Architectural concerns: Fluent NHibernate, The Repository pattern and ASP.NET MVC - c#

I've just started a new project and have naturally opted to use a lot of new tech.
I'm using (Fluent) NHibernate, ASP.NET MVC 3 and am trying to apply the Repository pattern.
I've decided to seperate my Business Logic into a seperate project and define services which wrap my repositories so that I can return POCOs instead of the NHibernate proxies and maintain more seperation between my Front end and DA logic. This will also give me the power to easily provide the same logic as an API later (a requirement).
I have chosen to use a generic IRepository<T> interface where T is one of my NHibernate mapped Entities which all implement IEntity (my interface only a marker really).
The problem is this goes against the aggregate root pattern and I'm starting to feel the pain of the anemic domain model.
If I change an object that is hanging of another
Root <- changed
Child <- changed
In my service I have to do the following:
public void AddNewChild(ChildDto child, rootId)
{
var childEntity = Mapper.Map<ChildDto,ChildEntity>(child);
var rootEntity = _rootrepository.FindById(rootId);
rootEntity.Children.Add(childEntity);
_childRepository.SaveOrUpdate(child);
_rootRepository.SaveOrUpdate(root);
}
If I don't save the child first I get an exception from NHibernate. I feel like my generic repository (I currently require 5 of them in one service) is not the right way to go.
public Service(IRepository<ThingEntity> thingRepo, IRepository<RootEntity> rootRepo, IRepository<ChildEntity> childRepo, IRepository<CategoryEntity> catRepo, IRepository<ProductEntity> productRepo)
I feel like instead of making my code more flexible, it's making it more brittle. If I add a new table I need to go and change the constructor in all my tests (I'm using DI for the implementation so that's not too bad) but it seems a bit smelly.
Does anyone have any advice on how to restructure this sort of architecture?
Should I be making my repositories more specific? Is the service abstraction layer a step too far?
EDIT: There's some great related questions which are helping:
Repository Pattern Best Practice
repository pattern help
Architectural conundrum

When you have an Aggregate, the Repository is the same for the aggregate parent (root) and its children because the life cycle of the children is controlled by the root object.
Your "Save" method for the root object type should be also directly responsible for persisting the changes to the children records instead of delegating it into yet another repository(ies).
Additionally, in a "proper" Aggregate pattern, the child records have no identity of their own (at least one that is visible outside the Aggregate). This has several direct consequences:
There can be no foreign keys from outside records/aggregates to those children records.
Resulting from point 1., every time you save the root object state, you can delete and recreate the child records on the database. This usually will make your persistence logic easier if you bump into precedence problems.
Note: the reverse case of 1. is not true. Child records in an aggregate can have foreign keys to other root records.

I feel like instead of making my code more flexible, it's making it more brittle. If I add a new table I need to go and change the constructor in all my tests (I'm using DI for the implementation so that's not too bad) but it seems a bit smelly.
Implement the Unit Of Work pattern in your repository. That means practically you have a unit of work class which holds your services inject via ctor or property injection. Futheremore it holds a commit and/or transaction method. Only inject the IUnitOfWork instance in your services. When you add a repository you just have to change the unit of work not touch the business logic (services).

Related

How to persist aggregates with repositories?

I am trying to learn some concepts about DDD and the part of persisting Aggregates is confusing me a bit. I have read various answers on the topic on SO but none of them seem to answer my question.
Let's say I have an Aggregate root of Product. Now I do not want to inject the ProductRepository that will persist this aggregate root in the constructor of the Product class itself. Imagine me writting code like
var prod = new Product(Factory.CreateProductRepository(), name, costprice);
in the UI layer. If I do not want to inject my repository via dependency injection in the Aggregate Root, then the question is where should this code go? Should I create a class only for persisting this AR? Can anyone suggest what is the correct & recommended approach to solve this issue?
My concern is not which ORM to use or how to make this AR ORM friendly or easy to persist, my question is around the right use of repositories or any persistence class.
Application Services
You are right, the domain layer should know nothing about persistence. So injecting the repository into Product is indeed a bad idea.
The DDD concept you are looking for is called Application Service. An application service is not part of the domain layer, but lives in the service layer (sometimes called application layer). Application services represent a use case (as opposed to a domain concept) and have the following responsibilities:
Perform input validation
Enforce access control
Perform transaction control
The last point means that an application service will query a repository for an aggregate of a specific type (e.g. by ID), modify it by using one of its methods, and then pass it back to the repository for updating the DB.
Repository Ganularity
Concerning your second question
Should I create a class only for persisting this AR?
Yes, creating one repository per aggregate is a common approach. Often, standard repository operations like getById(), update(), delete(), etc. are extracted into a reusable class (either a base class or by aggregation).
You can also create additional repositories for non-domain information, e.g. statistical data. In these cases, make sure that you don't accidentally miss a domain concept, however.

3 Tier Architecture with NHibernate, Ninject and Windows Forms

So I'm in the middle of rafactoring a small to medium sized Windows Forms application backed by a SQLite database accessed through NHibernate. The current solution contains only an App Project and Lib Project so it is not very well structured and tightly coupled in many places.
I started off with a structure like in this answer but ran into some problems down the road.
DB initialization:
Since the code building the NHibernate SessionFactory is in the DAL and I need to inject an ISession into my repositories, I need to reference the DAL and NHibernate in my Forms project directly to be able to set up the DI with Ninject (which should be done in the App Project / Presentation Layer right?)
Isn't that one of the things I try to avoid with such an architecture?
In an ideal world which projects should reference eachother?
DI in general:
I have a decently hard time figuring out how to do DI properly. I read about using a composition root to only have one place where the Ninject container is directly used but that doesn't really play well with the current way NHibernate Sessions are used.
We have a MainForm which is obviously the applications entry point and keeps one Session during its whole lifetime. In addition the user can open multiple SubForms (mostly but not exclusively) for editing single entities) which currently each have a separate Session with a shorter lifetime. This is accomplished with a static Helper exposing the SessionFactory and opening new Sessions as required.
Is there another way of using DI with Windows Forms besides the composition root pattern?
How can I make use of Ninjects capabilites to do scoped injection to manage my NHibernate Sessions on a per-form basis (if possible at all)?
Terminology:
I got a little confused as to what is a Repository versus a Service. One comment on the posted answer states "it is ok for the repository to contain business-logic, you can just call it a service in this case". It felt a little useless with our repositories only containing basic CRUD operations when we often wanted to push filtering etc. into the database. So we went ahead and extended the repositories with methods like GetByName or more complex GetAssignmentCandidates. It felt appropiate since the implementations are in the Business Layer but they are still called repositories. Also we went with Controllers for classes interacting directly with UI elements but I think that name is more common in the Web world.
Should our Repositories actually be called Services?
Sorry for the wall of text. Any answers would be greatly appreciated!
Regarding 1:
Yes and no. Yes you would prefer the UI Layer not to be dependent on some specifics of x-layers down. But it isn't. The composition root is just residing in the same assembly, logically it's not the same layer.
Regarding 2:
Limit the usage of the container. Factories (for Sessions,..) are sometimes necessary. Using static should be avoided. Some Frameworks however prevent you from using the ideal design. In that case try to approximate as much as possible.
If you can currently do new FooForm() then you can replace this by DI or a DI Factory (p.Ex. ninject.extensions.Factory). If you have absolutely no control on how a type is instanciated then you'll need to use static to access the kernel like a service locator and then "locate" direct dependencies (while indirect dependencies are injected into direct dependencies by the DI container).
Regarding 3: i think this is somewhat controversial and probably often missunderstood. I don't think it's really that important what you call your classes (of course it is, but consistency across your code base is more important than deciding whether to name them all Repository or Service), what's important is how you design their responsibilities and relationships.
As such i myself prefer to extract filters and stuff in the -Query named classes, each providing exactly one method. But others have other preferences... i think there's been enough blog posts etc. on this topic that there's no use in rehashing this here.
Best practice to implement for situation like yours is to use MVP design pattern. Here its the architecture that i can offer to you.
MyApp.Infrastructure // Base Layer - No reference
MyApp.Models // Domain Layer - Reference to Infrastructure
MyApp.Presenter // Acts like controllers in MVC - Reference to Service, Models,
MyApp.Repository.NH // DAL layer - Reference to Models, Infrastructure
MyApp.Services // BLL Layer - Reference to Repository, Models
MyApp.Services.Cache // Cached BLL Layer(Extremely recommended) - Reference to Services, Models
MyApp.UI.Web.WebForms // UI Layer - Reference to all of layers
I will try to do my best to explain with the example of basic implementation of 'Category' model.
-Infrastructure-
EntityBase.cs
BussinesRule.cs
IEntity.cs
IRepository.cs
-Models-
Categories(Folder)
Category.cs // Implements IEntity and derives from EntityBase
ICategoryRepository.cs // Implements IRepository
-Presenter-
Interfaces
IHomeView.cs // Put every property and methods you need.
ICategoryPresenter.cs
Implementations
CategoryPresenter.cs // Implements ICategoryPresenter
CategoryPresenter(IHomeView view, ICategorySevice categorySevice){
}
-Repository-
Repositories(Folder)
GenricRepository.cs // Implements IRepository
CategoryRepository : Implements ICategoryRepository and derives from GenricRepository
-Services-
Interfaces
ICategorySevice.cs
AddCategory(Category model);
Implementations
CategorySevice.cs // Implements ICategorySevice
CategorySevice(ICategoryRepository categoryRepository ){}
AddCategory(Category model){
// Do staff by ICategoryRepository implementation.
}
-Services.Cache-
// It all depents of your choose.. Radis or Web cache..
-UI.Web.WebForms-
Views - Home(Folder) // Implement a structure like in MVC views.
Index.aspx // Implements IHomeView
Page_Init(){
// Get instance of Presenter
var categoryPresenter = CategoryPresenter(this, new CategorySevice);
}
I'm not sure if i got your question correct, but maybe give you an idea:)

MVC, ORM, and data access patterns

I think I've hit that "paralysis by analysis" state.
I have an MVC app, using EF as an ORM.
So I'm trying to decide on the best data access pattern, and so far I'm thinking putting all data access logic into controllers is the way to go.. but it kinda doesn't sound right.
Another option is creating an external repository, handling data interactions.
Here's my pros/cons:
If embedding data access to controllers, I will end up with code like this:
using (DbContext db = new DbContext())
{
User user = db.Users.Where(x=>x.Name == "Bob").Single();
user.Address.Street = "some st";
db.SaveChanges();
}
So with this, I get full benefits of lazy loading, I close connection right after I'm done, I'm flexible on where clause - all the niceties.
The con - I'm mixing a bunch of stuff in a single method - data checking, data access, UI interactions.
With Repository, I'm externalizing data access, and in theory can just replace repos if I decide to use ado.net or go with different database.
But, I don't see a good clean way to realize lazy loading, and how to control DbContext/connection life time.
Say, I have IRepository interface with CRUD methods, how would I load a List of addresses that belong to a given user ? Making methods like GetAddressListByUserId looks ugly, wrong,
and will make me to create a bunch of methods that are just as ugly, and make little sense when using ORM.
I'm sure this problem been solved like million times, and hope there's a solution somewhere..
And one more question on repository pattern - how do you deal with objects that are properties ? E.g. User has a list of addresses, how would you retrieve that list ? Create a repository for the address ? With ORM the address object doesn't have to have a reference back to user, nor Id field, with repo - it will have to have all that. More code, more exposed properties..
The approach you choose depends a lot on the type of project you are going to be working with. For small projects where a Rapid Application Development (RAD) approach is required, it might almost be OK to use your EF model directly in the MVC project and have data access in the controllers, but the more the project grows, the more messy it will become and you will start running into more and more problems. In case you want good design and maintainability, there are several different approaches, but in general you can stick to the following:
Keep your controllers and Views clean. Controllers should only control the application flow and not contain data access or even business logic. Views should only be used for presentation - give it a ViewModel and it will present it as Html (no business logic or calculations). A ViewModel per view is a pretty clean way of doing it.
A typical controller action would look like:
public ActionResult UpdateCompany(CompanyViewModel model)
{
if (ModelState.IsValid)
{
Company company = SomeCompanyViewModelHelper.
MapCompanyViewModelToDomainObject(model);
companyService.UpdateCompany(company);
return RedirectToRoute(/* Wherever you go after company is updated */);
}
// Return the same view with highlighted errors
return View(model);
}
Due to the aforementioned reasons, it is good to abstract your data access (testability, ease of switching the data provider or ORM or whatever, etc.). The Repository pattern is a good choice, but here you also get a few implementation options. There's always been a lot of discussion about generic/non-generic repositories, whether or not one should return IQueryables, etc. But eventually it's for you to choose.
Btw, why do you want lazy loading? As a rule, you know exactly what data you require for a specific view, so why would you choose to fetch it in a deferred way, thus making extra database calls, instead of eager loading everything you need in one call? Personally, I think it's okay to have multiple Get methods for fetching objects with or without children. E.g.
public class CompanyRepository
{
Get(int Id);
Get(string name);
GetWithEmployees(int id);
...
}
It might seem a bit overkill and you may choose a different approach, but as long as you have a pattern you follow, maintaining the code is much easier.
Personally I do it this way:
I have an abstract Domain layer, which has methods not just CRUD, but specialized methods, for example UsersManager.Authenticate(), etc. It inside uses data access logic, or data-access layer abstraction (depending on the level of abstraction I need to have).
It is always better to have an abstract dependency at least. Here are some pros of it:
you can replace one implementation with another at a later time.
you can unit test your controller when needed.
As of controller itself, let it have 2 constructors: one with an abstract domain access class (e.g. facade of domain), and another (empty) constructor which chooses the default implementation. This way your controller lives well during web application run-time (calling empty constructor) and during the unit-testing (with mock domain layer injected).
Also, to be able to easily switch to another domain at a later time, be sure to inject the domain creator, instead of domain itself. This way, localizing the domain layer construction to the domain creator, you can switch to another implementation at any time, by just reconstructing the domain creator (by creator I mean some kind of factory).
I hope this helps.
Addition:
I would not recommend having CRUD methods in domain layer, because this will become a nightmare whenever you rich the unit-testing phase, or even more, when you need to change the implementation to the new one at a later time.
It really comes down to where you want your code. If you need to have data access for an object you can put it behind an IRepository object or in the controller doesn't matter: you will still wind up with either a series of GetByXXX calls or the equivilent code. Either way you can lazy load and control the lifetime of the connection. So now you need to ask yourself: where do I want my code to live?
Personally, I would argue to get it out of the controller. By that I mean moving it to another layer. Probably using an IRespository type of pattern where you have a series of GetByXXX calls. Sure they are ugly. Wrong? I would argue otherwise. At least they are all contained within the same logical layer together rather than being scattered throughout the controllers where they are mixed in with validation code, etc.

Repositories and persistence ignorance again

Here's where I'm up to.
I have a generic Repository class Repository<TKey, TValue>. It has the usual Repository pattern methods.
Each Repository takes an IContext<TKey, TValue> in its constructor which provides the persistence for the repository.
I have specialised repositories which are composed of a generic Repository and then methods tailored to repository actions that are specific to the specialised object. So if I had a specialised repository for Kitten objects, It would have methods to ClimbTree (probably taking a tree object) but not a BuryBone(Bone bone) method. The point I'm making badly is It creates an association between the kitten and its tree which needs to be persisted. void CleanWhiskers() might be a simpler example. This sets the Kittens whiskers to clean.
So I'm now thinking of a scheme for related child objects persistence and starting to wonder if I'm already going a bit wrong.
I started with slightly ugly methods on the repository to create child objects. So Kitten repository would have a method CreateFurBall() which would add a FurBall object to the Kitten's FurBall collection AND add a Furball to the FurBall Repository to be persisted (Actually the same object).
I've now changed to a system where I have something akin to an ObservableCollection which notifies its parent repository when a POCO is added. So I can just create a POCO furball and added it to the collection which would then be automatically registered with the furball repository.
First off I'll have nHibernate implemented in the contexts, I think this maps fairly well. This is a really open question, for anyone that's been down this route before, can you see anything that makes you go "STOP!!"
I should have thought that methods such as ClimbTree(), BuryBone(), CreateFurBall() and CleanWhiskers() belong on the domain objects, not on the repositories.
The repository should handle persistence of the aggregate roots - i.e. let you query for Kittens, Save and Update them.
Anything you want to do with the kittens between instantiation and persistence is the prerogative of the Domain.
Nelson is correct.
I think there may be a confusion between the two ways of creating furballs. If a kitten is stored in the database with three furballs, then when it is pulled from the database, the kitten should be injected with his furball-data and the furball collection should be initialized from the furball-data.
When the application wants to add a furball to the kitten, then a furball should be by the kitten via Kitten.CreateFurBall(). I am making the assumption here that a furball is owned by the kitten and the furballs are not common to other kittens. If the furball is sufficently complex, you may need to abstract the creation of the furball to a FurballFactory that the kitten holds a lazy reference to.
As far as the creation of the Kitten entity, it can probably be best handled by having a reference to a KittenFactory in your KittenRepository which accepts the dto for the kitten and builds a kitten from it.
The biggest problem that you have demonstrated is in the Kitten.BuryBone(Bone bone) method. Kittens don't bury bones. Dogs do.
I might be slightly off-topic but I just wanted to put my two cents in about the repository pattern.
The repository pattern is great, especially when you put them all behind interfaces so that they can be swapped out easily. I create a repository for every entity. BrokenGlass is right in that the methods are usually very generic and don't contain much beyond persistence logic. I am usually a little less strict with the type of logic that makes it into a repository. For instance, some people think it is sinful to put paging logic in a repository, but I disagree.
I use Entity Framework and LINQ to SQL quite a bit. In order to page results from these I need the LINQ to operate on IQueryable<entity> so that the paging happens at the database level. I do not like to expose IQueryable outside of my repository. Because what if someday my repository needs to be rewritten and the data storage can no longer utilize IQueryable? So rather than returning this from my repository:
IQueryable<entity> GetEntities();
...and paging the results in my controller, or elsewhere in my application. I instead do this:
IEnumerable<entity> GetEntities_byPage(int page);
...and I do the paging logic in the repository so that it can be translated into an expression at the data source.
I think your repositories should return some fairly tailored data, instead of just a raw data dump that your controller has to clean up (usually after loading it all into memory first, YECK!).
The way I have used the Repository pattern in the past, is just as a very thin mediator between the persistance provider and the data objects - each repository only contains very generic methods (i.e. typically Add/Update/Delete).
I think the business logic in your scenario, i.e. CreateFurBall() should be using the repository, but not be a method exposed by it.

Enterprise Design Pattern Question

Something on my mind about structuring a system at a high level.
Let's say you have a system with the following layers:
UI
Service Layer
Domain Model
Data Access
The service layer is used to populate a graph of objects in the domain model. In an attempt to avoid coupling, the domain model will be not be persistence aware and will not have any dependencies on any data access layer.
However, using this approach how would one object in the domain model be able to call other objects without being able to load them with persistence, thus coupling everything together - which I'd be trying to avoid.
e.g. an Order Object would need to check an Inventory object and would obviously need to tell the Inventory object to load in some way, or populate it somehow.
Any thoughts?
You could inject any dependencies from the service layer, including populated object graphs.
I would also add that a repository can be a dependency - if you have declared an interface for the repository, you can code to it without adding any coupling.
One way of doing this is to have a mapping layer between the Data Layer and the domain model.
Have a look at the mapping, repository and facade patterns.
The basic idea is that on one side you have data access objects and on the other you have domain objects.
To decouple you have to: "Program to an 'interface', not an 'implementation'." (Gang of Four 1995:18)
Here are some links on the subject:
Gamma interview on patterns
Random blog article
Googling for "Program to an interface, not an implementation" will yield many useful resources.
Have the domain model layer define interfaces for the methods you'll need to call, and POCOs for the objects that need to be returned by those methods. The data layer can then implement those interfaces by pulling data out of your data store and mapping it into the domain model POCOs.
Any domain-level class that requires a particular data-access service can just depend on the interface via constructor arguments. Then you can leverage a dependency-injection framework to build the dependency graph and provide the correct implementations of your interfaces wherever they are required.
Before writing tons of code in order to separate everything you might want to ask yourself a few questions:
Is the Domain Model truly separate from the DAL? And yes, I'm serious and you should think about this because it is exceedingly rare for an RDBMS to actually be swapped out in favor of a different one for an existing project. Quite frankly it is much more common for the language the app was written in to be replaced than the database itself.
What exactly is this separation buying you? And, just as important, what are you losing? Separation of Concerns (SoC) is a nice term that is thrown about quite a bit. However, most people rarely understand why they are Concerned with the Separation to begin with.
I bring these up because more often than not applications can benefit from a tighter coupling to the underlying data model. Never mind that most ORM's almost enforce a tight coupling due to the nature of code generation. I've seen lot's of supposedly SoC projects come to a crash during testing because someone added a field to a table and the DAL wasn't regenerated... This kind of defeats the purpose, IMHO...
Another factor is where should the business logic live? No doubt there are strong arguments in favor of putting large swaths of BL in the actual database itself. At the same time there are cases where the BL needs to live in or very near your domain classes. With BL spread in such a way, can you truly separate these two items anyway? Even those who hate the idea of putting BL in a database will fall back on using identity keys and letting the DB enforce referential integrity, which is also business logic..
Without knowing more, I would suggest you consider flattening the Data Access and Domain Model layers. You could move to a "provider" or "factory" type architecture in which the service layer itself doesn't care about the underlying access, but the factory handles it all. Just some radical food for thought.
You should take a look at Martin Fowler's Repository and UnitOfWork patterns to use interfaces in your system
Until now I have seen that application can be well layered into three layers: Presentation-->Logic-->Data--and Entities (or Bussines Object). In the Logic Layer case you can use some pattern such as Transaction Script or Domain Model I'm supposing you're using this last. The domain model can use a Data Mapper for interacting with the data layer and create business objects, but you can also use a Table Module pattern.
All this patterns are described in Marttin's Fowler Patterns of Enterprise Application Architecture book. Personally I use Transaction Script because it is simplest than Domanin Model.
One solution is to make your Data Access layer subclass your domain entities (using Castle DynamicProxy, for example) and inject itself into the derived instances that it returns.
That way, your domain entity classes remain persistence-ignorant while the instances your applications use can still hit databases to lazy-load secondary data.
Having said that, this approach typically requires you to make a few concessions to your ORM's architecture, like marking certain methods virtual, adding otherwise unnecessary default constructors, etc..
Moreover, it's often unnecessary - especially for line-of-business applications that don't have onerous performance requirements, you can consider eagerly loading all the relevant data: just bring the inventory items up with the order.
I felt this was different enough from my previous answer, so here's a new one.
Another approach is to leverage the concept of Inversion of Control (IoC). Build an Interface that your Data Access layer implements. Each of the DAL methods should take a list of parameters and return a Data Table.
The service layer would instantiate the DAL through the interface and pass that reference to your Domain Model. The domain model would then make it's own calls into the DAL, using the interface methods, and decide when it needs to load child objects or whatever.
Something like:
interface IDBModel {
DataTable LoadUser(Int32 userId);
}
class MyDbModel : IDBModel {
DataTable LoadUser(Int32 userId) {
// make the appropriate DB calls here, return a data table
}
}
class User {
public User(IDBModel dbModel, Int32 userId) {
DataTable data = dbModel.LoadUser(userId);
// assign properties.. load any additional data as necessary
}
// You can do cool things like call User.Save()
// and have the object validate and save itself to the passed in
// datamodel. Makes for simpler coding.
}
class MyServiceLayer {
public User GetUser(Int32 userId) {
IDBModel model = new MyDbModel();
return new User(model, userId);
}
}
With this mechanism, you can actually swap out your db models on demand. For example, if you decide to support multiple databases then you can have code that is specific to a particular database vendors way of doing things and just have the service layer pick which one to use.
The domain objects themselves are responsible for loading their own data and you can keep any necessary business logic within the domain model. Another point is that the Domain Model doesn't have a direct dependency on the data layer, which preserves your mocking ability for independent testing of business logic.
Further, the DAL has no knowledge of the domain objects, so you can swap those out as necessary or even just test the DAL independently.

Categories