and the sum of digits also (on average) increases with increasing powerOfTwo.
For the actual calculation I am supposed to perform, I get the output:
Power of two: 1000 Sum of digits: 1189
But 1189 isn't the right answer. What is wrong with my program? I am open to any and all constructive criticisms.
For calculating the values of such big numbers you not only need to be a good programmer but also a good mathematician. Here is a hint for you,
there's familiar formula ax = ex ln a , or if you prefer, ax = 10x log a.
More specific to your problem
21000 Find the common (base 10) log of 2, and multiply it by 1000; this is the power of 10. If you get something like 1053.142 (53.142 = log 2 value * 1000) - which you most likely will - then that is 1053 x 100.142; just evaluate 100.142 and you will get a number between 1 and 10; and multiply that by 1053, But this 1053 will not be useful as 53 zero sum will be zero only.
For log calculation in C#
Math.Log(num, base);
For more accuracy you can use, Log and Pow function of Big Integer.
Now rest programming help I believe you can have from your side.
Normal int can't help you with such a large number. Not even long. They are never designed to handle numbers such huge. int can store around 10 digits (exact max: 2,147,483,647) and long for around 19 digits (exact max: 9,223,372,036,854,775,807). However, A quick calculation from built-in Windows calculator tells me 2^1000 is a number of more than 300 digits.
(side note: the exact value can be obtained from int.MAX_VALUE and long.MAX_VALUE respectively)
As you want precise sum of digits, even float or double types won't work because they only store significant digits for few to some tens of digits. (7 digit for float, 15-16 digits for double). Read here for more information about floating point representation, double precision
However, C# provides a built-in arithmetic
BigInteger for arbitrary precision, which should suit your (testing) needs. i.e. can do arithmetic in any number of digits (Theoretically of course. In practice it is limited by memory of your physical machine really, and takes time too depending on your CPU power)
Back to your code, I think the problem is here
Math.Pow(2, powerOfTwo)
This overflows the calculation. Well, not really, but it is the double precision is not precisely representing the actual value of the result, as I said.
A solution without using the BigInteger class is to store each digit in it's own int and then do the multiplication manually.
static void Problem16()
{
int[] digits = new int[350];
//we're doing multiplication so start with a value of 1
digits[0] = 1;
//2^1000 so we'll be multiplying 1000 times
for (int i = 0; i < 1000; i++)
{
//run down the entire array multiplying each digit by 2
for (int j = digits.Length - 2; j >= 0; j--)
{
//multiply
digits[j] *= 2;
//carry
digits[j + 1] += digits[j] / 10;
//reduce
digits[j] %= 10;
}
}
//now just collect the result
long result = 0;
for (int i = 0; i < digits.Length; i++)
{
result += digits[i];
}
Console.WriteLine(result);
Console.ReadKey();
}
I used bitwise shifting to left. Then converting to array and summing its elements. My end result is 1366, Do not forget to add reference to System.Numerics;
BigInteger i = 1;
i = i << 1000;
char[] myBigInt = i.ToString().ToCharArray();
long sum = long.Parse(myBigInt[0].ToString());
for (int a = 0; a < myBigInt.Length - 1; a++)
{
sum += long.Parse(myBigInt[a + 1].ToString());
}
Console.WriteLine(sum);
since the question is c# specific using a bigInt might do the job. in java and python too it works but in languages like c and c++ where the facility is not available you have to take a array and do multiplication. take a big digit in array and multiply it with 2. that would be simple and will help in improving your logical skill. and coming to project Euler. there is a problem in which you have to find 100! you might want to apply the same logic for that too.
Try using BigInteger type , 2^100 will end up to a a very large number for even double to handle.
BigInteger bi= new BigInteger("2");
bi=bi.pow(1000);
// System.out.println("Val:"+bi.toString());
String stringArr[]=bi.toString().split("");
int sum=0;
for (String string : stringArr)
{ if(!string.isEmpty()) sum+=Integer.parseInt(string); }
System.out.println("Sum:"+sum);
------------------------------------------------------------------------
output :=> Sum:1366
Here's my solution in JavaScript
(function (exponent) {
const num = BigInt(Math.pow(2, exponent))
let arr = num.toString().split('')
arr.slice(arr.length - 1)
const result = arr.reduce((r,c)=> parseInt(r)+parseInt(c))
console.log(result)
})(1000)
This is not a serious answer—just an observation.
Although it is a good challenge to try to beat Project Euler using only one programming language, I believe the site aims to further the horizons of all programmers who attempt it. In other words, consider using a different programming language.
A Common Lisp solution to the problem could be as simple as
(defun sum_digits (x)
(if (= x 0)
0
(+ (mod x 10) (sum_digits (truncate (/ x 10))))))
(print (sum_digits (expt 2 1000)))
main()
{
char c[60];
int k=0;
while(k<=59)
{
c[k]='0';
k++;
}
c[59]='2';
int n=1;
while(n<=999)
{
k=0;
while(k<=59)
{
c[k]=(c[k]*2)-48;
k++;
}
k=0;
while(k<=59)
{
if(c[k]>57){ c[k-1]+=1;c[k]-=10; }
k++;
}
if(c[0]>57)
{
k=0;
while(k<=59)
{
c[k]=c[k]/2;
k++;
}
printf("%s",c);
exit(0);
}
n++;
}
printf("%s",c);
}
Python makes it very simple to compute this with an oneliner:
print sum(int(digit) for digit in str(2**1000))
or alternatively with map:
print sum(map(int,str(2**1000)))

Longest recurring cycle in its decimal fraction - a bug or a misunderstanding?

This is fairly 'math-y' but I'm posting here because it's a Project Euler problem, & I have working code that presumably has bugs in it.
The question Determing longest repeating cycle in a decimal expansion solves the problem using logarithms, but I'm interested in solving with simple brute force. More accurately, I'm interested in understanding why my algorithm and code is not returning the correct solution.
The algorithm is simple:
replicate a 'long division',
at each step record the divisor and the remainder
when a divisor / remainder tuple is repeated, infer that the decimal representation will repeat.
Here are private fields, as requested
private int numerator;
private int recurrence;
private int result;
private int resultRecurrence;
private List<dynamic> digits;
and here is the code:
private void Go()
{
foreach (var i in primes)
{
digits = new List<dynamic>();
numerator = 1;
recurrence = 0;
while (numerator != 0)
{
numerator *= 10;
// quotient
var q = numerator / i;
// remainder
var r = numerator % i;
digits.Add(new { Divisor = q, Remainder = r });
// if we've found a repetition then break out
var m = digits.Where(p => p.Divisor == q && p.Remainder == r).ToList();
if (m.Count > 1)
{
recurrence = digits.LastIndexOf(m[0]) - digits.IndexOf(m[0]);
break;
}
numerator = r;
}
if (recurrence > resultRecurrence)
{
resultRecurrence = recurrence;
result = i;
}
}}
When testing integers < 10 and < 20 I get the correct result; and I correctly identify the value of i as well. However the decimal represetation that I get is incorrect - I calculate i-1 whereas the correct result is far less (something like i-250).
So presumably I either have a programming bug - which I can't find - or a logic bug.
I'm confused because it feels like a multiplicative group over p to me, in which there would be p-1 elements. I'm sure I'm missing something, can anyone provide suggestions?
edit
I'm not going to include my prime number code - it's not relevant, as I explain above I correctly identify the value of i (from memory it is 983) but I'm having problems getting the correct value for resultRecurrence.
I'm confused because it feels like a multiplicative group over p to me, in which there would be p-1 elements. I'm sure I'm missing something, can anyone provide suggestions?
Close.
For all primes except 2 and 5 (which divide 10), the sequence of remainders is formed by starting with 1 and transforming by
remainder = (10 * remainder) % prime
thus the k-th remainder is 10k (mod prime) and the set of remainders forms a subgroup of the group of nonzero remainders modulo prime[1]. The length of the recurring cycle is the order of that subgroup, which is also known as the order of 10 modulo prime.
The order of the group of nonzero remainders modulo prime is prime-1, and there's a theorem by Fermat:
Let G be a finite group of order g and H be a subgroup of G. Then the order h of H divides g.
So the length of the cycle is always a divisor of prime-1, and sometimes it's prime-1, e.g. for 7 or 19.
[1] For composite numbers n coprime to 10, that would be the group of remainders modulo n that are coprime to n.
First off, you don’t need the divisors, you only need the remainders.
Secondly, I would split the function into multiple independent parts instead of having everything in one big method: The long division / finding of the cycle length is independent of the rest (= finding the longest cycle).
Your break on Where coupled with Count is unintuitive. Why not just use a while loop with the condition (! digits.Contains(r))? (This would require putting 0 as a remainder into the digits list before the loop start.)
This leaves us with a much cleaner code that should be straightforward to debug.
recurrence = digits.LastIndexOf(m[0]) - digits.IndexOf(m[0]);
Surely the value of resultRecurrence is always going to be i-1 ? Since for a fraction of the form 1/n, the decimal starts repeating exactly when the division-in-progress (the ith digit) gives the same quotient-remainder as the very first trial division (1, hence i-1).
(as a side note, may I introduce you to Math.DivRem).

Help understanding eratosthenes sieve implementation

I found this LINQ implementation of the eratosthenes sieve on this website. I understand the basic concept of the sieve, but there's one detail I don't get. What is the purpose of the first Enumerable.Range(0,168)?
List<int> erathostheness = Enumerable.Range(0, 168)
.Aggregate(Enumerable.Range(2, 1000000).ToList(), (result, index) =>
{
result.RemoveAll(i => i > result[index] && i % result[index] == 0);
return result;
}).ToList();
It is the number of times the sieve will be run to eliminate all non-primes from the list.
result.RemoveAll(i => i > result[index] && i % result[index] == 0);
Each time you run the sieve, this line of code takes the smallest number in the list (the smallest prime that the result hasn't had all its multiples removed of yet) and then removes all the multiples. This is run 168 times, and on the 168th time the smallest number the list hasn't been screened of yet is 997, which naturally is the 168th prime.
This only needs to be run 168 times because all numbers can be expressed as the product of a list of primes, and there is no number less than 1000000 that is a multiple of the 169th primes number (1,009) that is NOT a multiple of a prime lower than 1009. The lowest number that this would removed by sieving out 1009 that has NOT been removed already is 1009 * 1013 = 1,022,117, or the 169th primes multiplied by the 170th prime, which is clearly greater than 100000 and thus doesn't need to be checked for this set of numbers.
Hence, all the multiples of 1009 have already been removed from the list when you get to that point, so there's no point in continuing as you already have removed all the non-primes from the list. :D
There are 168 primes less that 1000.
If x is less than 1,000,000, and x is not prime, then x can be factored into prime numbers p1, p2, ..., pn. At least one of these factors must be less that 1000, or else the product would be more than 1,000,000. This means at least one factor must be one of the first 168 primes.

Series calculation

I have some random integers like
99 20 30 1 100 400 5 10
I have to find a sum from any combination of these integers that is closest(equal or more but not less) to a given number like
183
what is the fastest and accurate way of doing this?
If your numbers are small, you can use a simple Dynamic Programming(DP) technique. Don't let this name scare you. The technique is fairly understandable. Basically you break the larger problem into subproblems.
Here we define the problem to be can[number]. If the number can be constructed from the integers in your file, then can[number] is true, otherwise it is false. It is obvious that 0 is constructable by not using any numbers at all, so can[0] is true. Now you try to use every number from the input file. We try to see if the sum j is achievable. If an already achieved sum + current number we try == j, then j is clearly achievable. If you want to keep track of what numbers made a particular sum, use an additional prev array, which stores the last used number to make the sum. See the code below for an implementation of this idea:
int UPPER_BOUND = number1 + number2 + ... + numbern //The largest number you can construct
bool can[UPPER_BOUND + 1]; //can[number] is true if number can be constructed
can[0] = true; //0 is achievable always by not using any number
int prev[UPPER_BOUND + 1]; //prev[number] is the last number used to achieve sum "number"
for (int i = 0; i < N; i++) //Try to use every number(numbers[i]) from the input file
{
for (int j = UPPER_BOUND; j >= 1; j--) //Try to see if j is an achievable sum
{
if (can[j]) continue; //It is already an achieved sum, so go to the next j
if (j - numbers[i] >= 0 && can[j - numbers[i]]) //If an (already achievable sum) + (numbers[i]) == j, then j is obviously achievable
{
can[j] = true;
prev[j] = numbers[i]; //To achieve j we used numbers[i]
}
}
}
int CLOSEST_SUM = -1;
for (int i = SUM; i <= UPPER_BOUND; i++)
if (can[i])
{
//the closest number to SUM(larger than SUM) is i
CLOSEST_SUM = i;
break;
}
int currentSum = CLOSEST_SUM;
do
{
int usedNumber = prev[currentSum];
Console.WriteLine(usedNumber);
currentSum -= usedNumber;
} while (currentSum > 0);
This seems to be a Knapsack-like problem, where the value of your integers would be the "weight" of each item, the "profit" of each item is 1, and you are looking for the least number of items to exactly sum to the maximum allowable weight of the knapsack.
This is a variant of the SUBSET-SUM problem, and is also NP-Hard like SUBSET-SUM.
But if the numbers involved are small, pseudo-polynomial time algorithms exist. Check out:
http://en.wikipedia.org/wiki/Subset_sum_problem
Ok More details.
The following problem:
Given an array of integers, and integers a,b, is there
some subset whose sum lies in the
interval [a,b] is NP-Hard.
This is so because we can solve subset-sum by choosing a=b=0.
Now this problem easily reduces to your problem and so your problem is NP-Hard too.
Now you can use the polynomial time approximation algorithm mentioned in the wiki link above.
Given an array of N integers, a target S and an approximation threshold c,
there is a polynomial time approximation algorithm (involving 1/c) which tells if there is a subset sum in the interval [(1-c)S, S].
You can use this repeatedly (by some form of binary search) to find the best approximation to S you need. Note you can also use this on intervals of the from [S, (1+c)S], while the knapsack will only give you a solution <= S.
Of course there might be better algorithms, in fact I can bet on it. There should be plenty of literature on the web. Some search terms you can use: approximation algorithms for subset-sum, pseudo-polynomial time algorithms, dynamic programming algorithm etc.
A simple-brute-force-method would be to read the text in, parse it into numbers, and then go through all combinations until you find the required sum.
A quicker solution would be to sort the numbers, then...
Add the largest number to your sum, Is it too big? if so, take it off and try the next smallest.
if the sum is too small, add the next largest number and repeat.
Continue adding numbers not letting the sum exceed the target. Finish when you hit the target.
Note that when you backtrack, you may need to back track more than one level. Sounds like a good case for recursion...
If the numbers are large you can turn this into an Integer Programme. Using Mathematicas solver, it might look something like this
nums = {99, 20, 30 , 1, 100, 400, 5, 10};
vars = a /# Range#Length#nums;
Minimize[(vars.nums - 183)^2, vars, Integers]
You can sort the list of values, find the first value that's greater than the target, and start concentrating on the values that are less than the target. Find the sum that's closest to the target without going over, then compare that to the first value greater than the target. If the difference between the closest sum and the target is less than the difference between the first value greater than the target and the target, then you have the sum that's closest.
Kinda hokey, but I think the logic hangs together.

Getting Factors of a Number

I'm trying to refactor this algorithm to make it faster. What would be the first refactoring here for speed?
public int GetHowManyFactors(int numberToCheck)
{
// we know 1 is a factor and the numberToCheck
int factorCount = 2;
// start from 2 as we know 1 is a factor, and less than as numberToCheck is a factor
for (int i = 2; i < numberToCheck; i++)
{
if (numberToCheck % i == 0)
factorCount++;
}
return factorCount;
}
The first optimization you could make is that you only need to check up to the square root of the number. This is because factors come in pairs where one is less than the square root and the other is greater.
One exception to this is if n is an exact square then its square root is a factor of n but not part of a pair.
For example if your number is 30 the factors are in these pairs:
1 x 30
2 x 15
3 x 10
5 x 6
So you don't need to check any numbers higher than 5 because all the other factors can already be deduced to exist once you find the corresponding small factor in the pair.
Here is one way to do it in C#:
public int GetFactorCount(int numberToCheck)
{
int factorCount = 0;
int sqrt = (int)Math.Ceiling(Math.Sqrt(numberToCheck));
// Start from 1 as we want our method to also work when numberToCheck is 0 or 1.
for (int i = 1; i < sqrt; i++)
{
if (numberToCheck % i == 0)
{
factorCount += 2; // We found a pair of factors.
}
}
// Check if our number is an exact square.
if (sqrt * sqrt == numberToCheck)
{
factorCount++;
}
return factorCount;
}
There are other approaches you could use that are faster but you might find that this is already fast enough for your needs, especially if you only need it to work with 32-bit integers.
Reducing the bound of how high you have to go as you could knowingly stop at the square root of the number, though this does carry the caution of picking out squares that would have the odd number of factors, but it does help reduce how often the loop has to be executed.
Looks like there is a lengthy discussion about this exact topic here: Algorithm to calculate the number of divisors of a given number
Hope this helps
The first thing to notice is that it suffices to find all of the prime factors. Once you have these it's easy to find the number of total divisors: for each prime, add 1 to the number of times it appears and multiply these together. So for 12 = 2 * 2 * 3 you have (2 + 1) * (1 + 1) = 3 * 2 = 6 factors.
The next thing follows from the first: when you find a factor, divide it out so that the resulting number is smaller. When you combine this with the fact that you need only check to the square root of the current number this is a huge improvement. For example, consider N = 10714293844487412. Naively it would take N steps. Checking up to its square root takes sqrt(N) or about 100 million steps. But since the factors 2, 2, 3, and 953 are discovered early on you actually only need to check to one million -- a 100x improvement!
Another improvement: you don't need to check every number to see if it divides your number, just the primes. If it's more convenient you can use 2 and the odd numbers, or 2, 3, and the numbers 6n-1 and 6n+1 (a basic wheel sieve).
Here's another nice improvement. If you can quickly determine whether a number is prime, you can reduce the need for division even further. Suppose, after removing small factors, you have 120528291333090808192969. Even checking up to its square root will take a long time -- 300 billion steps. But a Miller-Rabin test (very fast -- maybe 10 to 20 nanoseconds) will show that this number is composite. How does this help? It means that if you check up to its cube root and find no factors, then there are exactly two primes left. If the number is a square, its factors are prime; if the number is not a square, the numbers are distinct primes. This means you can multiply your 'running total' by 3 or 4, respectively, to get the final answer -- even without knowing the factors! This can make more of a difference than you'd guess: the number of steps needed drops from 300 billion to just 50 million, a 6000-fold improvement!
The only trouble with the above is that Miller-Rabin can only prove that numbers are composite; if it's given a prime it can't prove that the number is prime. In that case you may wish to write a primality-proving function to spare yourself the effort of factoring to the square root of the number. (Alternately, you could just do a few more Miller-Rabin tests, if you would be satisfied with high confidence that your answer is correct rather than a proof that it is. If a number passes 15 tests then it's composite with probability less than 1 in a billion.)
You can limit the upper limit of your FOR loop to numberToCheck / 2
Start your loop counter at 2 (if your number is even) or 3 (for odd values). This should allow you to check every other number dropping your loop count by another 50%.
public int GetHowManyFactors(int numberToCheck)
{
// we know 1 is a factor and the numberToCheck
int factorCount = 2;
int i = 2 + ( numberToCheck % 2 ); //start at 2 (or 3 if numberToCheck is odd)
for( ; i < numberToCheck / 2; i+=2)
{
if (numberToCheck % i == 0)
factorCount++;
}
return factorCount;
}
Well if you are going to use this function a lot you can use modified algorithm of Eratosthenes http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes and store answars for a interval 1 to Max in array. It will run IntializeArray() once and after it will return answers in 0(1).
const int Max =1000000;
int arr [] = new int [Max+1];
public void InitializeArray()
{
for(int i=1;i<=Max;++i)
arr[i]=1;//1 is factor for everyone
for(int i=2;i<=Max;++i)
for(int j=i;i<=Max;i+=j)
++arr[j];
}
public int GetHowManyFactors(int numberToCheck)
{
return arr[numberToCheck];
}
But if you are not going to use this function a lot I think best solution is to check unitll square root.
Note: I have corrected my code!
An easy to implement algorithm that will bring you much farther than trial division is Pollard Rho
Here is a Java implementation, that should be easy to adapt to C#: http://www.cs.princeton.edu/introcs/78crypto/PollardRho.java.html
https://codility.com/demo/results/demoAAW2WH-MGF/
public int solution(int n) {
var counter = 0;
if (n == 1) return 1;
counter = 2; //1 and itself
int sqrtPoint = (Int32)(Math.Truncate(Math.Sqrt(n)));
for (int i = 2; i <= sqrtPoint; i++)
{
if (n % i == 0)
{
counter += 2; // We found a pair of factors.
}
}
// Check if our number is an exact square.
if (sqrtPoint * sqrtPoint == n)
{
counter -=1;
}
return counter;
}
Codility Python 100 %
Here is solution in python with little explanation-
def solution(N):
"""
Problem Statement can be found here-
https://app.codility.com/demo/results/trainingJNNRF6-VG4/
Codility 100%
Idea is count decedent factor in single travers. ie. if 24 is divisible by 4 then it is also divisible by 8
Traverse only up to square root of number ie. in case of 24, 4*4 < 24 but 5*5!<24 so loop through only i*i<N
"""
print(N)
count = 0
i = 1
while i * i <= N:
if N % i == 0:
print()
print("Divisible by " + str(i))
if i * i == N:
count += 1
print("Count increase by one " + str(count))
else:
count += 2
print("Also divisible by " + str(int(N / i)))
print("Count increase by two count " + str(count))
i += 1
return count
Example by run-
if __name__ == '__main__':
# result = solution(24)
# result = solution(35)
result = solution(1)
print("")
print("Solution " + str(result))
"""
Example1-
24
Divisible by 1
Also divisible by 24
Count increase by two count 2
Divisible by 2
Also divisible by 12
Count increase by two count 4
Divisible by 3
Also divisible by 8
Count increase by two count 6
Divisible by 4
Also divisible by 6
Count increase by two count 8
Solution 8
Example2-
35
Divisible by 1
Also divisible by 35
Count increase by two count 2
Divisible by 5
Also divisible by 7
Count increase by two count 4
Solution 4
Example3-
1
Divisible by 1
Count increase by one 1
Solution 1
"""
Github link
I got pretty good results with complexity of O(sqrt(N)).
if (N == 1) return 1;
int divisors = 0;
int max = N;
for (int div = 1; div < max; div++) {
if (N % div == 0) {
divisors++;
if (div != N/div) {
divisors++;
}
}
if (N/div < max) {
max = N/div;
}
}
return divisors;
Python Implementation
Score 100% https://app.codility.com/demo/results/trainingJ78AK2-DZ5/
import math;
def solution(N):
# write your code in Python 3.6
NumberFactor=2; #one and the number itself
if(N==1):
return 1;
if(N==2):
return 2;
squareN=int(math.sqrt(N)) +1;
#print(squareN)
for elem in range (2,squareN):
if(N%elem==0):
NumberFactor+=2;
if( (squareN-1) * (squareN-1) ==N):
NumberFactor-=1;
return NumberFactor

Categories