SoundPlayer.PlaySync stopping prematurely - c#

I want to play a wav file synchronously on the gui thread, but my call to PlaySync is returning early (and prematurely stopping playback). The wav file is 2-3 minutes.
Here's what my code looks like:
//in gui code (event handler)
//play first audio file
JE_SP.playSound("example1.wav");
//do a few other statements
doSomethingUnrelated();
//play another audio file
JE_SP.playSound("example2.wav");
//library method written by me, called in gui code, but located in another assembly
public static int playSound(string wavFile, bool synchronous = true,
bool debug = true, string logFile = "", int loadTimeout = FIVE_MINUTES_IN_MS)
{
SoundPlayer sp = new SoundPlayer();
sp.LoadTimeout = loadTimeout;
sp.SoundLocation = wavFile;
sp.Load();
switch (synchronous)
{
case true:
sp.PlaySync();
break;
case false:
sp.Play();
break;
}
if (debug)
{
string writeMe = "JE_SP: \r\n\tSoundLocation = " + sp.SoundLocation
+ "\r\n\t" + "Synchronous = " + synchronous.ToString();
JE_Log.logMessage(writeMe);
}
sp.Dispose();
sp = null;
return 0;
}
Some things I've thought of are the load timeout, and playing the audio on another thread and then manually 'freeze' the gui by forcing the gui thread to wait for the duration of the sound file. I tried lengthening the load timeout, but that did nothing.
I'm not quite sure what the best way to get the duration of a wav file is without using code written by somebody who isn't me/Microsoft. I suppose this can be calculated since I know the file size, and all of the encoding properties (bitrate, sample rate, sample size, etc) are consistent across all files I intend to play. Can somebody elaborate on how to calculate the duration of a wav file using this info? That is, if nobody has an idea about why PlaySync is returning early.
Edits:
Of Note: I encountered a similar problem in VB 6 a while ago, but that was caused by a timeout, which I don't suspect to be a problem here. Shorter (< 1min) files seem to play fine, so I might decide to manually edit the longer files down, then play them separately with multiple calls.
Additional Info: I noticed that the same file stops consistently at the same time. The files were created using Audacity. Would it be possible that PlaySync is expecting a certain encoding of the files that differs from what I had Audacity produce?

Just in case anybody else runs into problems with playing a large wav file synchronously, here is a method I wrote which uses WMP as an alternative:
public static int playSoundWMP(string soundFile, bool synchronous = true)
{
Stopwatch sw = new Stopwatch();
sw.Start();
wmp.URL = soundFile;
wmp.controls.play();
Thread.Yield();
while (wmp.playState == WMPLib.WMPPlayState.wmppsTransitioning)
{
Application.DoEvents();
Thread.Yield();
}
int duration = Convert.ToInt32(wmp.currentMedia.duration * 1000);
double waitTime = wmp.currentMedia.duration;
if (synchronous)
{
Thread.Sleep(duration);
}
long elapsed = sw.ElapsedMilliseconds;
sw.Stop();
sw = null;
return (int) wmp.currentMedia.duration * 1000;
}
This method uses WMP to play an audio file instead of the SoundPlayer class, so it can play larger wav files more reliably...

Related

FileSystemWatcher copies files but deletes contents/data inside [duplicate]

I am developing a .net application, where I am using FileSystemWatcher class and attached its Created event on a folder. I have to do action on this event (i.e. copy file to some other location). When I am putting a large size into the attached watch folder the event raised immediately even the file copy process still not completed. I don’t want to check this by file.open method.
Is there any way get notify that my file copy process into the watch folder has been completed and then my event get fire.
It is indeed a bummer that FileSystemWatcher (and the underlying ReadDirectoryChangesW API) provide no way to get notified when a new file has been fully created.
The best and safest way around this that I've come across so far (and that doesn't rely on timers) goes like this:
Upon receiving the Created event, start a thread that, in a loop, checks whether the file is still locked (using an appropriate retry interval and maximum retry count). The only way to check if a file is locked is by trying to open it with exclusive access: If it succeeds (not throwing an IOException), then the File is done copying, and your thread can raise an appropriate event (e.g. FileCopyCompleted).
I have had the exact same problem, and solved it this way:
Set FileSystemWatcher to notify when files are created and when they are modified.
When a notification comes in:
a. If there is no timer set for this filename (see below), set a timer to expire in a suitable interval (I commonly use 1 second).
b. If there is a timer set for this filename, cancel the timer and set a new one to expire in the same interval.
When a timer expires, you know that the associated file has been created or modified and has been untouched for the time interval. This means that the copy/modify is probably done and you can now process it.
You could listen for the modified event, and start a timer. If the modified event is raised again, reset the timer. When the timer has reached a certain value without the modify event being raised you can try to perform the copy.
I subscribe to the Changed- and Renamed-event and try to rename the file on every Changed-event catching the IOExceptions. If the rename succeeds, the copy has finished and the Rename-event is fired only once.
Three issues with FileSystemWatcher, the first is that it can send out duplicate creation events so you check for that with something like:
this.watcher.Created += (s, e) =>
{
if (!this.seen.ContainsKey(e.FullPath)
|| (DateTime.Now - this.seen[e.FullPath]) > this.seenInterval)
{
this.seen[e.FullPath] = DateTime.Now;
ThreadPool.QueueUserWorkItem(
this.WaitForCreatingProcessToCloseFileThenDoStuff, e.FullPath);
}
};
where this.seen is a Dictionary<string, DateTime> and this.seenInterval is a TimeSpan.
Next, you have to wait around for the file creator to finish writing it (the issue raised in the question). And, third, you must be careful because sometimes the file creation event gets thrown before the file can be opened without giving you a FileNotFoundException but it can also be removed before you can get a hold of it which also gives a FileNotFoundException.
private void WaitForCreatingProcessToCloseFileThenDoStuff(object threadContext)
{
// Make sure the just-found file is done being
// written by repeatedly attempting to open it
// for exclusive access.
var path = (string)threadContext;
DateTime started = DateTime.Now;
DateTime lastLengthChange = DateTime.Now;
long lastLength = 0;
var noGrowthLimit = new TimeSpan(0, 5, 0);
var notFoundLimit = new TimeSpan(0, 0, 1);
for (int tries = 0;; ++tries)
{
try
{
using (var fileStream = new FileStream(
path, FileMode.Open, FileAccess.ReadWrite, FileShare.None))
{
// Do Stuff
}
break;
}
catch (FileNotFoundException)
{
// Sometimes the file appears before it is there.
if (DateTime.Now - started > notFoundLimit)
{
// Should be there by now
break;
}
}
catch (IOException ex)
{
// mask in severity, customer, and code
var hr = (int)(ex.HResult & 0xA000FFFF);
if (hr != 0x80000020 && hr != 0x80000021)
{
// not a share violation or a lock violation
throw;
}
}
try
{
var fi = new FileInfo(path);
if (fi.Length > lastLength)
{
lastLength = fi.Length;
lastLengthChange = DateTime.Now;
}
}
catch (Exception ex)
{
}
// still locked
if (DateTime.Now - lastLengthChange > noGrowthLimit)
{
// 5 minutes, still locked, no growth.
break;
}
Thread.Sleep(111);
}
You can, of course, set your own timeouts. This code leaves enough time for a 5 minute hang. Real code would also have a flag to exit the thread if requested.
This answer is a bit late, but if possible I'd get the source process to copy a small marker file after the large file or files and use the FileWatcher on that.
Try to set filters
myWatcher.NotifyFilter = NotifyFilters.LastAccess | NotifyFilters.LastWrite;

What is the fastest way to get a media file's duration?

I am working on a program that scans drop folders for files, and registers them to another system that requires a duration for the file. The best solution I've been able to find so far is to use MediaInfo to get the duration from the header, but for some reason it tends to take a few seconds to return a result.
Suppose I have a list of 1,000 file paths, and I want to get the duration for each one, but getting the duration takes 15 seconds. Linear iteration over the list would take just over 4 hours, and even running 8 tasks in parallel would take half an hour. With my tests, this would be the best case scenario.
I've tried using the MediaInfo DLL as well as calling the .exe, and both seemed to have similar processing times.
DLL Code:
MediaInfo MI;
public Form1()
{
InitializeComponent();
MI = new MediaInfo();
}
private void button1_Click(object sender, EventArgs e)
{
MI.Open(textBox1.Text);
MI.Option("Inform", "Video;%Duration%");
label2.Text = MI.Inform();
MI.Close();
}
Executable code:
Process proc = new Process
{
StartInfo = new ProcessStartInfo
{
FileName = "MediaInfo.exe",
Arguments = $"--Output=Video;%Duration% \"{textBox1.Text}\"",
UseShellExecute = false,
RedirectStandardOutput = true,
CreateNoWindow = true
}
};
StringBuilder line = new StringBuilder();
proc.Start();
while (!proc.StandardOutput.EndOfStream)
{
line.Append(proc.StandardOutput.ReadLine());
}
label2.Text = line.ToString();
It should be noted that the files being processed are on a networked drive, but I have tested retrieving the duration of a local file and it was only a few seconds faster.
Note, this program has to run on Windows Server 2003 R2, which means .net 4.0 only. Most of the files I will be processing are .mov but I can't restrict it to that.
Some better code (prefer DLL call, init takes time) with options for reducing the scan duration:
MediaInfo MI;
public Form1()
{
InitializeComponent();
MI = new MediaInfo();
MI.Option("ParseSpeed", "0"); // Advanced information (e.g. GOP size, captions detection) not needed, request to scan as fast as possible
MI.Option("ReadByHuman", "0"); // Human readable strings are not needed, no noeed to spend time on them
}
private void button1_Click(object sender, EventArgs e)
{
MI.Open(textBox1.Text);
label2.Text = MI.Get(Stream_Video, "Duration"); //Note: prefer Stream_General if you want the duration of the program (here, you select the duration of the video stream)
MI.Close();
}
There are several possibilities for improving parsing time depending of your specific needs (i.e. you don't care of lot of features) but this is code to add directly to MediaInfo (e.g. for MP4/QuickTime files, getting only the duration could take less than 200 ms if I disable other features), add a feature request if you need speed.
Jérôme, developer of MediaInfo

System.IO.File.Move--How to wait for move completion?

I am writing a WPF application in c# and I need to move some files--the rub is that I really REALLY need to know if the files make it. To do this, I wrote a check that makes sure that the file gets to the target directory after the move--the problem is that sometimes I get to the check before the file finishes moving:
System.IO.File.Move(file.FullName, endLocationWithFile);
System.IO.FileInfo[] filesInDirectory = endLocation.GetFiles();
foreach (System.IO.FileInfo temp in filesInDirectory)
{
if (temp.Name == shortFileName)
{
return true;
}
}
// The file we sent over has not gotten to the correct directory....something went wrong!
throw new IOException("File did not reach destination");
}
catch (Exception e)
{
//Something went wrong, return a fail;
logger.writeErrorLog(e);
return false;
}
Could somebody tell me how to make sure that the file actually gets to the destination?--The files that I will be moving could be VERY large--(Full HD mp4 files of up to 2 hours)
Thanks!
You could use streams with Aysnc Await to ensure the file is completely copied
Something like this should work:
private void Button_Click(object sender, RoutedEventArgs e)
{
string sourceFile = #"\\HOMESERVER\Development Backup\Software\Microsoft\en_expression_studio_4_premium_x86_dvd_537029.iso";
string destinationFile = "G:\\en_expression_studio_4_premium_x86_dvd_537029.iso";
MoveFile(sourceFile, destinationFile);
}
private async void MoveFile(string sourceFile, string destinationFile)
{
try
{
using (FileStream sourceStream = File.Open(sourceFile, FileMode.Open))
{
using (FileStream destinationStream = File.Create(destinationFile))
{
await sourceStream.CopyToAsync(destinationStream);
if (MessageBox.Show("I made it in one piece :), would you like to delete me from the original file?", "Done", MessageBoxButton.YesNo) == MessageBoxResult.Yes)
{
sourceStream.Close();
File.Delete(sourceFile);
}
}
}
}
catch (IOException ioex)
{
MessageBox.Show("An IOException occured during move, " + ioex.Message);
}
catch (Exception ex)
{
MessageBox.Show("An Exception occured during move, " + ex.Message);
}
}
If your using VS2010 you will have to install Async CTP to use the new Async/Await syntax
You could watch for the files to disappear from the original directory, and then confirm that they indeed appeared in the target directory.
I have not had great experience with file watchers. I would probably have the thread doing the move wait for an AutoResetEvent while a separate thread or timer runs to periodically check for the files to disappear from the original location, check that they are in the new location, and perhaps (depending on your environment and needs) perform a consistency check (e.g. MD5 check) of the files. Once those conditions are satisfied, the "checker" thread/timer would trigger the AutoResetEvent so that the original thread can progress.
Include some "this is taking way too long" logic in the "checker".
Why not manage the copy yourself by copying streams?
//http://www.dotnetthoughts.net/writing_file_with_non_cache_mode_in_c/
const FileOptions FILE_FLAG_NO_BUFFERING = (FileOptions) 0x20000000;
//experiment with different buffer sizes for optimal speed
var bufLength = 4096;
using(var outFile =
new FileStream(
destPath,
FileMode.Create,
FileAccess.Write,
FileShare.None,
bufLength,
FileOptions.WriteThrough | FILE_FLAG_NO_BUFFERING))
using(var inFile = File.OpenRead(srcPath))
{
//either
//inFile.CopyTo(outFile);
//or
var fileSizeInBytes = inFile.Length;
var buf = new byte[bufLength];
long totalCopied = 0L;
int amtRead;
while((amtRead = inFile.Read(buf,0,bufLength)) > 0)
{
outFile.Write(buf,0,amtRead);
totalCopied += amtRead;
double progressPct =
Convert.ToDouble(totalCopied) * 100d / fileSizeInBytes;
progressPct.Dump();
}
}
//file is written
You most likely want the move to happen in a separate thread so that you aren't stopping the execution of your application for hours.
If the program cannot continue without the move being completed, then you could open a dialog and check in on the move thread periodically to update a progress tracker. This provides the user with feedback and will prevent them from feeling as if the program has frozen.
There's info and an example on this here:
http://hintdesk.com/c-wpf-copy-files-with-progress-bar-by-copyfileex-api/
try checking periodically in a background task whether the copied file
size reached the file size of the original file (you can add hashes comparing between the files)
Got similar problem recently.
OnBackupStarts();
//.. do stuff
new TaskFactory().StartNew(() =>
{
OnBackupStarts()
//.. do stuff
OnBackupEnds();
});
void OnBackupEnds()
{
if (BackupChanged != null)
{
BackupChanged(this, new BackupChangedEventArgs(BackupState.Done));
}
}
do not wait, react to event
In first place, consider that Moving files in an operating system does not “recreates” the file in the new directory, but only changes its location data in the “files allocation table”, as physically copy all bytes to delete old ones is just a waste of time.
Due to that reason, moving files is a very fast process, no matter the file size.
EDIT: As Mike Christiansen states in his comment, this "speedy" process only happens when files are moving inside the same volume (you know, C:\... to C:\...)
Thus, copy/delete behavior as proposed by “sa_ddam213” in his response will work but is not the optimal solution (takes longer to finish, will not work if for example you don’t have enough free disk to make the copy of the file while the old one exists, …).
MSDN documentation about File.Move(source,destination) method does not specifies if it waits for completion, but the code given as example makes a simple File.Exists(…) check, saying that having there the original file “is unexpected”:
// Move the file.
File.Move(path, path2);
Console.WriteLine("{0} was moved to {1}.", path, path2);
// See if the original exists now.
if (File.Exists(path))
{
Console.WriteLine("The original file still exists, which is unexpected.");
}
else
{
Console.WriteLine("The original file no longer exists, which is expected.");
}
Perhaps, you could use a similar approach to this one, checking in a while loop for the existence of the new file, and the non existence of the old one, giving a “timer” exit for the loop just in case something unexpected happens at operating system level, and the files get lost:
// We perform the movement of the file
File.Move(source,destination);
// Sets an "exit" datetime, after wich the loop will end, for example 15 seconds. The moving process should always be quicker than that if files are in the same volume, almost immediate, but not if they are in different ones
DateTime exitDateTime = DateTime.Now.AddSeconds(15);
bool exitLoopByExpiration = false;
// We stops here until copy is finished (by checking fies existence) or the time limit excedes
while (File.Exists(source) && !File.Exists(destination) && !exitLoopByExpiration ) {
// We compare current datetime with the exit one, to see if we reach the exit time. If so, we set the flag to exit the loop by expiration time, not file moving
if (DateTime.Now.CompareTo(exitDateTime) > 0) { exitLoopByExpiration = true; }
}
//
if (exitLoopByExpiration) {
// We can perform extra work here, like log problems or throw exception, if the loop exists becouse of time expiration
}
I have checked this solution and seems to work without problems.

Console.WriteLine slow

I run through millions of records and sometimes I have to debug using Console.WriteLine to see what is going on.
However, Console.WriteLine is very slow, considerably slower than writing to a file.
BUT it is very convenient - does anyone know of a way to speed it up?
If it is just for debugging purposes you should use Debug.WriteLine instead. This will most likely be a bit faster than using Console.WriteLine.
Example
Debug.WriteLine("There was an error processing the data.");
You can use the OutputDebugString API function to send a string to the debugger. It doesn't wait for anything to redraw and this is probably the fastest thing you can get without digging into the low-level stuff too much.
The text you give to this function will go into Visual Studio Output window.
[DllImport("kernel32.dll")]
static extern void OutputDebugString(string lpOutputString);
Then you just call OutputDebugString("Hello world!");
Do something like this:
public static class QueuedConsole
{
private static StringBuilder _sb = new StringBuilder();
private static int _lineCount;
public void WriteLine(string message)
{
_sb.AppendLine(message);
++_lineCount;
if (_lineCount >= 10)
WriteAll();
}
public void WriteAll()
{
Console.WriteLine(_sb.ToString());
_lineCount = 0;
_sb.Clear();
}
}
QueuedConsole.WriteLine("This message will not be written directly, but with nine other entries to increase performance.");
//after your operations, end with write all to get the last lines.
QueuedConsole.WriteAll();
Here is another example: Does Console.WriteLine block?
I recently did a benchmark battery for this on .NET 4.8. The tests included many of the proposals mentioned on this page, including Async and blocking variants of both BCL and custom code, and then most of those both with and without dedicated threading, and finally scaled across power-of-2 buffer sizes.
The fastest method, now used in my own projects, buffers 64K of wide (Unicode) characters at a time from .NET directly to the Win32 function WriteConsoleW without copying or even hard-pinning. Remainders larger than 64K, after filling and flushing one buffer, are also sent directly, and in-situ as well. The approach deliberately bypasses the Stream/TextWriter paradigm so it can (obviously enough) provide .NET text that is already Unicode to a (native) Unicode API without all the superfluous memory copying/shuffling and byte[] array allocations required for first "decoding" to a byte stream.
If there is interest (perhaps because the buffering logic is slightly intricate), I can provide the source for the above; it's only about 80 lines. However, my tests determined that there's a simpler way to get nearly the same performance, and since it doesn't require any Win32 calls, I'll show this latter technique instead.
The following is way faster than Console.Write:
public static class FastConsole
{
static readonly BufferedStream str;
static FastConsole()
{
Console.OutputEncoding = Encoding.Unicode; // crucial
// avoid special "ShadowBuffer" for hard-coded size 0x14000 in 'BufferedStream'
str = new BufferedStream(Console.OpenStandardOutput(), 0x15000);
}
public static void WriteLine(String s) => Write(s + "\r\n");
public static void Write(String s)
{
// avoid endless 'GetByteCount' dithering in 'Encoding.Unicode.GetBytes(s)'
var rgb = new byte[s.Length << 1];
Encoding.Unicode.GetBytes(s, 0, s.Length, rgb, 0);
lock (str) // (optional, can omit if appropriate)
str.Write(rgb, 0, rgb.Length);
}
public static void Flush() { lock (str) str.Flush(); }
};
Note that this is a buffered writer, so you must call Flush() when you have no more text to write.
I should also mention that, as shown, technically this code assumes 16-bit Unicode (UCS-2, as opposed to UTF-16) and thus won't properly handle 4-byte escape surrogates for characters beyond the Basic Multilingual Plane. The point hardly seems important given the more extreme limitations on console text display in general, but could perhaps still matter for piping/redirection.
Usage:
FastConsole.WriteLine("hello world.");
// etc...
FastConsole.Flush();
On my machine, this gets about 77,000 lines/second (mixed-length) versus only 5,200 lines/sec under identical conditions for normal Console.WriteLine. That's a factor of almost 15x speedup.
These are controlled comparison results only; note that absolute measurements of console output performance are highly variable, depending on the console window settings and runtime conditions, including size, layout, fonts, DWM clipping, etc.
Why Console is slow:
Console output is actually an IO stream that's managed by your operating system. Most IO classes (like FileStream) have async methods but the Console class was never updated so it always blocks the thread when writing.
Console.WriteLine is backed by SyncTextWriter which uses a global lock to prevent multiple threads from writing partial lines. This is a major bottleneck that forces all threads to wait for each other to finish the write.
If the console window is visible on screen then there can be significant slowdown because the window needs to be redrawn before the console output is considered flushed.
Solutions:
Wrap the Console stream with a StreamWriter and then use async methods:
var sw = new StreamWriter(Console.OpenStandardOutput());
await sw.WriteLineAsync("...");
You can also set a larger buffer if you need to use sync methods. The call will occasionally block when the buffer gets full and is flushed to the stream.
// set a buffer size
var sw = new StreamWriter(Console.OpenStandardOutput(), Encoding.UTF8, 8192);
// this write call will block when buffer is full
sw.Write("...")
If you want the fastest writes though, you'll need to make your own buffer class that writes to memory and flushes to the console asynchronously in the background using a single thread without locking. The new Channel<T> class in .NET Core 2.1 makes this simple and fast. Plenty of other questions showing that code but comment if you need tips.
A little old thread and maybe not exactly what the OP is looking for, but I ran into the same question recently, when processing audio data in real time.
I compared Console.WriteLine to Debug.WriteLine with this code and used DebugView as a dos box alternative. It's only an executable (nothing to install) and can be customized in very neat ways (filters & colors!). It has no problems with tens of thousands of lines and manages the memory quite well (I could not find any kind of leak, even after days of logging).
After doing some testing in different environments (e.g.: virtual machine, IDE, background processes running, etc) I made the following observations:
Debug is almost always faster
For small bursts of lines (<1000), it's about 10 times faster
For larger chunks it seems to converge to about 3x
If the Debug output goes to the IDE, Console is faster :-)
If DebugView is not running, Debug gets even faster
For really large amounts of consecutive outputs (>10000), Debug gets slower and Console stays constant. I presume this is due to the memory, Debug has to allocate and Console does not.
Obviously, it makes a difference if DebugView is actually "in-view" or not, as the many gui updates have a significant impact on the overall performance of the system, while Console simply hangs, if visible or not. But it's hard to put numbers on that one...
I did not try multiple threads writing to the Console, as I think this should generally avoided. I never had (performance) problems when writing to Debug from multiple threads.
If you compile with Release settings, usually all Debug statements are omitted and Trace should produce the same behaviour as Debug.
I used VS2017 & .Net 4.6.1
Sorry for so much code, but I had to tweak it quite a lot to actually measure what I wanted to. If you can spot any problems with the code (biases, etc.), please comment. I would love to get more precise data for real life systems.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading;
namespace Console_vs_Debug {
class Program {
class Trial {
public string name;
public Action console;
public Action debug;
public List < float > consoleMeasuredTimes = new List < float > ();
public List < float > debugMeasuredTimes = new List < float > ();
}
static Stopwatch sw = new Stopwatch();
private static int repeatLoop = 1000;
private static int iterations = 2;
private static int dummy = 0;
static void Main(string[] args) {
if (args.Length == 2) {
repeatLoop = int.Parse(args[0]);
iterations = int.Parse(args[1]);
}
// do some dummy work
for (int i = 0; i < 100; i++) {
Console.WriteLine("-");
Debug.WriteLine("-");
}
for (int i = 0; i < iterations; i++) {
foreach(Trial trial in trials) {
Thread.Sleep(50);
sw.Restart();
for (int r = 0; r < repeatLoop; r++)
trial.console();
sw.Stop();
trial.consoleMeasuredTimes.Add(sw.ElapsedMilliseconds);
Thread.Sleep(1);
sw.Restart();
for (int r = 0; r < repeatLoop; r++)
trial.debug();
sw.Stop();
trial.debugMeasuredTimes.Add(sw.ElapsedMilliseconds);
}
}
Console.WriteLine("---\r\n");
foreach(Trial trial in trials) {
var consoleAverage = trial.consoleMeasuredTimes.Average();
var debugAverage = trial.debugMeasuredTimes.Average();
Console.WriteLine(trial.name);
Console.WriteLine($ " console: {consoleAverage,11:F4}");
Console.WriteLine($ " debug: {debugAverage,11:F4}");
Console.WriteLine($ "{consoleAverage / debugAverage,32:F2} (console/debug)");
Console.WriteLine();
}
Console.WriteLine("all measurements are in milliseconds");
Console.WriteLine("anykey");
Console.ReadKey();
}
private static List < Trial > trials = new List < Trial > {
new Trial {
name = "constant",
console = delegate {
Console.WriteLine("A static and constant string");
},
debug = delegate {
Debug.WriteLine("A static and constant string");
}
},
new Trial {
name = "dynamic",
console = delegate {
Console.WriteLine("A dynamically built string (number " + dummy++ + ")");
},
debug = delegate {
Debug.WriteLine("A dynamically built string (number " + dummy++ + ")");
}
},
new Trial {
name = "interpolated",
console = delegate {
Console.WriteLine($ "An interpolated string (number {dummy++,6})");
},
debug = delegate {
Debug.WriteLine($ "An interpolated string (number {dummy++,6})");
}
}
};
}
}
Just a little trick I use sometimes: If you remove focus from the Console window by opening another window over it, and leave it until it completes, it won't redraw the window until you refocus, speeding it up significantly. Just make sure you have the buffer set up high enough that you can scroll back through all of the output.
Try using the System.Diagnostics Debug class? You can accomplish the same things as using Console.WriteLine.
You can view the available class methods here.

FileSystemWatcher and FileCopy issue, after copied delete it [duplicate]

When a file is created (FileSystemWatcher_Created) in one directory I copy it to another. But When I create a big (>10MB) file it fails to copy the file, because it starts copying already, when the file is not yet finished creating...
This causes Cannot copy the file, because it's used by another process to be raised. ;(
Any help?
class Program
{
static void Main(string[] args)
{
string path = #"D:\levan\FolderListenerTest\ListenedFolder";
FileSystemWatcher listener;
listener = new FileSystemWatcher(path);
listener.Created += new FileSystemEventHandler(listener_Created);
listener.EnableRaisingEvents = true;
while (Console.ReadLine() != "exit") ;
}
public static void listener_Created(object sender, FileSystemEventArgs e)
{
Console.WriteLine
(
"File Created:\n"
+ "ChangeType: " + e.ChangeType
+ "\nName: " + e.Name
+ "\nFullPath: " + e.FullPath
);
File.Copy(e.FullPath, #"D:\levan\FolderListenerTest\CopiedFilesFolder\" + e.Name);
Console.Read();
}
}
There is only workaround for the issue you are facing.
Check whether file id in process before starting the process of copy. You can call the following function until you get the False value.
1st Method, copied directly from this answer:
private bool IsFileLocked(FileInfo file)
{
FileStream stream = null;
try
{
stream = file.Open(FileMode.Open, FileAccess.ReadWrite, FileShare.None);
}
catch (IOException)
{
//the file is unavailable because it is:
//still being written to
//or being processed by another thread
//or does not exist (has already been processed)
return true;
}
finally
{
if (stream != null)
stream.Close();
}
//file is not locked
return false;
}
2nd Method:
const int ERROR_SHARING_VIOLATION = 32;
const int ERROR_LOCK_VIOLATION = 33;
private bool IsFileLocked(string file)
{
//check that problem is not in destination file
if (File.Exists(file) == true)
{
FileStream stream = null;
try
{
stream = File.Open(file, FileMode.Open, FileAccess.ReadWrite, FileShare.None);
}
catch (Exception ex2)
{
//_log.WriteLog(ex2, "Error in checking whether file is locked " + file);
int errorCode = Marshal.GetHRForException(ex2) & ((1 << 16) - 1);
if ((ex2 is IOException) && (errorCode == ERROR_SHARING_VIOLATION || errorCode == ERROR_LOCK_VIOLATION))
{
return true;
}
}
finally
{
if (stream != null)
stream.Close();
}
}
return false;
}
From the documentation for FileSystemWatcher:
The OnCreated event is raised as soon as a file is created. If a file
is being copied or transferred into a watched directory, the
OnCreated event will be raised immediately, followed by one or more
OnChanged events.
So, if the copy fails, (catch the exception), add it to a list of files that still need to be moved, and attempt the copy during the OnChanged event. Eventually, it should work.
Something like (incomplete; catch specific exceptions, initialize variables, etc):
public static void listener_Created(object sender, FileSystemEventArgs e)
{
Console.WriteLine
(
"File Created:\n"
+ "ChangeType: " + e.ChangeType
+ "\nName: " + e.Name
+ "\nFullPath: " + e.FullPath
);
try {
File.Copy(e.FullPath, #"D:\levani\FolderListenerTest\CopiedFilesFolder\" + e.Name);
}
catch {
_waitingForClose.Add(e.FullPath);
}
Console.Read();
}
public static void listener_Changed(object sender, FileSystemEventArgs e)
{
if (_waitingForClose.Contains(e.FullPath))
{
try {
File.Copy(...);
_waitingForClose.Remove(e.FullPath);
}
catch {}
}
}
It's an old thread, but I'll add some info for other people.
I experienced a similar issue with a program that writes PDF files, sometimes they take 30 seconds to render.. which is the same period that my watcher_FileCreated class waits before copying the file.
The files were not locked.
In this case I checked the size of the PDF and then waited 2 seconds before comparing the new size, if they were unequal the thread would sleep for 30 seconds and try again.
You're actually in luck - the program writing the file locks it, so you can't open it. If it hadn't locked it, you would have copied a partial file, without having any idea there's a problem.
When you can't access a file, you can assume it's still in use (better yet - try to open it in exclusive mode, and see if someone else is currently opening it, instead of guessing from the failure of File.Copy). If the file is locked, you'll have to copy it at some other time. If it's not locked, you can copy it (there's slight potential for a race condition here).
When is that 'other time'? I don't rememeber when FileSystemWatcher sends multiple events per file - check it out, it might be enough for you to simply ignore the event and wait for another one. If not, you can always set up a time and recheck the file in 5 seconds.
Well you already give the answer yourself; you have to wait for the creation of the file to finish. One way to do this is via checking if the file is still in use. An example of this can be found here: Is there a way to check if a file is in use?
Note that you will have to modify this code for it to work in your situation. You might want to have something like (pseudocode):
public static void listener_Created()
{
while CheckFileInUse()
wait 1000 milliseconds
CopyFile()
}
Obviously you should protect yourself from an infinite while just in case the owner application never releases the lock. Also, it might be worth checking out the other events from FileSystemWatcher you can subscribe to. There might be an event which you can use to circumvent this whole problem.
When the file is writing in binary(byte by byte),create FileStream and above solutions Not working,because file is ready and wrotted in every bytes,so in this Situation you need other workaround like this:
Do this when file created or you want to start processing on file
long fileSize = 0;
currentFile = new FileInfo(path);
while (fileSize < currentFile.Length)//check size is stable or increased
{
fileSize = currentFile.Length;//get current size
System.Threading.Thread.Sleep(500);//wait a moment for processing copy
currentFile.Refresh();//refresh length value
}
//Now file is ready for any process!
So, having glanced quickly through some of these and other similar questions I went on a merry goose chase this afternoon trying to solve a problem with two separate programs using a file as a synchronization (and also file save) method. A bit of an unusual situation, but it definitely highlighted for me the problems with the 'check if the file is locked, then open it if it's not' approach.
The problem is this: the file can become locked between the time that you check it and the time you actually open the file. Its really hard to track down the sporadic Cannot copy the file, because it's used by another process error if you aren't looking for it too.
The basic resolution is to just try to open the file inside a catch block so that if its locked, you can try again. That way there is no elapsed time between the check and the opening, the OS does them at the same time.
The code here uses File.Copy, but it works just as well with any of the static methods of the File class: File.Open, File.ReadAllText, File.WriteAllText, etc.
/// <param name="timeout">how long to keep trying in milliseconds</param>
static void safeCopy(string src, string dst, int timeout)
{
while (timeout > 0)
{
try
{
File.Copy(src, dst);
//don't forget to either return from the function or break out fo the while loop
break;
}
catch (IOException)
{
//you could do the sleep in here, but its probably a good idea to exit the error handler as soon as possible
}
Thread.Sleep(100);
//if its a very long wait this will acumulate very small errors.
//For most things it's probably fine, but if you need precision over a long time span, consider
// using some sort of timer or DateTime.Now as a better alternative
timeout -= 100;
}
}
Another small note on parellelism:
This is a synchronous method, which will block its thread both while waiting and while working on the thread. This is the simplest approach, but if the file remains locked for a long time your program may become unresponsive. Parellelism is too big a topic to go into in depth here, (and the number of ways you could set up asynchronous read/write is kind of preposterous) but here is one way it could be parellelized.
public class FileEx
{
public static async void CopyWaitAsync(string src, string dst, int timeout, Action doWhenDone)
{
while (timeout > 0)
{
try
{
File.Copy(src, dst);
doWhenDone();
break;
}
catch (IOException) { }
await Task.Delay(100);
timeout -= 100;
}
}
public static async Task<string> ReadAllTextWaitAsync(string filePath, int timeout)
{
while (timeout > 0)
{
try {
return File.ReadAllText(filePath);
}
catch (IOException) { }
await Task.Delay(100);
timeout -= 100;
}
return "";
}
public static async void WriteAllTextWaitAsync(string filePath, string contents, int timeout)
{
while (timeout > 0)
{
try
{
File.WriteAllText(filePath, contents);
return;
}
catch (IOException) { }
await Task.Delay(100);
timeout -= 100;
}
}
}
And here is how it could be used:
public static void Main()
{
test_FileEx();
Console.WriteLine("Me First!");
}
public static async void test_FileEx()
{
await Task.Delay(1);
//you can do this, but it gives a compiler warning because it can potentially return immediately without finishing the copy
//As a side note, if the file is not locked this will not return until the copy operation completes. Async functions run synchronously
//until the first 'await'. See the documentation for async: https://msdn.microsoft.com/en-us/library/hh156513.aspx
CopyWaitAsync("file1.txt", "file1.bat", 1000);
//this is the normal way of using this kind of async function. Execution of the following lines will always occur AFTER the copy finishes
await CopyWaitAsync("file1.txt", "file1.readme", 1000);
Console.WriteLine("file1.txt copied to file1.readme");
//The following line doesn't cause a compiler error, but it doesn't make any sense either.
ReadAllTextWaitAsync("file1.readme", 1000);
//To get the return value of the function, you have to use this function with the await keyword
string text = await ReadAllTextWaitAsync("file1.readme", 1000);
Console.WriteLine("file1.readme says: " + text);
}
//Output:
//Me First!
//file1.txt copied to file1.readme
//file1.readme says: Text to be duplicated!
You can use the following code to check if the file can be opened with exclusive access (that is, it is not opened by another application). If the file isn't closed, you could wait a few moments and check again until the file is closed and you can safely copy it.
You should still check if File.Copy fails, because another application may open the file between the moment you check the file and the moment you copy it.
public static bool IsFileClosed(string filename)
{
try
{
using (var inputStream = File.Open(filename, FileMode.Open, FileAccess.Read, FileShare.None))
{
return true;
}
}
catch (IOException)
{
return false;
}
}
I would like to add an answer here, because this worked for me. I used time delays, while loops, everything I could think of.
I had the Windows Explorer window of the output folder open. I closed it, and everything worked like a charm.
I hope this helps someone.

Categories