I asked a question yesterday regarding using either reflection or Strategy Pattern for dynamically calling methods.
However, since then I have decided to change the methods into individual classes that implement a common interface. The reason being, each class, whilst bearing some similarities also perform certain methods unique to that class.
I had been using a strategy as such:
switch (method)
{
case "Pivot":
return new Pivot(originalData);
case "GroupBy":
return new GroupBy(originalData);
case "Standard deviation":
return new StandardDeviation(originalData);
case "% phospho PRAS Protein":
return new PhosphoPRASPercentage(originalData);
case "AveragePPPperTreatment":
return new AveragePPPperTreatment(originalData);
case "AvgPPPNControl":
return new AvgPPPNControl(originalData);
case "PercentageInhibition":
return new PercentageInhibition(originalData);
default:
throw new Exception("ERROR: Method " + method + " does not exist.");
}
However, as the number of potential classes grow, I will need to keep adding new ones, thus breaking the closed for modification rule.
Instead, I have used a solution as such:
var test = Activator.CreateInstance(null, "MBDDXDataViews."+ _class);
ICalculation instance = (ICalculation)test.Unwrap();
return instance;
Effectively, the _class parameter is the name of the class passed in at runtime.
Is this a common way to do this, will there be any performance issues with this?
I am fairly new to reflection, so your advice would be welcome.
When using reflection you should ask yourself a couple of questions first, because you may end up in an over-the-top complex solution that's hard to maintain:
Is there a way to solve the problem using genericity or class/interface inheritance?
Can I solve the problem using dynamic invocations (only .NET 4.0 and above)?
Is performance important, i.e. will my reflected method or instantiation call be called once, twice or a million times?
Can I combine technologies to get to a smart but workable/understandable solution?
Am I ok with losing compile time type safety?
Genericity / dynamic
From your description I assume you do not know the types at compile time, you only know they share the interface ICalculation. If this is correct, then number (1) and (2) above are likely not possible in your scenario.
Performance
This is an important question to ask. The overhead of using reflection can impede a more than 400-fold penalty: that slows down even a moderate amount of calls.
The resolution is relatively easy: instead of using Activator.CreateInstance, use a factory method (you already have that), look up the MethodInfo create a delegate, cache it and use the delegate from then on. This yields only a penalty on the first invocation, subsequent invocations have near-native performance.
Combine technologies
A lot is possible here, but I'd really need to know more of your situation to assist in this direction. Often, I end up combining dynamic with generics, with cached reflection. When using information hiding (as is normal in OOP), you may end up with a fast, stable and still well-extensible solution.
Losing compile time type safety
Of the five questions, this is perhaps the most important one to worry about. It is very important to create your own exceptions that give clear information about reflection mistakes. That means: every call to a method, constructor or property based on an input string or otherwise unchecked information must be wrapped in a try/catch. Catch only specific exceptions (as always, I mean: never catch Exception itself).
Focus on TargetException (method does not exist), TargetInvocationException (method exists, but rose an exc. when invoked), TargetParameterCountException, MethodAccessException (not the right privileges, happens a lot in ASP.NET), InvalidOperationException (happens with generic types). You don't always need to try to catch all of them, it depends on the expected input and expected target objects.
To sum it up
Get rid of your Activator.CreateInstance and use MethodInfo to find the factory-create method, and use Delegate.CreateDelegate to create and cache the delegate. Simply store it in a static Dictionary where the key is equal to the class-string in your example code. Below is a quick but not-so-dirty way of doing this safely and without losing too much type safety.
Sample code
public class TestDynamicFactory
{
// static storage
private static Dictionary<string, Func<ICalculate>> InstanceCreateCache = new Dictionary<string, Func<ICalculate>>();
// how to invoke it
static int Main()
{
// invoke it, this is lightning fast and the first-time cache will be arranged
// also, no need to give the full method anymore, just the classname, as we
// use an interface for the rest. Almost full type safety!
ICalculate instanceOfCalculator = this.CreateCachableICalculate("RandomNumber");
int result = instanceOfCalculator.ExecuteCalculation();
}
// searches for the class, initiates it (calls factory method) and returns the instance
// TODO: add a lot of error handling!
ICalculate CreateCachableICalculate(string className)
{
if(!InstanceCreateCache.ContainsKey(className))
{
// get the type (several ways exist, this is an eays one)
Type type = TypeDelegator.GetType("TestDynamicFactory." + className);
// NOTE: this can be tempting, but do NOT use the following, because you cannot
// create a delegate from a ctor and will loose many performance benefits
//ConstructorInfo constructorInfo = type.GetConstructor(Type.EmptyTypes);
// works with public instance/static methods
MethodInfo mi = type.GetMethod("Create");
// the "magic", turn it into a delegate
var createInstanceDelegate = (Func<ICalculate>) Delegate.CreateDelegate(typeof (Func<ICalculate>), mi);
// store for future reference
InstanceCreateCache.Add(className, createInstanceDelegate);
}
return InstanceCreateCache[className].Invoke();
}
}
// example of your ICalculate interface
public interface ICalculate
{
void Initialize();
int ExecuteCalculation();
}
// example of an ICalculate class
public class RandomNumber : ICalculate
{
private static Random _random;
public static RandomNumber Create()
{
var random = new RandomNumber();
random.Initialize();
return random;
}
public void Initialize()
{
_random = new Random(DateTime.Now.Millisecond);
}
public int ExecuteCalculation()
{
return _random.Next();
}
}
I suggest you give your factory implementation a method RegisterImplementation. So every new class is just a call to that method and you are not changing your factories code.
UPDATE:
What I mean is something like this:
Create an interface that defines a calculation. According to your code, you already did this. For the sake of being complete, I am going to use the following interface in the rest of my answer:
public interface ICalculation
{
void Initialize(string originalData);
void DoWork();
}
Your factory will look something like this:
public class CalculationFactory
{
private readonly Dictionary<string, Func<string, ICalculation>> _calculations =
new Dictionary<string, Func<string, ICalculation>>();
public void RegisterCalculation<T>(string method)
where T : ICalculation, new()
{
_calculations.Add(method, originalData =>
{
var calculation = new T();
calculation.Initialize(originalData);
return calculation;
});
}
public ICalculation CreateInstance(string method, string originalData)
{
return _calculations[method](originalData);
}
}
This simple factory class is lacking error checking for the reason of simplicity.
UPDATE 2:
You would initialize it like this somewhere in your applications initialization routine:
CalculationFactory _factory = new CalculationFactory();
public void RegisterCalculations()
{
_factory.RegisterCalculation<Pivot>("Pivot");
_factory.RegisterCalculation<GroupBy>("GroupBy");
_factory.RegisterCalculation<StandardDeviation>("Standard deviation");
_factory.RegisterCalculation<PhosphoPRASPercentage>("% phospho PRAS Protein");
_factory.RegisterCalculation<AveragePPPperTreatment>("AveragePPPperTreatment");
_factory.RegisterCalculation<AvgPPPNControl>("AvgPPPNControl");
_factory.RegisterCalculation<PercentageInhibition>("PercentageInhibition");
}
Just as an example how to add initialization in the constructor:
Something similar to: Activator.CreateInstance(Type.GetType("ConsoleApplication1.Operation1"), initializationData);
but written with Linq Expression, part of code is taken here:
public class Operation1
{
public Operation1(object data)
{
}
}
public class Operation2
{
public Operation2(object data)
{
}
}
public class ActivatorsStorage
{
public delegate object ObjectActivator(params object[] args);
private readonly Dictionary<string, ObjectActivator> activators = new Dictionary<string,ObjectActivator>();
private ObjectActivator CreateActivator(ConstructorInfo ctor)
{
Type type = ctor.DeclaringType;
ParameterInfo[] paramsInfo = ctor.GetParameters();
ParameterExpression param = Expression.Parameter(typeof(object[]), "args");
Expression[] argsExp = new Expression[paramsInfo.Length];
for (int i = 0; i < paramsInfo.Length; i++)
{
Expression index = Expression.Constant(i);
Type paramType = paramsInfo[i].ParameterType;
Expression paramAccessorExp = Expression.ArrayIndex(param, index);
Expression paramCastExp = Expression.Convert(paramAccessorExp, paramType);
argsExp[i] = paramCastExp;
}
NewExpression newExp = Expression.New(ctor, argsExp);
LambdaExpression lambda = Expression.Lambda(typeof(ObjectActivator), newExp, param);
return (ObjectActivator)lambda.Compile();
}
private ObjectActivator CreateActivator(string className)
{
Type type = Type.GetType(className);
if (type == null)
throw new ArgumentException("Incorrect class name", "className");
// Get contructor with one parameter
ConstructorInfo ctor = type.GetConstructors()
.SingleOrDefault(w => w.GetParameters().Length == 1
&& w.GetParameters()[0].ParameterType == typeof(object));
if (ctor == null)
throw new Exception("There is no any constructor with 1 object parameter.");
return CreateActivator(ctor);
}
public ObjectActivator GetActivator(string className)
{
ObjectActivator activator;
if (activators.TryGetValue(className, out activator))
{
return activator;
}
activator = CreateActivator(className);
activators[className] = activator;
return activator;
}
}
The usage is following:
ActivatorsStorage ast = new ActivatorsStorage();
var a = ast.GetActivator("ConsoleApplication1.Operation1")(initializationData);
var b = ast.GetActivator("ConsoleApplication1.Operation2")(initializationData);
The same can be implemented with DynamicMethods.
Also, the classes are not required to be inherited from the same interface or base class.
Thanks, Vitaliy
One strategy that I use in cases like this is to flag my various implementations with a special attribute to indicate its key, and scan the active assemblies for types with that key:
[AttributeUsage(AttributeTargets.Class)]
public class OperationAttribute : System.Attribute
{
public OperationAttribute(string opKey)
{
_opKey = opKey;
}
private string _opKey;
public string OpKey {get {return _opKey;}}
}
[Operation("Standard deviation")]
public class StandardDeviation : IOperation
{
public void Initialize(object originalData)
{
//...
}
}
public interface IOperation
{
void Initialize(object originalData);
}
public class OperationFactory
{
static OperationFactory()
{
_opTypesByKey =
(from a in AppDomain.CurrentDomain.GetAssemblies()
from t in a.GetTypes()
let att = t.GetCustomAttributes(typeof(OperationAttribute), false).FirstOrDefault()
where att != null
select new { ((OperationAttribute)att).OpKey, t})
.ToDictionary(e => e.OpKey, e => e.t);
}
private static IDictionary<string, Type> _opTypesByKey;
public IOperation GetOperation(string opKey, object originalData)
{
var op = (IOperation)Activator.CreateInstance(_opTypesByKey[opKey]);
op.Initialize(originalData);
return op;
}
}
That way, just by creating a new class with a new key string, you can automatically "plug in" to the factory, without having to modify the factory code at all.
You'll also notice that rather than depending on each implementation to provide a specific constructor, I've created an Initialize method on the interface I expect the classes to implement. As long as they implement the interface, I'll be able to send the "originalData" to them without any reflection weirdness.
I'd also suggest using a dependency injection framework like Ninject instead of using Activator.CreateInstance. That way, your operation implementations can use constructor injection for their various dependencies.
Essentially, it sounds like you want the factory pattern. In this situation, you define a mapping of input to output types and then instantiate the type at runtime like you are doing.
Example:
You have X number of classes, and they all share a common interface of IDoSomething.
public interface IDoSomething
{
void DoSomething();
}
public class Foo : IDoSomething
{
public void DoSomething()
{
// Does Something specific to Foo
}
}
public class Bar : IDoSomething
{
public void DoSomething()
{
// Does something specific to Bar
}
}
public class MyClassFactory
{
private static Dictionary<string, Type> _mapping = new Dictionary<string, Type>();
static MyClassFactory()
{
_mapping.Add("Foo", typeof(Foo));
_mapping.Add("Bar", typeof(Bar));
}
public static void AddMapping(string query, Type concreteType)
{
// Omitting key checking code, etc. Basically, you can register new types at runtime as well.
_mapping.Add(query, concreteType);
}
public IDoSomething GetMySomething(string desiredThing)
{
if(!_mapping.ContainsKey(desiredThing))
throw new ApplicationException("No mapping is defined for: " + desiredThing);
return Activator.CreateInstance(_mapping[desiredThing]) as IDoSomething;
}
}
There's no error checking here. Are you absolutely sure that _class will resolve to a valid class? Are you controlling all the possible values or does this string somehow get populated by an end-user?
Reflection is generally most costly than avoiding it. Performance issues are proportionate to the number of objects you plan to instantiate this way.
Before you run off and use a dependency injection framework read the criticisms of it. =)
Related
A sample code I tried to return an instance of class is given below.
public object getConstructorclass(int i)
{
if(i==1)
{
Type type = Type.GetType("test1");
}else
{
Type type = Type.GetType("test2");
}
return Activator.CreateInstance(type);
}
var objcls = getConstructorclass(1);
objcls.callclass();//error occured
How can I mention the class type here since the type is not known at compile time but it will decided at runtime.In the above example i just pass a value 1 (it can be anything and that class will be called accordingly), and the class test1 called.
here I will get an error on the line objcls.callclass(), because objcls is an object instance that doesn't have a callclass()method.
How can I restructure this piece of code? My aim is if I mention a class in the getConstructorclass() method, an object should be returned so as to use it in the further code to invoke the members of that class.
If you know that your classes will have this method, you should use a common interface for them and implement it accordingly. Then you will work with classes that you have made sure it will work.
It would look like this
IMyInterface objcls = getconstrorclass() as IMyInterface;
if (objcls != null)
objcls.callclass();
else
// we failed miserably and should do something about it
I don't think you should use some generic object returning constructor based on an int variable, if your classes don't have anything in common. It's really weird to handle it like this and it may lead to various problems (some of which you're currently already experiencing). Generic class constructors make sense if the classes are somewhat related and you can predict the outcome, but to create a do-it-all method.. Not so sure about correctness of such approach.
Anyway, if you insist (not recommended, but as you wish), you can create some checks for a type like this:
var createdObject = getConstructorclass(1);
if (createdObject is MyClass1)
{
var specificObject = (MyClass1)createdObject;
specificObject.callMethod1();
}
else if (createdObject is MyClass2)
{
var specificObject = (MyClass2)createdObject;
specificObject.callSomeOtherMethod();
}
...
But it gets very error prone soon, refactoring will probably be a nightmare etc., but it's your call..
Or you maybe can use solution from pwas, but to me it seems unnecessarily complicated for such a basic task. Looks nice and all, but it still returns only the type "object", so it doesn't really solve your specific problem.
Also, to address one issue I'm not sure you understand - you've already created the instance, you just return type object. That is why you can't call any specific methods on this object, because first you have to cast it to something, that actually has that method and make sure the cast can be done (inheritance etc).
If interface solution (see other answers) is enough, don't look at this answer. When you can't use common base class / interface and you still want call members, you can use solution with is keyword (and check types). Instead of writing many ifs for each case, you can use fluent API:
object obj = this.getConstructorclass();
obj.StronglyInvoke()
.When<int>(value => Console.WriteLine("Got {0} as int", value))
.When<string>(value => Console.WriteLine("Got {0} as string", value))
.OnFail(() => Debug.Write("No handle."))
.Invoke();
Solution:
public class GenericCaller
{
private IList<GenericInvoker> invokers = new List<GenericInvoker>();
private readonly object target;
private Action failAction;
public GenericCaller(object target)
{
if (target == null)
{
throw new ArgumentNullException("target");
}
this.target = target;
}
public GenericCaller OnFail(Action fail)
{
this.failAction = fail;
return this;
}
public GenericCaller When<T>(Action<T> then)
{
if (then == null)
{
throw new ArgumentNullException("then");
}
var invoker = new GenericInvoker<T>(this.target, then);
this.invokers.Add(invoker);
return this;
}
public void Invoke()
{
if (this.invokers.Any(invoker => invoker.Invoke()))
{
return;
}
if (this.failAction == null)
{
throw new InvalidOperationException("Handler not found");
}
this.failAction();
}
public abstract class GenericInvoker
{
protected readonly object target;
protected GenericInvoker(object target)
{
this.target = target;
}
public abstract bool Invoke();
}
public class GenericInvoker<T> : GenericInvoker
{
private readonly Action<T> then;
public GenericInvoker(object target, Action<T> then)
: base(target)
{
this.then = then;
}
public override bool Invoke()
{
if (this.target.GetType() == typeof(T))
{
this.then((T)this.target);
return true;
}
return false;
}
}
}
public static class Extensions
{
public static GenericCaller StronglyInvoke(this object o)
{
return new GenericCaller(o);
}
}
Remeber - it would be more elegant to use common interface (as other answers say) - my is only alternative way.
Declare your variable as dynamic
dynamic objcls = getconstrorclass();
Using this the will be determined at run-time, whatever the getconstrorclass method returns. You can access any member of the type and you won't get any error at compile-time. But if you try to access a member which doesn't exists you will get a RuntimeBinderException at runtime.
I would recommend using an interface and restricting the classes that you can instantiate this way to only those that implement the interface.
public interface IMyInterface
{
void callclass();
}
public <T> getConstructorClass()
{
T instance;
Type type = Type.GetType("test1");
// instance will be null if the object cannot be cast to type T.
instance = Activator.CreateInstance(type) as T;
return T;
}
IMyInterface objcls = getConstructorClass<IMyInterface>();
if(null != objcls)
{
objcls.callclass();
}
not sure what you want to achieve in the end, but this looks like a job for "Dependency Injection" - here is a nice sample using autofac
I am trying run a 'Recipe' read from a text file and parsed line by line to dynamically call a series of methods. I think I need to implement a Factory after doing quite a bit of googling, but I am lacking some key details. This is the closest example I have:
http://simpleprogrammer.com/2010/08/17/pulling-out-the-switch-its-time-for-a-whooping/
The following code is a snippet of what have now.
internal static void Run(int Thread_ID, List<StringBuilder> InstructionSet, List<double>[] Waveforms)
{
//Init
List<double>[] Register = new List<double>[10];
for (int i = 0; i < Waveforms.Length; i++) { Register[i] = new List<double>(Waveforms[i]); }
for (int i = 0; i < Register.Length; i++) { if (Register[i] == null) { Register[i] = new List<double>(); } }
//Run Recipe Steps
foreach (var item in InstructionSet)
{
Step Op = Step.Parse(item.ToString());
switch (Op.TaskName)
{
case "SimpleMovingAverage":
Register[Convert.ToInt32(Op.Args[0])] = Signal_Filters.SimpleMovingAverage(Register[Convert.ToInt32(Op.Args[1])], Convert.ToInt32(Op.Args[2]));
break;
case "RollingSteppedStdDeviation":
Register[Convert.ToInt32(Op.Args[0])] = Signal_Filters.RollingSteppedStdDeviation(Register[Convert.ToInt32(Op.Args[1])], Convert.ToInt32(Op.Args[2]), Convert.ToInt32(Op.Args[3]));
break;
//... etc. many, many methods to be called.
}
}
}
... and below is the portion of the example I have questions about:
public static class MoveFactory
{
private static Dictionary<string, Func<IMove>> moveMap = new Dictionary<string, Func<IMove>>()
{
{"Up", () => { return new UpMove(); }},
{"Down", () => { return new DownMove(); }},
{"Left", () => { return new LeftMove(); }}
// ...
};
public static IMove CreateMoveFromName(string name)
{
return moveMap[name]();
}
}
Can I generate the Dictionary list automatically? So that whenever I add a new class that implements my Factory Interface (my equivalent of IMove), I don't have to update my dictionary or pretty much any other part of my code. Perhaps this can forced as part of the Interface?
In the above example code, I don't see it passing arguments in and out. Looking at my code I have data I need to mutate progressively... How would I do this using a Factory.
The Factory needs to be thread-safe as I want to pass different initial data to multiple workers each running their own recipe.
Let's tackle these one at a time.
Building The Dictionary Dynamically
This is actually pretty easy to do using a combination of Reflection and Custom Attributes.
The creation of an Attribute is pretty trivial, so I'll leave that to you to look up, but let's assume you have one called MoveNameAttribute that can be applied at a class level. You can then decorate your classes that implement IMove like so:
[MoveName("Up")]
class UpMove: IMove{}
[MoveName("Down")]
class DownMove: IMove{}
Now you can use Reflection and a little LINQ to extract these class types into a dictionary, and create new instances of those types on demand using the key specified in your custom attribute.
While the entire Factory itself is pretty short in terms of lines of code, Reflection can be daunting if you have never done it before. I've annotated every line to explain what is going on.
internal static class MoveFactory
{
private static readonly IDictionary<String, Type> _moveTypes;
static MoveFactory()
{
_moveTypes = LoadAllMoveTypes();
}
private static IDictionary<string, Type> LoadAllMoveTypes()
{
var asm =
//Get all types in the current assembly
from type in Assembly.GetExecutingAssembly().GetTypes()
//Where the type is a class and implements "IMove"
where type.IsClass && type.GetInterface("IMove") != null
//Only select types that are decorated with our custom attribute
let attr = type.GetCustomAttribute<MoveNameAttribute>()
where attr != null
//Return both the Name and the System.Type
select new
{
name = attr.Name,
type
};
//Convert the results to a Dictionary with the Name as a key
// and the Type as the value
return asm.ToDictionary(move => move.name, move => move.type);
}
internal static IMove CreateMove(String name)
{
Type moveType;
//Check to see if we have an IMove with the specific key
if(_moveTypes.TryGetValue(name, out moveType))
{
//Use reflection to create a new instance of that IMove
return (IMove) Activator.CreateInstance(moveType);
}
throw new ArgumentException(
String.Format("Unable to locate move named: {0}", name));
}
}
Now that you have your factory, you can simply create new instances like this:
var upMove = MoveFactory.CreateMove("Up");
var downMove = MoveFactory.CreateMove("Down");
Since the factory uses a Static Constructor, it will only populate this list once, and will automatically pick up your new classes.
Passing Arguments
I'm not 100% sure what your use case is here, but it doesn't look like you need to pass arguments to your Factory, rather to some method on your IMove. However, you have a variable number of arguments that can be passed in.
If this is the case, then you are simply going to have to live with a bit of ugliness in your design. You need a very generic method on your IMove interface:
public interface IMove
{
double Compute(double val1, params int[] args);
}
Now your individual move classes are going to have to just be diligent and check to ensure that they get the proper number of parameters. I'll leave this as an exercise for you, but this should give you what you need based on the example above.
Thread Safety
As it stands the factory implementation above is thread safe because it doesn't rely on any shared state, and the underlying dictionary is essentially immutable. Each call to CreateMove returns a brand new IMove instance.
Now whether or not your implementations of IMove are thread safe is up to you :)
Whew! That was a long answer, but hopefully this will help you out.
I've something along this lines:
public class Something
{
private IDictionary<object,Activity> fCases;
public IDictionary<object,Activity> Cases
{
get { return fCases; }
set { fCases = value; }
}
}
public sealed class Something<T> : Something
{
private IDictionary<T,Activity> fCases;
public override IDictionary<T,Activity> Cases
{
get { return fCases; }
set { fCases = value; }
}
}
Note: override is not accepted on this case
Due to heavy Reflection usage there are situations where I've to downcast from Something<T> to Something but, I guess because Cases property is hidden, I'm losing Cases data.
How can I circumvent this situation? I've tried to use where T:object but that isn't accepted also.
EDIT:
This is an example of why I need inheritance:
if (someVar is Something) {
if (someVar.GetType().IsGenericType)
{
// Construct AnotherObject<T> depending on the Something<T>'s generic argument
Type typeArg = someVar.GetType().GetGenericArguments()[0],
genericDefinition = typeof(AnotherObject<>),
typeToConstruct = genericDefinition.makeGenericType(typeArgs);
object newAnotherObject = Activator.CreateInstance(typeToConstruct);
// Pass Something 'Cases' property to AnotherObject<T>
constructedType.InvokeMember(
"Cases",
BindingFlags.Instance | BindingFlags.Public | BindingFlags.SetProperty,
null,
newActivity,
new Object[] { someVar.Cases });
}
}
But, because 'Cases' is hidden, it will be always null. Without inheritance I would have to write a BIG if-then-else with all the possible generic arguments. And, believe me, I do really have to use someVar is Something and Reflection to construct all this objects. This is a big generic API being converted to other big generic API and so they should not known each other and the conversion should be as transparent as possible.
You won't be able to override it like that, and for good reason.
Imagine:
Something x = new Something<string>();
Button key = new Button();
x.Cases[key] = new Activity();
If your override worked, that would be trying to store a Button reference as a key in Dictionary<string, Activity>. That would be a Bad Thing.
Perhaps inheritance isn't actually appropriate in this case? If you could explain more about what you're trying to achieve, that would help. Perhaps you don't really need the dictionary as a property? Maybe just a method to fetch by key?
This is flat-out not going to work because the IDictionary<TKey, TValue> interface is invariant. An IDictionary<object, Activity> cannot be treated as an IDictionary<T, Activity>.
What you could do, rather than exposing an entire IDictionary<T, Activity> in your derived class, is simply delegate the calls you want to expose, like this:
public class Something
{
protected IDictionary<object, Activity> Cases { get; set; }
}
public sealed class Something<T> : Something
{
public Activity GetCase(T key)
{
return Cases[key];
}
public void AddCase(T key, Activity case)
{
Cases.Add(key, case);
}
// etc. etc.
}
Alternatively, you could also define your own contravariant interface, something like:
interface IKeyedCollection<in TKey, TValue>
{
TValue this[TKey key] { get; set; }
void Add(TKey key, TValue value);
}
For the above interface, an IKeyedCollection<object, Activity> could act as an IKeyedCollection<T, Activity> because every T is an object.
If you attempt to expose incompatible types at the different levels you're going to keep running into problems because at the end of the day you'll end up having to maintain 2 separate objects (or 1 custom object with 2 interfaces it can't completely satisfy).
These types are incompatible because there are values which can be added to IDictionary<object, Activity> which cannot be added to every instantiation of IDictionary<T, Activity>. Imagine for instance T is instatiated as string and the developer uses a int key elsewhere via Something. This creates a real problem for Something<string> implementations.
The way I would approach this is to change the base type Something to not expose a concrete type but instead to expose the relevant APIs.
public abstract class Something {
public abstract IEnumerable<KeyValuePair> GetElements();
public abstract bool TryGetValue(object key, out Activity value);
}
This gives Something<T> the flexbility it needs to properly sub-class Something and be very expressive about the types it wants to expose
public sealed class Something<T> : Something {
private IDictionary<T,Activity> fCases;
public override IDictionary<T,Activity> Cases
{
get { return fCases; }
set { fCases = value; }
}
public override IEnumerable<KeyValuPair<object, Activity>> GetElements() {
foreach (var cur in fCases) {
yield return new KeyValuePair<object, Activity>(cur.Key, cur.Value);
}
}
public override bool TryGetValue(object key, out Activity activity) {
try {
T typedKey = (T)key;
return fCases.TryGetValue(typedKey, out activity);
} catch (InvalidCastException) {
activity = null;
return false;
}
}
}
}
During heavy reflection usage I also had the need to 'upcast' from generic types. I knew certain calls would be compatible, but I didn't know the types at compile time. If you look at it this way, it is not really 'upcasting' a generic type, but rather, allowing to use generics during reflection by generating the correct downcasts.
To this end I created a helper method to create delegates along the lines of Delegate.CreateDelegate, but allowing to create a less generic delegate. Downcasts are generated where necessary. I explain it in detail on my blog.
MethodInfo methodToCall = typeof( string ).GetMethod( "Compare" );
Func<object, object, int> unknownArgument
= DelegateHelper.CreateDowncastingDelegate<Func<object, object, int>>(
null, methodToCall );
unknownArgument( "test", "test" ); // Will return 0.
unknownArgument( "test", 1 ); // Will compile, but throw InvalidCastException.
A bit later I had a need to create entire less generic wrapper classes for generic classes, so that all method calls would immediately become available as less generic calls during reflection. This might or might not be useful in your scenario as well. For this purpose I created a (not as thoroughly tested) method which allows to generate this wrapper class at runtime using emit. It is available in my open source library. I haven't written about this yet, so when interested you'll just have to try it out (and possibly see it fail since it's still quite new).
I currently have a switch statement that runs around 300 odd lines. I know this is not as giant as it can get, but I'm sure there's a better way to handle this.
The switch statement takes an Enum that is used to determine certain properties that pertain to logging. Right now the problem sets in that it is very easy to leave out an enumeration value and that it will not be given a value as it is not in the switch statement.
Is there an option one can use to ensure that every enumeration is used and given a custom set of values it needs to do its job?
EDIT:
Code sample as requested: (This is simplistic, but shows exactly what I mean. Also an Enumeration would exist with the below values.)
internal void GenerateStatusLog(LogAction ActionToLog)
{
switch (ActionToLog)
{
case LogAction.None:
{
return;
}
case LogAction.LogThis:
{
ActionText = "Logging this Information";
LogText = "Go for it.";
break;
}
}
// .. Do everything else
}
EDIT
I thought this over again, looked around in related questions in SO, and I wrote some code. I created a class named AdvancedSwitch<T>, which allows you to add cases and exposes a method to evaluate a value and lets you specify values that it should check for existence.
This is what I came up with:
public class AdvancedSwitch<T> where T : struct
{
protected Dictionary<T, Action> handlers = new Dictionary<T, Action>();
public void AddHandler(T caseValue, Action action)
{
handlers.Add(caseValue, action);
}
public void RemoveHandler(T caseValue)
{
handlers.Remove(caseValue);
}
public void ExecuteHandler(T actualValue)
{
ExecuteHandler(actualValue, Enumerable.Empty<T>());
}
public void ExecuteHandler(T actualValue, IEnumerable<T> ensureExistence)
{
foreach (var val in ensureExistence)
if (!handlers.ContainsKey(val))
throw new InvalidOperationException("The case " + val.ToString() + " is not handled.");
handlers[actualValue]();
}
}
You can consume the class this way:
public enum TrafficColor { Red, Yellow, Green }
public static void Main()
{
Console.WriteLine("Choose a traffic color: red, yellow, green?");
var color = (TrafficColor)Enum.Parse(typeof(TrafficColor), Console.ReadLine());
var result = string.Empty;
// Creating the "switch"
var mySwitch = new AdvancedSwitch<TrafficColor>();
// Adding a single case
mySwitch.AddHandler(TrafficColor.Green, delegate
{
result = "You may pass.";
});
// Adding multiple cases with the same action
Action redAndYellowDelegate = delegate
{
result = "You may not pass.";
};
mySwitch.AddHandler(TrafficColor.Red, redAndYellowDelegate);
mySwitch.AddHandler(TrafficColor.Yellow, redAndYellowDelegate);
// Evaluating it
mySwitch.ExecuteHandler(color, (TrafficColor[])Enum.GetValues(typeof(TrafficColor)));
Console.WriteLine(result);
}
With the creative use of anonymous delegates, you can easily add new cases to your "switch block". :)
Not that you can also use lambda expressions, and lambda blocks, eg () => { ... } instead of delegate { ... }.
You can easily use this class instead of the long switch blocks.
Original post:
If you use Visual Studio, always create swich statements with the switch code snippet. Type switch press tab twice, and it auto-generates all the possibilities for you.
Then, add a default case to the end which throws an exception, that way when testing your app you will notice that there is an unhandled case, instantly.
I mean something like this:
switch (something)
{
...
case YourEnum.SomeValue:
...
break;
default:
throw new InvalidOperationException("Default case reached.");
}
Well, there's throwing in the default case... There's no edit / compile time construct other than that.
However Strategy, Visitor and other patterns related to them may be appropriate if you choose to do it at run time.
Sample code will help with getting the best answer.
EDIT: Thanks for the sample. I still think it needs a bit of fleshing out as you dont cover whether there are some parameters that only apply to some cases etc.
Action is often used as an alias for the Command pattern and the fact that your Enum is called LogAction signifies that each value carries with it a behavior - be that implied (you stick appropriate code in a case) or explicit (in the specific Command hierarchy class).
Thus it looks to me like a usage of the Command pattern is appropriate (though your sample doesnt prove it) - i.e., have a class (potentially a hierarchy using constructor overloads or any other [set of] factory mechanisms) that keeps the state associated with the request along with the specific behaviour. Then, instead of passing an Enum value, create an appropriate LogCommand instance to the logger, which just invokes it (potentially passing a Log Sink 'receptacle' which the Command can log into). Otherwise you're poking random subsets of parameters in different places.
SEEALSO related posts:
C# - Is there a better alternative than this to ‘switch on type’?
Replace giant switch statement with what?
One possible solution is to use a SortedDictionary:
delegate void EnumHandler (args);
SortedDictionary <Enum, EnumHandler> handlers;
constructor
{
handlers = new SortedDictionary <Enum, EnumHandler> ();
fill in handlers
}
void SomeFunction (Enum enum)
{
EnumHandler handler;
if (handlers.TryGetValue (enum, out handler))
{
handler (args);
}
else
{
// not handled, report an error
}
}
This method does allow you to replace the handlers dynamically. You could also use a List as the value part of the dictionary and have multiple handlers for each enum.
Try to use reflection.
Decorate enum options with attributes that holds associated value and return this value.
Create static class of constants and use reflection for mapping enum-option to constant by name
hope this will help
Some times storing the options in a map is a good solution, you can externalize the configuration to a file too, not sure if it applies to your application.
Long code example here, and the final generic code is a little heavy (EDIT have added an extra example that eliminates the need for the angle brackets at the expense of some final flexibility).
One thing that this solution will give you is good performance - not quite as good as a straightforward switch statement, but each case statement becomes a dictionary lookup and method invocation, so still pretty good. The first call will get a performance penalty, however, due to the use of a static generic that reflects on initialisation.
Create an attribute and generic type as follows:
[AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]
public class DynamicSwitchAttribute : Attribute
{
public DynamicSwitchAttribute(Type enumType, params object[] targets)
{ Targets = new HashSet<object>(targets); EnumType = enumType; }
public Type EnumType { get; private set; }
public HashSet<object> Targets { get; private set; }
}
//this builds a cache of methods for a given TTarget type, with a
//signature equal to TAction,
//keyed by values of the type TEnum. All methods are expected to
//be instance methods.
//this code can easily be modified to support static methods instead.
//what would be nice here is if we could enforce a generic constraint
//on TAction : Delegate, but we can't.
public static class DynamicSwitch<TTarget, TEnum, TAction>
{
//our lookup of actions against enum values.
//note: no lock is required on this as it is built when the static
//class is initialised.
private static Dictionary<TEnum, TAction> _actions =
new Dictionary<TEnum, TAction>();
private static MethodInfo _tActionMethod;
private static MethodInfo TActionMethod
{
get
{
if (_tActionMethod == null)
{
//one criticism of this approach might be that validation exceptions
//will be thrown inside a TypeInitializationException.
_tActionMethod = typeof(TAction).GetMethod("Invoke",
BindingFlags.Instance | BindingFlags.Public);
if (_tActionMethod == null)
throw new ArgumentException(/*elided*/);
//verify that the first parameter type is compatible with our
//TTarget type.
var methodParams = _tActionMethod.GetParameters();
if (methodParams.Length == 0)
throw new ArgumentException(/*elided*/);
//now check that the first parameter is compatible with our type TTarget
if (!methodParams[0].ParameterType.IsAssignableFrom(typeof(TTarget)))
throw new ArgumentException(/*elided*/);
}
return _tActionMethod;
}
}
static DynamicSwitch()
{
//examine the type TTarget to extract all public instance methods
//(you can change this to private instance if need be) which have a
//DynamicSwitchAttribute defined.
//we then project the attributes and the method into an anonymous type
var possibleMatchingMethods =
from method in typeof(TTarget).
GetMethods(BindingFlags.Public | BindingFlags.Instance)
let attributes = method.GetCustomAttributes(
typeof(DynamicSwitchAttribute), true).
Cast<DynamicSwitchAttribute>().ToArray()
where attributes!= null && attributes.Length == 1
&& attributes[0].EnumType.Equals(typeof(TEnum))
select new { Method = method, Attribute = attributes[0] };
//create linq expression parameter expressions for each of the
//delegate type's parameters
//these can be re-used for each of the dynamic methods we generate.
ParameterExpression[] paramExprs = TActionMethod.GetParameters().
Select((pinfo, index) =>
Expression.Parameter(
pinfo.ParameterType, pinfo.Name ?? string.Format("arg{0}"))
).ToArray();
//pre-build an array of these parameter expressions that only
//include the actual parameters
//for the method, and not the 'this' parameter.
ParameterExpression[] realParamExprs = paramExprs.Skip(1).ToArray();
//this has to be generated for each target method.
MethodCallExpression methodCall = null;
foreach (var match in possibleMatchingMethods)
{
if (!MethodMatchesAction(match.Method))
continue;
//right, now we're going to use System.Linq.Expressions to build
//a dynamic expression to invoke this method given an instance of TTarget.
methodCall =
Expression.Call(
Expression.Convert(
paramExprs[0], typeof(TTarget)
),
match.Method, realParamExprs);
TAction dynamicDelegate = Expression.
Lambda<TAction>(methodCall, paramExprs).Compile();
//now we have our method, we simply inject it into the dictionary, using
//all the unique TEnum values (from the attribute) as the keys
foreach (var enumValue in match.Attribute.Targets.OfType<TEnum>())
{
if (_actions.ContainsKey(enumValue))
throw new InvalidOperationException(/*elided*/);
_actions[enumValue] = dynamicDelegate;
}
}
}
private static bool MethodMatchesAction(MethodInfo method)
{
//so we want to check that the target method matches our desired
//delegate type (TAction).
//The way this is done is to fetch the delegate type's Invoke
//method (implicitly invoked when you invoke delegate(args)), and
//then we check the return type and parameters types of that
//against the return type and args of the method we've been passed.
//if the target method's return type is equal to or derived from the
//expected delegate's return type, then all is good.
if (!_tActionMethod.ReturnType.IsAssignableFrom(method.ReturnType))
return false;
//now, the parameter lists of the method will not be equal in length,
//as our delegate explicitly includes the 'this' parameter, whereas
//instance methods do not.
var methodParams = method.GetParameters();
var delegateParams = TActionMethod.GetParameters();
for (int i = 0; i < methodParams.Length; i++)
{
if (!methodParams[i].ParameterType.IsAssignableFrom(
delegateParams[i + 1].ParameterType))
return false;
}
return true;
}
public static TAction Resolve(TEnum value)
{
TAction result;
if (!_actions.TryGetValue(value, out result))
throw new ArgumentException("The value is not mapped");
return result;
}
}
Now do this in a Unit Test:
[TestMethod]
public void TestMethod1()
{
Assert.AreEqual(1,
DynamicSwitch<UnitTest1, Blah, Func<UnitTest1, int>>.
Resolve(Blah.BlahBlah)(this));
Assert.AreEqual(125,
DynamicSwitch<UnitTest1, Blah, Func<UnitTest1, int>>.
Resolve(Blah.Blip)(this));
Assert.AreEqual(125,
DynamicSwitch<UnitTest1, Blah, Func<UnitTest1, int>>.
Resolve(Blah.Bop)(this));
}
public enum Blah
{
BlahBlah,
Bloo,
Blip,
Bup,
Bop
}
[DynamicSwitchAttribute(typeof(Blah), Blah.BlahBlah)]
public int Method()
{
return 1;
}
[DynamicSwitchAttribute(typeof(Blah), Blah.Blip, Blah.Bop)]
public int Method2()
{
return 125;
}
So, given a value of TEnum, and your preferred 'action' type (in your code you would appear to be simply returning nothing and modifying the internal state of the class), you simply consult the DynamicSwitch<> class, ask it to resolve a target method, and then invoke it inline (passing the target object on which the method will be invoked as the first parameter).
I'm not really expecting any votes for this - it's a MAD solution to be honest (it does have the advantage of being able to be applied for any enum type, and even discreet values of type int/float/double, as well as supporting any delegate type) - so perhaps it's a bit of a sledgehammer!
EDIT
Once you have a static generic like this, angle-bracket hell ensues - so we want to try and get rid of them. A lot of the time, this is done by type inference on method parameters etc - but we have a problem here that we can't easily infer a delegate's signature without repeating the method call i.e. (args) => return.
However, you seem to require a method that takes no parameters and returns void, so you can close over this behemoth generic by fixing the delegate type to Action, and throw a fluid API into the mix as well (if that's your kind of thing):
public static class ActionSwitch
{
public class SwitchOn<TEnum>
{
private TEnum Value { get; set; }
internal SwitchOn(TEnum value)
{
Value = value;
}
public class Call<TTarget>{
private TEnum Value { get; set; }
private TTarget Target { get; set; }
internal Call(TEnum value, TTarget target)
{
Value = value;
Target = target;
Invoke();
}
internal void Invoke(){
DynamicSwitch<TTarget, TEnum, Action<TTarget>>.Resolve(Value)(Target);
}
}
public Call<TTarget> On<TTarget>(TTarget target)
{
return new Call<TTarget>(Value, target);
}
}
public static SwitchOn<TEnum> Switch<TEnum>(TEnum onValue)
{
return new SwitchOn<TEnum>(onValue);
}
}
Now add this to the test project:
[TestMethod]
public void TestMethod2()
{
//no longer have any angle brackets
ActionSwitch.Switch(Blah.Bup).On(this);
Assert.IsTrue(_actionMethod1Called);
}
private bool _actionMethod1Called;
[DynamicSwitch(typeof(Blah), Blah.Bup)]
public void ActionMethod1()
{
_actionMethod1Called = true;
}
Only issue with this (apart from the complexity of the solution :) ) is that you'd have to re-build this static wrapper type whenever you want to use a new type of target delegate for a dynamic switch elsewhere. You could generate a generic version based on the Action<...> and Func<...> delegates that incorporates TArg1, TArg(n) and TReturn (if Func<>) - but you'd end up writing a lot more code.
Perhaps I'll turn this into an article on my blog and do all of that - if I get the time!
My question concerns c# and how to access Static members ... Well I don't really know how to explain it (which kind of is bad for a question isn't it?) I will just give you some sample code:
Class test<T>{
int method1(Obj Parameter1){
//in here I want to do something which I would explain as
T.TryParse(Parameter1);
//my problem is that it does not work ... I get an error.
//just to explain: if I declare test<int> (with type Integer)
//I want my sample code to call int.TryParse(). If it were String
//it should have been String.TryParse()
}
}
So thank you guys for your answers (By the way the question is: how would I solve this problem without getting an error). This probably quite an easy question for you!
Edit: Thank you all for your answers!
Though I think the try - catch phrase is the most elegant, I know from my experience with vb that it can really be a bummer. I used it once and it took about 30 minutes to run a program, which later on only took 2 minutes to compute just because I avoided try - catch.
This is why I chose the switch statement as the best answer. It makes the code more complicated but on the other hand I imagine it to be relatively fast and relatively easy to read. (Though I still think there should be a more elegant way ... maybe in the next language I learn)
Though if you have some other suggestion I am still waiting (and willing to participate)
The problem is that TryParse isn't defined on an interface or base class anywhere, so you can't make an assumption that the type passed into your class will have that function. Unless you can contrain T in some way, you'll run into this a lot.
Constraints on Type Parameters
Short answer, you can't.
Long answer, you can cheat:
public class Example
{
internal static class Support
{
private delegate bool GenericParser<T>(string s, out T o);
private static Dictionary<Type, object> parsers =
MakeStandardParsers();
private static Dictionary<Type, object> MakeStandardParsers()
{
Dictionary<Type, object> d = new Dictionary<Type, object>();
// You need to add an entry for every type you want to cope with.
d[typeof(int)] = new GenericParser<int>(int.TryParse);
d[typeof(long)] = new GenericParser<long>(long.TryParse);
d[typeof(float)] = new GenericParser<float>(float.TryParse);
return d;
}
public static bool TryParse<T>(string s, out T result)
{
return ((GenericParser<T>)parsers[typeof(T)])(s, out result);
}
}
public class Test<T>
{
public static T method1(string s)
{
T value;
bool success = Support.TryParse(s, out value);
return value;
}
}
public static void Main()
{
Console.WriteLine(Test<int>.method1("23"));
Console.WriteLine(Test<float>.method1("23.4"));
Console.WriteLine(Test<long>.method1("99999999999999"));
Console.ReadLine();
}
}
I made a static dictionary holding a delegate for the TryParse method of every type I might want to use. I then wrote a generic method to look up the dictionary and pass on the call to the appropriate delegate. Since every delegate has a different type, I just store them as object references and cast them back to the appropriate generic type when I retrieve them. Note that for the sake of a simple example I have omitted error checking, such as to check whether we have an entry in the dictionary for the given type.
To access a member of a specific class or interface you need to use the Where keyword and specify the interface or base class that has the method.
In the above instance TryParse does not come from an interface or base class, so what you are trying to do above is not possible. Best just use Convert.ChangeType and a try/catch statement.
class test<T>
{
T Method(object P)
{
try {
return (T)Convert.ChangeType(P, typeof(T));
} catch(Exception e) {
return null;
}
}
}
One more way to do it, this time some reflection in the mix:
static class Parser
{
public static bool TryParse<TType>( string str, out TType x )
{
// Get the type on that TryParse shall be called
Type objType = typeof( TType );
// Enumerate the methods of TType
foreach( MethodInfo mi in objType.GetMethods() )
{
if( mi.Name == "TryParse" )
{
// We found a TryParse method, check for the 2-parameter-signature
ParameterInfo[] pi = mi.GetParameters();
if( pi.Length == 2 ) // Find TryParse( String, TType )
{
// Build a parameter list for the call
object[] paramList = new object[2] { str, default( TType ) };
// Invoke the static method
object ret = objType.InvokeMember( "TryParse", BindingFlags.InvokeMethod, null, null, paramList );
// Get the output value from the parameter list
x = (TType)paramList[1];
return (bool)ret;
}
}
}
// Maybe we should throw an exception here, because we were unable to find the TryParse
// method; this is not just a unable-to-parse error.
x = default( TType );
return false;
}
}
The next step would be trying to implement
public static TRet CallStaticMethod<TRet>( object obj, string methodName, params object[] args );
With full parameter type matching etc.
This isn't really a solution, but in certain scenarios it could be a good alternative: We can pass an additional delegate to the generic method.
To clarify what I mean, let's use an example. Let's say we have some generic factory method, that should create an instance of T, and we want it to then call another method, for notification or additional initialization.
Consider the following simple class:
public class Example
{
// ...
public static void PostInitCallback(Example example)
{
// Do something with the object...
}
}
And the following static method:
public static T CreateAndInit<T>() where T : new()
{
var t = new T();
// Some initialization code...
return t;
}
So right now we would have to do:
var example = CreateAndInit<Example>();
Example.PostInitCallback(example);
However, we could change our method to take an additional delegate:
public delegate void PostInitCallback<T>(T t);
public static T CreateAndInit<T>(PostInitCallback<T> callback) where T : new()
{
var t = new T();
// Some initialization code...
callback(t);
return t;
}
And now we can change the call to:
var example = CreateAndInit<Example>(Example.PostInitCallback);
Obviously this is only useful in very specific scenarios. But this is the cleanest solution in the sense that we get compile time safety, there is no "hacking" involved, and the code is dead simple.
Do you mean to do something like this:
Class test<T>
{
T method1(object Parameter1){
if( Parameter1 is T )
{
T value = (T) Parameter1;
//do something with value
return value;
}
else
{
//Parameter1 is not a T
return default(T); //or throw exception
}
}
}
Unfortunately you can't check for the TryParse pattern as it is static - which unfortunately means that it isn't particularly well suited to generics.
The only way to do exactly what you're looking for would be to use reflection to check if the method exists for T.
Another option is to ensure that the object you send in is a convertible object by restraining the type to IConvertible (all primitive types implement IConvertible). This would allow you to convert your parameter to the given type very flexibly.
Class test<T>
{
int method1(IConvertible Parameter1){
IFormatProvider provider = System.Globalization.CultureInfo.CurrentCulture.GetFormat(typeof(T));
T temp = Parameter1.ToType(typeof(T), provider);
}
}
You could also do a variation on this by using an 'object' type instead like you had originally.
Class test<T>
{
int method1(object Parameter1){
if(Parameter1 is IConvertible) {
IFormatProvider provider = System.Globalization.CultureInfo.CurrentCulture.GetFormat(typeof(T));
T temp = Parameter1.ToType(typeof(T), provider);
} else {
// Do something else
}
}
}
Ok guys: Thanks for all the fish. Now with your answers and my research (especially the article on limiting generic types to primitives) I will present you my solution.
Class a<T>{
private void checkWetherTypeIsOK()
{
if (T is int || T is float //|| ... any other types you want to be allowed){
return true;
}
else {
throw new exception();
}
}
public static a(){
ccheckWetherTypeIsOK();
}
}
You probably cant do it.
First of all if it should be possible you would need a tighter bound on T so the typechecker could be sure that all possible substitutions for T actually had a static method called TryParse.
You may want to read my previous post on limiting generic types to primitives. This may give you some pointers in limiting the type that can be passed to the generic (since TypeParse is obviously only available to a set number of primitives ( string.TryParse obviously being the exception, which doesn't make sense).
Once you have more of a handle on the type, you can then work on trying to parse it. You may need a bit of an ugly switch in there (to call the correct TryParse ) but I think you can achieve the desired functionality.
If you need me to explain any of the above further, then please ask :)
Best code: restrict T to ValueType this way:
class test1<T> where T: struct
A "struct" here means a value type.
String is a class, not a value type.
int, float, Enums are all value types.
btw the compiler does not accept to call static methods or access static members on 'type parameters' like in the following example which will not compile :(
class MyStatic { public static int MyValue=0; }
class Test<T> where T: MyStatic
{
public void TheTest() { T.MyValue++; }
}
=> Error 1 'T' is a 'type parameter', which is not valid in the given context
SL.
That is not how statics work. You have to think of statics as sort of in a Global class even if they are are spread across a whole bunch of types. My recommendation is to make it a property inside the T instance that can access the necessary static method.
Also T is an actual instance of something, and just like any other instance you are not able to access the statics for that type, through the instantiated value. Here is an example of what to do:
class a {
static StaticMethod1 ()
virtual Method1 ()
}
class b : a {
override Method1 () return StaticMethod1()
}
class c : a {
override Method1 () return "XYZ"
}
class generic<T>
where T : a {
void DoSomething () T.Method1()
}