I have an image editor user control(c# .net v2.0). Its used in thousands of computers as an activex component. I want the component also be available for windows forms and possible other uses.
For activex usage i add <object> tag in html code and call the component with clsid(a static guid). So if i build and distribute a newer version it works without changing any client code.
I want windows forms to be able use the same distributed libraries. And they should not reference a specific version so i can update the component without changing the programs that use it.
I use regasm to register for com. But i dont know how to reference it from visual studio(like referencing with clsid?)
May be in visual stuido when i choose add reference and select COM tab i shuld see my component in the list.
note: i tried to add the assemly to the global cache using these lines but it did not work out-or i coulnt understand if anything has changed :)
"C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\tlbexp" ImageEditorComp.dll /out:ImageEditorComp.tlb
regasm /tlb:ImageEditorComp.tlb ImageEditorComp.dll
"C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\gacutil" /I ImageEditorComp.dll
Any suggestions appreciated,
Regards
This is not possible, you'll invoke the infamous and dreaded DLL Hell problem. A stone cold hard rule in COM is that you have to change the [Guid] attribute values on public interfaces when you make a breaking change in either the publicly visible interfaces or the implementation of them. Changing the guids ensures that you don't overwrite the registry keys of an old version of your component when you use Regasm.exe. Existing programs that use your component and were not recompiled to use the latest version will continue running without problems. The typical outcome of DLL Hell is a nasty hardware exception like AccessViolation, very difficult to troubleshoot.
None of which applies in your specific case here. There is no point in trying to use the component through COM. It is a .NET assembly, just add the reference to it directly. The IDE will in fact stop you from adding a reference to the interop library. But not the .tlb. The GAC keeps you out of DLL Hell, assuming you properly increment [AssemblyVersion].
I figured out a solution.
To explain step by step:
1- Create the component with all needed properties for com.(Sign the assembly, use interfaces for com, make assembly com visible)
On the client machine
2- Register the assembly with regasm(i recommend adding safety flags too).
3- Add the assembly to the global cache using gacutil(or msi installer)
I figured out when you call a specific version of an assembly gac is searched in the first place so if its installed in GAC, referenced codebase path is never used.
When using as activeX you address the component with GUID. Since regasm adds the assembly name and version the GUID is representing, web browser directly uses component from GAC.
When using from a desktop application, reference the assebmly directly and set copylocal property to false. Similarly, in the client machine windows will find the assembly located at GAC itself.
Here is a useful link about the subject.
http://www.simple-talk.com/dotnet/visual-studio/build-and-deploy-a-.net-com-assembly/
Hope it saves other peoples time :)
Related
I have some projects that rely on external .Net assemblies to operate. These are installed externally from my program so I do not have direct control over what version is being used. Furthermore, updates are expected to be installed as a matter of course.
For example, in one case I am accessing a hardware device that provides a .Net interface to control it. When the user initially installs the device, they install the driver that is included. This driver when I wrote the program may have been 3.0.4.0. The latest version might be 3.1.8.0.
My program fails to load the assembly when this happens complaining that the manifest definition is incorrect. A specific exception message is show below.
Another example is a labeling program. They provide a .Net interface to allow my program to print labels through their system. Installing an updated version of the program is fatal.
Here is the specific exception message:
Could not load file or assembly 'SDK.NET.Interface, Version=17.1.0.0,
Culture=neutral, PublicKeyToken=865eaf3445b2ea56' or one of its
dependencies. The located assembly's manifest definition does not match
the assembly reference.
If I install this version of the application on my computer, then reference the updated version of the assembly and compile, I’m good to go . . . for now.
But, it’s only a matter of time before I will have the issue again.
I’ve tried setting the Specific Version property of the referenced assemblies to False but that didn’t affect the problem.
What is the proper way to address the issue?
You are able to "Plug and Play" as long as method signatures don't change.
If those change, then you'll need to fix your base code.
Look at Microsoft's documentation on Redirecting Assembly Versions:
http://msdn.microsoft.com/en-us/library/7wd6ex19%28VS.71%29.aspx
Another option is If these libraries are somehow controlled by you or your company, you might have some wiggle room with reflection by loading them up by their base type/interface and using common methods... but you'll need to have access to the base types.
This is also a duplicate question:
Upgrade a reference dll in a C# project without recompiling the project
Upgrading dependent DLL without recompiling the whole application
Since version 3.0, .NET installs a bunch of different 'reference assemblies' under C:\Program Files\Reference Assemblies\Microsoft...., to support different profiles (say .NET 3.5 client profile, Silverlight profile). Each of these is a proper .NET assembly that contains only metadata - no IL code - and each assembly is marked with the ReferenceAssemblyAttribute. The metadata is restricted to those types and member available under the applicable profile - that's how intellisense shows a restricted set of types and members. The reference assemblies are not used at runtime.
I learnt a bit about it from this blog post.
I'd like to create and use such a reference assembly for my library.
How do I create a metadata-only assembly - is there some compiler flag or ildasm post-processor?
Are there attributes that control which types are exported to different 'profiles'?
How does the reference assembly resolution at runtime - if I had the reference assembly present in my application directory instead of the 'real' assembly, and not in the GAC at all, would probing continue and my AssemblyResolve event fire so that I can supply the actual assembly at runtime?
Any ideas or pointers to where I could learn more about this would be greatly appreciated.
Update: Looking around a bit, I see the .NET 3.0 'reference assemblies' do seem to have some code, and the Reference Assembly attribute was only added in .NET 4.0. So the behaviour might have changed a bit with the new runtime.
Why? For my Excel-DNA ( http://exceldna.codeplex.com ) add-in library, I create single-file .xll add-in by packing the referenced assemblies into the .xll file as resources. The packed assemblies include the user's add-in code, as well as the Excel-DNA managed library (which might be referenced by the user's assembly).
It sounds rather complicated, but works wonderfully well most of the time - the add-in is a single small file, so no installation of distribution issues. I run into (not unexpected) problems because of different versions - if there is an old version of the Excel-DNA managed library as a file, the runtime will load that instead of the packed one (I never get a chance to interfere with the loading).
I hope to make a reference assembly for my Excel-DNA managed part that users can point to when compiling their add-ins. But if they mistakenly have a version of this assembly at runtime, the runtime should fail to load it, and give me a chance to load the real assembly from resources.
To create a reference assembly, you would add this line to your AssemblyInfo.cs file:
[assembly: ReferenceAssembly]
To load others, you can reference them as usual from your VisualStudio project references, or dynamically at runtime using:
Assembly.ReflectionOnlyLoad()
or
Assembly.ReflectionOnlyLoadFrom()
If you have added a reference to a metadata/reference assembly using VisualStudio, then intellisense and building your project will work just fine, however if you try to execute your application against one, you will get an error:
System.BadImageFormatException: Cannot load a reference assembly for execution.
So the expectation is that at runtime you would substitute in a real assembly that has the same metadata signature.
If you have loaded an assembly dynamically with Assembly.ReflectionOnlyLoad() then you can only do all the reflection operations against it (read the types, methods, properties, attributes, etc, but can not dynamically invoke any of them).
I am curious as to what your use case is for creating a metadata-only assembly. I've never had to do that before, and would love to know if you have found some interesting use for them...
If you are still interested in this possibility, I've made a fork of the il-repack project based on Mono.Cecil which accepts a "/meta" command line argument to generate a metadata only assembly for the public and protected types.
https://github.com/KarimLUCCIN/il-repack/tree/xna
(I tried it on the full XNA Framework and its working afaik ...)
Yes, this is new for .NET 4.0. I'm fairly sure this was done to avoid the nasty versioning problems in the .NET 2.0 service packs. Best example is the WaitHandle.WaitOne(int) overload, added and documented in SP2. A popular overload because it avoids having to guess at the proper value for *exitContext" in the WaitOne(int, bool) overload. Problem is, the program bombs when it is run on a version of 2.0 that's older than SP2. Not a happy diagnostic either. Isolating the reference assemblies ensures that this can't happen again.
I think those reference assemblies were created by starting from a copy of the compiled assemblies (like it was done in previous versions) and running them through a tool that strips the IL from the assembly. That tool is however not available to us, nothing in the bin/netfx 4.0 tools Windows 7.1 SDK subdirectory that could do this. Not exactly a tool that gets used often so it is probably not production quality :)
You might have luck with the Cecil Library (from Mono); I think the implementation allows ILMerge functionality, it might just as well write metadata only assemblies.
I have scanned the code base (documentation is sparse), but haven't found any obvious clues yet...
YYMV
I have activated COM registration free DLL when deploying the application. In addition, I have set the Properties->Linker->Register Output to NO in my build process. However now my application which references the DLL no longer builds because it cannot find the reference. So my question is that is it possible to build the application that references the DLL without registering the dll?
Thanks!
You left no breadcrumbs to guess why registration is required to build your code. This is not normally necessary. One random guess is that you are using the Isolated property for a reference in a C# project for a COM component written in C++. Which is a very nice feature, it automatically generates the manifest entries so the program can run reg-free.
But those manifest entries need to come from somewhere if you don't write them yourself. Which is the registry if you use the Isolated property. Chicken-and-egg problem here, you have to register it so it can run unregistered :)
Keep in mind that you use reg-free COM on the user's machine, it isn't important on your dev machine.
Situation
I run a build system that executes many builds for many project. To avoid one build impacting another we lock down the build user to only its workspace. Builds run as a non privileged users who only have write ability to the workspace.
Challenge
During our new build we need to use a legacy 3rdparty DLL that exposes its interface through COM. The dev team wants to register the build(regsrv32.exe) but our build security regime blocks this activity. If we relax the regime then the 3rdparty DLL will impact other builds and if I have two build which need two different versions I may have the wrong build compile against the wrong version (a very real possibility).
Question
Are there any other options besides registration to handle legacy DLLs which expose their interface via COM?
Thanks for the help
Peter
For my original answer to a similar question see: TFS Build server and COM references - does this work?
A good way to compile .NET code that references COM components without the COM components being registered on the build server is to use the COMFileReference reference item in your project/build files instead of COMReference. A COMFileReference item looks like this:
<ItemGroup>
<COMFileReference Include="MyComLibrary.dll">
<EmbedInteropTypes>True</EmbedInteropTypes>
</COMFileReference>
</ItemGroup>
Since Visual Studio provides no designer support for COMFileReference, you must edit the project/build file by hand.
During a build, MSBuild extracts the type library information from the COM DLL and creates an interop assembly that can be either standalone or embedded in the calling .NET assembly.
Each COMFileReference item can also have a WrapperTool attribute but the default seemed to work for me just fine. The EmbedInteropTypes attribute is not documented as being applicable to COMFileReference, but it seems to work as intended.
See https://learn.microsoft.com/en-ca/visualstudio/msbuild/common-msbuild-project-items#comfilereference for a little more detail. This MSBuild item has been available since .NET 3.5.
It's a shame that no-one seems to know anything about this technique, which to me seems simpler than the alternatives. It's actually not surprising since I could only find just the one above reference to it on-line. I myself discovered this technique by digging into MSBuild's Microsoft.Common.targets file.
There's a walkthrough on registration-free COM here:
http://msdn.microsoft.com/en-us/library/ms973913.aspx
And excruciating detail here:
http://msdn.microsoft.com/en-us/library/aa376414
(the root of that document is actually here: http://msdn.microsoft.com/en-us/library/dd408052 )
Also, for building in general, you should be able to use Tlbimp or tlbexp to create a TLB file that you can use for building, assuming the point of registering is just to be able to compile successfully, and not to run specific tests.
Installation tools such as Installshield can extract the COM interfaces from the DLLs and add them to the registry. It can also use the self-registration process of the DLL (which I believe is what regsvr does), but this is not a Microsoft installer best practice.
in .NET COM is normally done thru Interop in order to register .DLL in .NET they are called Assemblies and that can be done several ways.. by adding references via VS IDE at the project level, or writing code that Loads and unloads the assembly.. by .Config file that haas the reference to the assembly as well as the using of that reference within the project... GAC.
If you have access to the 3rd party .DLL's you can GAC them, and reference them in your project
you can add a using to your .cs file header as well as add the reference to the project by right clicking on reference --> add Reference ...
you can also do the above step as well as set the copy local = true in the properties for that .dll.. I hope that this gives you some ideas.. keep in mind that .NET assemblies are Managed code so there are several ways to Consume those 3rd party .DLL's using other methods within C# like LoadFromAssembly ect..
Thanks for all the help.
We changed from early-binding to late-binding because we never really needed the DLL at compile time. This pushed the registration requirement from the build server to the integration test server (where we execute the installer which handles the registration). We try to keep the build system pristine and have easy-to-reset integration systems.
Thanks again
Peter
Is it necessary to register a compiled DLL (written in C# .NET) on a target machine.
The target machine will have .NET installed, is it enough to simply drop the DLL onto the target machine?
I think you're confusing things a little. Registering a dll has never been needed in order to use it.
Using a dll requires only to load it (given a known location or if the library is in the system path) and get the address of the function you wanted to use.
Registering the dll was used when distributing COM or ActiveX objects which need to add certain entries to the windows registry. In order to use a COM service (for example) you need to reference a GUID — that is, a unique identifier — which allows you to get a handle to the dll that implements the service (or provide access to it). Sometimes you can make reference to a fully-qualified name and get the same results.
In order for all that to work the dll needed to be registered. This "registration" process just creates several entries in the registry, but mainly these two: one associating a GUID with the location of the dll (so that you can reference it through the GUID without knowing where is it exactly located) and a second one associating the full name with the GUID. But again, this is just for COM or ActiveX objects.
When you develop an application in .NET, the libraries referenced on your project are automatically loaded when they're needed without you having to worry about locating or loading them. In order to to that, the framework checks two locations for the referenced libraries.
The first location is the application path.
The second location is the GAC.
The GAC (Global Assembly Cache) allows you to effectively register a dll to be used throughout the system and works as an evolution of the old registering mechanism.
So basically you just need to put the dll in the same folder of the application.
You need to "drop" it into a directory where the application needing it will find it.
If there are multiple applications, or you want to "drop" the file somewhere other than the application directory, you generally need to either adjust the PATH variable, or register the assembly in the Global Assembly Cache (GAC).
It is usually enough to drop the dll into the folder of your app on the target machine.
If the dll must be available to other applications then you may want to consider the GAC.
If you wish to access the assembly via com+. An example would be using a type defined in a .NET assembly from a non .NET application, such as a VB6 winforms app.
If you plan on accessing the assembly from another .NET application, you don't have to do anything. If your assembly has a strong name, it probably is a good idea to drop it in the GAC. Otherwise, just drop it in the directory of the application that will be referencing it.
One of the great selling points of .NET for the Windows platform when it came onto the scene is that by default, .NET assembly DLLs don't have to be registered and can be consumed privately by an application by merely putting them in the same folder as the EXE file. That was a great stride forward because it enabled developers to avoid the fray of DLL/COM hell.
Shared DLL/COM modules proved to be one of the greatest design mistakes of Windows as it lead to instability of applications that users installed. Installing a new app could well screw up an app that had been working just fine - because the new app introduced newer versions of shared DLL/COM modules. (It proved in practice to be too much of a burden for developers to properly manage fine-grained version dependencies.)
It's one thing to manage versions of modules with a build repository system like Maven. Maven works extremely well doing what it does.
It's an entirely different matter, though, to deal with that problem in an end-user runtime environment spread across a population of millions of users.
The .NET GAC is by no means a sufficient solution to this age-old Windows problem.
Privately consumed DLL assemblies continue to be infinitely preferable. It's a no-brainer way to go as diskspace is extremely cheap these days (~$100 can by a terabyte drive at Fry's these days). There is nothing to be gained with sharing assemblies with other products - and yet company reputation to loose when things go south for the poor user.
Actually there is NO need to register a dll in .NET on the target machine.
If you reference a .dll in your application, click on the referenced .dll under references in your project, look at the properties and set Isolated to TRUE.
This will now automatically include this .dll in your project and your application will use the copy of the .dll included in your project without any need to register it on the target system.
To see a working Example of this look here:
http://code.msdn.microsoft.com/SEHE
The .dll in question will need to be registered on the system where you build your application for this to work properly. However once you build your project, there will not be any need to register the .dll in question on any system you deploy your application or program.
An additional benefit of using this method, is that even if in the future, another .dll is registered with the same name on the target system in question, your project will continue to use the .dll you deployed with. This is very handy where a .dll has many versions and you wish to maintain some stability, like using the one you tested with, yet all other applications will use the registered .dll unless they use the isolated = true method as well.
The example above is one of those cases, there are many versions of Skype4COM which is a Skype API .dll and can change often.
This method allows the above example to use the API .dll that the project was tested with, each time a user installs a new version of Skype, it is possible that a modified version of this .dll is installed.
Also, there are some Skype clients that do not install this .dll, the business version of the Skype client for example, is smaller, and does not include this .dll, so in this case, the project does not fail on that .dll missing and not being registered because it is included in the project as isolated = true.
An application can use a .NET dll by simply having it present in the same folder with the application.
However if you want other third-party applications to find the DLL and use it they would also have to include it in their distribution. This may not be desirable.
An alternative is to have the DLL registered in the GAC (Global Assembly Cache).