C# - Generic HashCode implementation for classes - c#

I'm looking at how build the best HashCode for a class and I see some algorithms. I saw this one : Hash Code implementation, seems to be that .NET classes HashCode methods are similar (see by reflecting the code).
So question is, why don't create the above static class in order to build a HashCode automatically, just by passing fields we consider as a "key".
// Old version, see edit
public static class HashCodeBuilder
{
public static int Hash(params object[] keys)
{
if (object.ReferenceEquals(keys, null))
{
return 0;
}
int num = 42;
checked
{
for (int i = 0, length = keys.Length; i < length; i++)
{
num += 37;
if (object.ReferenceEquals(keys[i], null))
{ }
else if (keys[i].GetType().IsArray)
{
foreach (var item in (IEnumerable)keys[i])
{
num += Hash(item);
}
}
else
{
num += keys[i].GetHashCode();
}
}
}
return num;
}
}
And use it as like this :
// Old version, see edit
public sealed class A : IEquatable<A>
{
public A()
{ }
public string Key1 { get; set; }
public string Key2 { get; set; }
public string Value { get; set; }
public override bool Equals(object obj)
{
return this.Equals(obj as A);
}
public bool Equals(A other)
{
if(object.ReferenceEquals(other, null))
? false
: Key1 == other.Key1 && Key2 == other.Key2;
}
public override int GetHashCode()
{
return HashCodeBuilder.Hash(Key1, Key2);
}
}
Will be much simpler that always is own method, no? I'm missing something?
EDIT
According all remarks, I got the following code :
public static class HashCodeBuilder
{
public static int Hash(params object[] args)
{
if (args == null)
{
return 0;
}
int num = 42;
unchecked
{
foreach(var item in args)
{
if (ReferenceEquals(item, null))
{ }
else if (item.GetType().IsArray)
{
foreach (var subItem in (IEnumerable)item)
{
num = num * 37 + Hash(subItem);
}
}
else
{
num = num * 37 + item.GetHashCode();
}
}
}
return num;
}
}
public sealed class A : IEquatable<A>
{
public A()
{ }
public string Key1 { get; set; }
public string Key2 { get; set; }
public string Value { get; set; }
public override bool Equals(object obj)
{
return this.Equals(obj as A);
}
public bool Equals(A other)
{
if(ReferenceEquals(other, null))
{
return false;
}
else if(ReferenceEquals(this, other))
{
return true;
}
return Key1 == other.Key1
&& Key2 == other.Key2;
}
public override int GetHashCode()
{
return HashCodeBuilder.Hash(Key1, Key2);
}
}

Your Equals method is broken - it's assuming that two objects with the same hash code are necessarily equal. That's simply not the case.
Your hash code method looked okay at a quick glance, but could actually do some with some work - see below. It means boxing any value type values and creating an array any time you call it, but other than that it's okay (as SLaks pointed out, there are some issues around the collection handling). You might want to consider writing some generic overloads which would avoid those performance penalties for common cases (1, 2, 3 or 4 arguments, perhaps). You might also want to use a foreach loop instead of a plain for loop, just to be idiomatic.
You could do the same sort of thing for equality, but it would be slightly harder and messier.
EDIT: For the hash code itself, you're only ever adding values. I suspect you were trying to do this sort of thing:
int hash = 17;
hash = hash * 31 + firstValue.GetHashCode();
hash = hash * 31 + secondValue.GetHashCode();
hash = hash * 31 + thirdValue.GetHashCode();
return hash;
But that multiplies the hash by 31, it doesn't add 31. Currently your hash code will always return the same for the same values, whether or not they're in the same order, which isn't ideal.
EDIT: It seems there's some confusion over what hash codes are used for. I suggest that anyone who isn't sure reads the documentation for Object.GetHashCode and then Eric Lippert's blog post about hashing and equality.

This is what I'm using:
public static class ObjectExtensions
{
/// <summary>
/// Simplifies correctly calculating hash codes based upon
/// Jon Skeet's answer here
/// http://stackoverflow.com/a/263416
/// </summary>
/// <param name="obj"></param>
/// <param name="memberThunks">Thunks that return all the members upon which
/// the hash code should depend.</param>
/// <returns></returns>
public static int CalculateHashCode(this object obj, params Func<object>[] memberThunks)
{
// Overflow is okay; just wrap around
unchecked
{
int hash = 5;
foreach (var member in memberThunks)
hash = hash * 29 + member().GetHashCode();
return hash;
}
}
}
Example usage:
public class Exhibit
{
public virtual Document Document { get; set; }
public virtual ExhibitType ExhibitType { get; set; }
#region System.Object
public override bool Equals(object obj)
{
return Equals(obj as Exhibit);
}
public bool Equals(Exhibit other)
{
return other != null &&
Document.Equals(other.Document) &&
ExhibitType.Equals(other.ExhibitType);
}
public override int GetHashCode()
{
return this.CalculateHashCode(
() => Document,
() => ExhibitType);
}
#endregion
}

Instead of calling keys[i].GetType().IsArray, you should try to cast it to IEnumerable (using the as keyword).
You can fix the Equals method without repeating the field list by registering a static list of fields, like I do here using a collection of delegates.
This also avoids the array allocation per-call.
Note, however, that my code doesn't handle collection properties.

Related

Comparing a class instance with another, which contain matching values

I get that one instance of a class is not equal to another instance of the same class, even if both instances contain the properties & fields of the instances contain the same values. For example, in the below code, even though both instances of TestClass have the same value for the TestValue01 and TestValue02 properties, the comparison will equate to false and "Boooo!" will be printed.
static void Main(string[] args)
{
TestClass testClassInstance01 = new TestClass(1, 1);
TestClass testClassInstance02 = new TestClass(1, 1);
if (testClassInstance01 == testClassInstance02)
{
Console.WriteLine("Woohoo!");
}
else
{
Console.WriteLine("Boooo!");
}
}
class TestClass
{
public int TestValue01 { get; private set; }
public int TestValue02 { get; private set; }
public TestClass(int testValue01, int testValue02)
{
TestValue01 = testValue01;
TestValue02 = testValue02;
}
}
Is it at all possible to force this kind of comparison to equate to true?
The obvious thing to do is to compaire the property values, like below, but I'm curious if this can be avoided.
if (testClassInstance01.TestValue01 == testClassInstance02.TestValue01
&& testClassInstance01.TestValue02 == testClassInstance02.TestValue02)
{
Console.WriteLine("Woohoo!");
}
else
{
Console.WriteLine("Boooo!");
}
EDIT
For completeness, what I was looking for was operator overloading. Here is the code I require for this example to return true:
class TestClass
{
public int TestValue01 { get; private set; }
public int TestValue02 { get; private set; }
public TestClass(int testValue01, int testValue02)
{
TestValue01 = testValue01;
TestValue02 = testValue02;
}
public static bool operator==(TestClass tc01, TestClass tc02)
{
return tc01.TestValue01 == tc02.TestValue01 && tc01.TestValue02 == tc02.TestValue02;
}
public static bool operator!=(TestClass tc01, TestClass tc02)
{
return tc01.TestValue01 != tc02.TestValue01 || tc01.TestValue02 != tc02.TestValue02;
}
}
Marij Khans answer is basically correct. Without overloading the operator(s) ReferenceEquals(object, object) is used for '==' and '!=' when applied to class instances and, because in your example you compare two instances, the result is 'false'. The full blown solution looks like this:
public class TestClass : IEquatable<TestClass>
{
public int TestValue01 { get; private set; }
public int TestValue02 { get; private set; }
public TestClass(int testValue01, int testValue02)
{
TestValue01 = testValue01;
TestValue02 = testValue02;
}
public override bool Equals(object obj)
{
return Equals(obj as TestClass);
}
public bool Equals(TestClass other)
{
return other != null &&
TestValue01 == other.TestValue01 &&
TestValue02 == other.TestValue02;
}
public static bool operator ==(TestClass test1, TestClass test2)
{
return EqualityComparer<TestClass>.Default.Equals(test1, test2);
}
public static bool operator !=(TestClass test1, TestClass test2)
{
return !(test1 == test2);
}
}
Besides the overloading of the operators '==' and '!=' the implementation of the IEquatable interface ensures that comparisons always work as expected, even when used as key in a dictionary or the pattern a.Equals(b) is used. For better speed when searching large collections with instances of this class as key, you might even want to implement GetHashCode(), but that requires that the values used when generating the hash code have to be readonly (i.e. removing the setter of the properties, so they can only be set from within the constructor).
Overload the == operator. I haven’t done c# in a while so I’m a little rusty but you can take a look at operator overloading to define this type of behaviour

Linq distinct doesn't call Equals method

I have the following class
public class ModInfo : IEquatable<ModInfo>
{
public int ID { get; set; }
public string MD5 { get; set; }
public bool Equals(ModInfo other)
{
return other.MD5.Equals(MD5);
}
public override int GetHashCode()
{
return MD5.GetHashCode();
}
}
I load some data into a list of that class using a method like this:
public void ReloadEverything() {
var beforeSort = new List<ModInfo>();
// Bunch of loading from local sqlite database.
// not included since it's reload boring to look at
var modinfo = beforeSort.OrderBy(m => m.ID).AsEnumerable().Distinct().ToList();
}
Problem is the Distinct() call doesn't seem to do it's job. There are still objects which are equals each other.
Acording to this article: https://msdn.microsoft.com/en-us/library/vstudio/bb348436%28v=vs.100%29.aspx
that is how you are supposed to make distinct work, however it doesn't seem to be calling to Equals method on the ModInfo object.
What could be causing this to happen?
Example values:
modinfo[0]: id=2069, MD5 =0AAEBF5D2937BDF78CB65807C0DC047C
modinfo[1]: id=2208, MD5 = 0AAEBF5D2937BDF78CB65807C0DC047C
I don't care which value gets chosen, they are likely to be the same anyway since the md5 value is the same.
You also need to override Object.Equals, not just implement IEquatable.
If you add this to your class:
public override bool Equals(object other)
{
ModInfo mod = other as ModInfo;
if (mod != null)
return Equals(mod);
return false;
}
It should work.
See this article for more info: Implementing IEquatable Properly
EDIT: Okay, here's a slightly different implementation based on best practices with GetHashCode.
public class ModInfo : IEquatable<ModInfo>
{
public int ID { get; set; }
public string MD5 { get; set; }
public bool Equals(ModInfo other)
{
if (other == null) return false;
return (this.MD5.Equals(other.MD5));
}
public override int GetHashCode()
{
unchecked
{
int hash = 13;
hash = (hash * 7) + MD5.GetHashCode();
return hash;
}
}
public override bool Equals(object obj)
{
ModInfo other = obj as ModInfo;
if (other != null)
{
return Equals(other);
}
else
{
return false;
}
}
}
You can verify it:
ModInfo mod1 = new ModInfo {ID = 1, MD5 = "0AAEBF5D2937BDF78CB65807C0DC047C"};
ModInfo mod2 = new ModInfo {ID = 2, MD5 = "0AAEBF5D2937BDF78CB65807C0DC047C"};
// You should get true here
bool areEqual = mod1.Equals(mod2);
List<ModInfo> mods = new List<ModInfo> {mod1, mod2};
// You should get 1 result here
mods = mods.Distinct().ToList();
What's with those specific numbers in GetHashCode?
Add
public bool Equals(object other)
{
return this.Equals(other as ModInfo)
}
Also see here the recommendations how to implement the equality members: https://msdn.microsoft.com/en-us/library/ms173147(v=vs.80).aspx

using long (int64) as a hashCode and still use IEqualityComparer for concurrent Dictionary

I have a problem using a self made IEqualityComparer and GetHashCode in a concurrent dictionary.
The class below (simplified with used two properties) works perfect when I implement it like this:
ConcurrentDictionary<TwoUintsKeyInfo,Int64> hashCodePlusIandJDict = new ConcurrentDictionary<TwoUintsKeyInfo, Int64>();
.
public class TwoUintsKeyInfo
{
public uint IdOne { get; set; }
public uint IdTwo { get; set; }
#region Implemetation of the IEqualityComparer
public class EqualityComparerTwoUintsKeyInfo : IEqualityComparer<TwoUintsKeyInfo>
{
System.Reflection.PropertyInfo[] properties;
bool propertyArraySet=false;
public int GetHashCode(TwoUintsKeyInfo obj)
{
unchecked
{
if(!propertyArraySet)
{
properties = obj.GetType().GetProperties().OrderBy(x => x.Name).ToArray();
propertyArraySet = true;
}
decimal hash = 17;
int counter=0;
foreach(System.Reflection.PropertyInfo p in properties)
{
counter++;
var value = p.GetValue(obj);
decimal unique = (decimal)Math.Pow(Math.E, counter);
hash = hash + (value == null ? unique : value.GetHashCode() * unique);
}
return 2147483647M * .001M > hash ? (int)(hash * 1000) : (int)hash;
}
}
public bool Equals(TwoUintsKeyInfo x, TwoUintsKeyInfo y)
{
return GetHashCode(x) == GetHashCode(y);
}
}
#endregion Implemetation of the IEqualityComparer
}
Now I made almost the same class, but instead of the normal IEqualityComparer interface, I made a little change, so I could generate long / int64 hascodes (because when the class hold more and more properties, we encountered multiple values with the same hashcode)
So I wanted to reduce the changes of getting the same hascode. Therefore I wanted to use bigger numbers and if possible multiple by 10000 to get some of the decimals in on the action as well.
therefore I created this interface:
public interface IEqualityComparerInt64<in T>
{
bool Equals(T x, T y);
Int64 GetHashCode(T obj);
}
and altered the property class so it looks like this:
public class TwoUintsKeyInfoInt64
{
public uint IdOne { get; set; }
public uint IdTwo { get; set; }
#region Implemetation of the IEqualityComparer
public class EqualityComparerTwoUintsKeyInfoInt64 : IEqualityComparerInt64<TwoUintsKeyInfoInt64>
{
System.Reflection.PropertyInfo[] properties;
bool propertyArraySet=false;
decimal _upperThreshold,_lowerThreshold;
public EqualityComparerTwoUintsKeyInfoInt64()
{
_upperThreshold = long.MaxValue * .0001M;
_lowerThreshold = -long.MaxValue * .0001M;
}
public long GetHashCode(TwoUintsKeyInfoInt64 obj)
{
unchecked
{
if(!propertyArraySet)
{
properties = obj.GetType().GetProperties().OrderBy(x => x.Name).ToArray();
propertyArraySet = true;
}
decimal hash = 17;
int counter=0;
foreach(System.Reflection.PropertyInfo p in properties)
{
counter++;
var value = p.GetValue(obj);
decimal unique = (decimal)Math.Pow(Math.E, counter);
hash = hash + (value == null ? unique : value.GetHashCode() * unique);
}
return _upperThreshold > hash && _lowerThreshold < hash ? (long)(hash * 10000) : (long)hash;
}
}
public bool Equals(TwoUintsKeyInfoInt64 x, TwoUintsKeyInfoInt64 y)
{
return GetHashCode(x) == GetHashCode(y);
}
}
#endregion Implemetation of the IEqualityComparer
}
GetHashCode worked fine. So far no problem.
But...when I try to add a IEqualityComparer to the concurrentdictionary like this:
ConcurrentDictionary<TwoUintsKeyInfoInt64,Int64> hashCodePlusIandJDict = new ConcurrentDictionary<TwoUintsKeyInfoInt64, Int64>(new TwoUintsKeyInfoInt64.EqualityComparerOneUintAndTwoStringKeyInfo());
I get this error:
Error 3 Argument 1: cannot convert from
'HasCodeTestForUniqueResult.TwoUintsKeyInfoInt64.EqualityComparerOneUintAndTwoStringKeyInfo'
to
'System.Collections.Generic.IEqualityComparer' D:\Users\mldz\Documents\visual
studio
2012\HashCodeTestForUniqueResult\HashCodeTestForUniqueResult\Form1.cs 109 140 HashCodeTestForUniqueResult
I understand that there's a conflict between the int type of the default System.Collections.Generic.IEqualityComparer and my long / int64 result from my own GetHashCode generator. But is there any way to solve this and be able to use long HashCodes?
Kind regards,
Matthijs
P.S. the code above is just to test it and replicate the problem.
According to this you cannot use long hash codes, so the answer to the question is no.
But you can have unique combinations instead of unique values; the solution is to implement a partitioning system, meaning have a dictionary of dictionaries, like:
public class MyClass
{
Dictionary<uint, Dictionary<uint, Int64>> PartDict;
Int64 ReadValue(uint id1, uint id2)
{
return (PartDict[id1])[id2];
}
void AddValue(uint id1, uint id2, Int64 value)
{
Dictionary<uint, Int64> container;
if (!PartDict.TryGetValue(id1, out container))
{
container = new Dictionary<uint, Int64>();
PartDict.Add(id1, container);
}
container.Add(id2, value);
}
}
This way you will have a list of hash codes and each hash code will have again a list of hash codes, the combination being unique. Any reading and writing will be done in 2 steps though (to consider in case you want unique hash for performance).
Hope it helps.

Issue with containskey and gethashcode

I am currently trying to use the containskey method to check if a dictionary i have contains a certain key of a custom type. To do this i should override the gethashcode function, which i have, however the containskey method is still not working. There must be something i am not doing right but i havent figured out what exactly in the past 5 hours i have been trying this:
public class Parameter : IEquatable<Parameter>
{
public string Field { get; set; }
public string Content { get; set; }
public bool Equals(Parameter other)
{
if (other == null)
{
return false;
}
return Field.Equals(other.Field) && Content.Equals(other.Content);
}
public override int GetHashCode()
{
unchecked
{
int hash = 17;
hash = hash * 23 + Field.GetHashCode();
hash = hash * 23 + Content.GetHashCode();
return hash;
}
}
}
public class Trigger : IEquatable<Trigger>
{
public Dictionary<int, Parameter> Parameters { get; private set; }
private string Event { get; set; }
public bool Equals(Trigger item)
{
if (item == null)
{
return false;
}
return Event.Equals(item.Event) && Parameters.Equals(item.Parameters);
}
public override int GetHashCode()
{
unchecked
{
var hash = 17;
hash = hash * 23 + Parameters.GetHashCode();
hash = hash * 23 + Event.GetHashCode();
return hash;
}
}
}
For additional clarity: I have a Dictionary(Trigger, State) that i want to check the keys of so i assumed if i made sure all my sub-classes were equatable i could just use the containskey method, but apparently it does not.
Edit: What i have done now is implement Jon Skeet's Dictionary class and use this to do my checks on:
public override bool Equals(object o)
{
var item = o as Trigger;
if (item == null)
{
return false;
}
return Event.Equals(item.Event) && Dictionaries.Equals(Parameters, item.Parameters);
}
public override int GetHashCode()
{
var hash = 17;
hash = hash * 23 + Dictionaries.GetHashCode(Parameters);
hash = hash * 23 + Event.GetHashCode();
return hash;
}
Dictionary<,> doesn't itself override Equals and GetHashCode - so your Trigger implementations are broken. You would need to work out what equality you wanted and implement it yourself.
I have a sample implementation in protobuf-csharp-port which you might want to look at.
EDIT: Your change still isn't quite right. You should implement equality like this:
return Event.Equals(item.Event) &&
Dictionaries.Equals(Parameters, item.Parameters);
and implement GetHashCode as:
var hash = 17;
hash = hash * 23 + Dictionaries.GetHashCode(Parameters);
hash = hash * 23 + Event.GetHashCode();
return hash;
You should use the overloaded constructor:
Dictionary<TKey, TValue>(IDictionary<TKey, TValue>, IEqualityComparer<TKey>)
instead of using autoproperty, use a backup field.

Using an enum as an array index in C#

I want to do the same as in this question, that is:
enum DaysOfTheWeek {Sunday=0, Monday, Tuesday...};
string[] message_array = new string[number_of_items_at_enum];
...
Console.Write(custom_array[(int)DaysOfTheWeek.Sunday]);
however, I would rather have something integral to so, rather than write this error prone code. Is there a built in module in C# that does just this?
If the values of your enum items are contigious, the array method works pretty well. However, in any case, you could use Dictionary<DayOfTheWeek, string> (which is less performant, by the way).
Since C# 7.3 it has been possible to use System.Enum as a constraint on type parameters. So the nasty hacks in the some of the other answers are no longer required.
Here's a very simple ArrayByEum class that does exactly what the question asked.
Note that it will waste space if the enum values are non-contiguous, and won't cope with enum values that are too large for an int. I did say this example was very simple.
/// <summary>An array indexed by an Enum</summary>
/// <typeparam name="T">Type stored in array</typeparam>
/// <typeparam name="U">Indexer Enum type</typeparam>
public class ArrayByEnum<T,U> : IEnumerable where U : Enum // requires C# 7.3 or later
{
private readonly T[] _array;
private readonly int _lower;
public ArrayByEnum()
{
_lower = Convert.ToInt32(Enum.GetValues(typeof(U)).Cast<U>().Min());
int upper = Convert.ToInt32(Enum.GetValues(typeof(U)).Cast<U>().Max());
_array = new T[1 + upper - _lower];
}
public T this[U key]
{
get { return _array[Convert.ToInt32(key) - _lower]; }
set { _array[Convert.ToInt32(key) - _lower] = value; }
}
public IEnumerator GetEnumerator()
{
return Enum.GetValues(typeof(U)).Cast<U>().Select(i => this[i]).GetEnumerator();
}
}
Usage:
ArrayByEnum<string,MyEnum> myArray = new ArrayByEnum<string,MyEnum>();
myArray[MyEnum.First] = "Hello";
myArray[YourEnum.Other] = "World"; // compiler error
You could make a class or struct that could do the work for you
public class Caster
{
public enum DayOfWeek
{
Sunday = 0,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday
}
public Caster() {}
public Caster(string[] data) { this.Data = data; }
public string this[DayOfWeek dow]{
get { return this.Data[(int)dow]; }
}
public string[] Data { get; set; }
public static implicit operator string[](Caster caster) { return caster.Data; }
public static implicit operator Caster(string[] data) { return new Caster(data); }
}
class Program
{
static void Main(string[] args)
{
Caster message_array = new string[7];
Console.Write(message_array[Caster.DayOfWeek.Sunday]);
}
}
EDIT
For lack of a better place to put this, I am posting a generic version of the Caster class below. Unfortunately, it relies on runtime checks to enforce TKey as an enum.
public enum DayOfWeek
{
Weekend,
Sunday = 0,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday
}
public class TypeNotSupportedException : ApplicationException
{
public TypeNotSupportedException(Type type)
: base(string.Format("The type \"{0}\" is not supported in this context.", type.Name))
{
}
}
public class CannotBeIndexerException : ApplicationException
{
public CannotBeIndexerException(Type enumUnderlyingType, Type indexerType)
: base(
string.Format("The base type of the enum (\"{0}\") cannot be safely cast to \"{1}\".",
enumUnderlyingType.Name, indexerType)
)
{
}
}
public class Caster<TKey, TValue>
{
private readonly Type baseEnumType;
public Caster()
{
baseEnumType = typeof(TKey);
if (!baseEnumType.IsEnum)
throw new TypeNotSupportedException(baseEnumType);
}
public Caster(TValue[] data)
: this()
{
Data = data;
}
public TValue this[TKey key]
{
get
{
var enumUnderlyingType = Enum.GetUnderlyingType(baseEnumType);
var intType = typeof(int);
if (!enumUnderlyingType.IsAssignableFrom(intType))
throw new CannotBeIndexerException(enumUnderlyingType, intType);
var index = (int) Enum.Parse(baseEnumType, key.ToString());
return Data[index];
}
}
public TValue[] Data { get; set; }
public static implicit operator TValue[](Caster<TKey, TValue> caster)
{
return caster.Data;
}
public static implicit operator Caster<TKey, TValue>(TValue[] data)
{
return new Caster<TKey, TValue>(data);
}
}
// declaring and using it.
Caster<DayOfWeek, string> messageArray =
new[]
{
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"
};
Console.WriteLine(messageArray[DayOfWeek.Sunday]);
Console.WriteLine(messageArray[DayOfWeek.Monday]);
Console.WriteLine(messageArray[DayOfWeek.Tuesday]);
Console.WriteLine(messageArray[DayOfWeek.Wednesday]);
Console.WriteLine(messageArray[DayOfWeek.Thursday]);
Console.WriteLine(messageArray[DayOfWeek.Friday]);
Console.WriteLine(messageArray[DayOfWeek.Saturday]);
Here you go:
string[] message_array = Enum.GetNames(typeof(DaysOfTheWeek));
If you really need the length, then just take the .Length on the result :)
You can get values with:
string[] message_array = Enum.GetValues(typeof(DaysOfTheWeek));
Compact form of enum used as index and assigning whatever type to a Dictionary
and strongly typed. In this case float values are returned but values could be complex Class instances having properties and methods and more:
enum opacityLevel { Min, Default, Max }
private static readonly Dictionary<opacityLevel, float> _oLevels = new Dictionary<opacityLevel, float>
{
{ opacityLevel.Max, 40.0 },
{ opacityLevel.Default, 50.0 },
{ opacityLevel.Min, 100.0 }
};
//Access float value like this
var x = _oLevels[opacitylevel.Default];
If all you need is essentially a map, but don't want to incur performance overhead associated with dictionary lookups, this might work:
public class EnumIndexedArray<TKey, T> : IEnumerable<KeyValuePair<TKey, T>> where TKey : struct
{
public EnumIndexedArray()
{
if (!typeof (TKey).IsEnum) throw new InvalidOperationException("Generic type argument is not an Enum");
var size = Convert.ToInt32(Keys.Max()) + 1;
Values = new T[size];
}
protected T[] Values;
public static IEnumerable<TKey> Keys
{
get { return Enum.GetValues(typeof (TKey)).OfType<TKey>(); }
}
public T this[TKey index]
{
get { return Values[Convert.ToInt32(index)]; }
set { Values[Convert.ToInt32(index)] = value; }
}
private IEnumerable<KeyValuePair<TKey, T>> CreateEnumerable()
{
return Keys.Select(key => new KeyValuePair<TKey, T>(key, Values[Convert.ToInt32(key)]));
}
public IEnumerator<KeyValuePair<TKey, T>> GetEnumerator()
{
return CreateEnumerable().GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
So in your case you could derive:
class DaysOfWeekToStringsMap:EnumIndexedArray<DayOfWeek,string>{};
Usage:
var map = new DaysOfWeekToStringsMap();
//using the Keys static property
foreach(var day in DaysOfWeekToStringsMap.Keys){
map[day] = day.ToString();
}
foreach(var day in DaysOfWeekToStringsMap.Keys){
Console.WriteLine("map[{0}]={1}",day, map[day]);
}
// using iterator
foreach(var value in map){
Console.WriteLine("map[{0}]={1}",value.Key, value.Value);
}
Obviously this implementation is backed by an array, so non-contiguous enums like this:
enum
{
Ok = 1,
NotOk = 1000000
}
would result in excessive memory usage.
If you require maximum possible performance you might want to make it less generic and loose all generic enum handling code I had to use to get it to compile and work. I didn't benchmark this though, so maybe it's no big deal.
Caching the Keys static property might also help.
I realize this is an old question, but there have been a number of comments about the fact that all solutions so far have run-time checks to ensure the data type is an enum. Here is a complete solution (with some examples) of a solution with compile time checks (as well as some comments and discussions from my fellow developers)
//There is no good way to constrain a generic class parameter to an Enum. The hack below does work at compile time,
// though it is convoluted. For examples of how to use the two classes EnumIndexedArray and ObjEnumIndexedArray,
// see AssetClassArray below. Or, e.g.
// EConstraint.EnumIndexedArray<int, YourEnum> x = new EConstraint.EnumIndexedArray<int, YourEnum>();
// See this post
// http://stackoverflow.com/questions/79126/create-generic-method-constraining-t-to-an-enum/29581813#29581813
// and the answer/comments by Julien Lebosquain
public class EConstraint : HackForCompileTimeConstraintOfTEnumToAnEnum<System.Enum> { }//THIS MUST BE THE ONLY IMPLEMENTATION OF THE ABSTRACT HackForCompileTimeConstraintOfTEnumToAnEnum
public abstract class HackForCompileTimeConstraintOfTEnumToAnEnum<SystemEnum> where SystemEnum : class
{
//For object types T, users should use EnumIndexedObjectArray below.
public class EnumIndexedArray<T, TEnum>
where TEnum : struct, SystemEnum
{
//Needs to be public so that we can easily do things like intIndexedArray.data.sum()
// - just not worth writing up all the equivalent methods, and we can't inherit from T[] and guarantee proper initialization.
//Also, note that we cannot use Length here for initialization, even if Length were defined the same as GetNumEnums up to
// static qualification, because we cannot use a non-static for initialization here.
// Since we want Length to be non-static, in keeping with other definitions of the Length property, we define the separate static
// GetNumEnums, and then define the non-static Length in terms of the actual size of the data array, just for clarity,
// safety and certainty (in case someone does something stupid like resizing data).
public T[] data = new T[GetNumEnums()];
//First, a couple of statics allowing easy use of the enums themselves.
public static TEnum[] GetEnums()
{
return (TEnum[])Enum.GetValues(typeof(TEnum));
}
public TEnum[] getEnums()
{
return GetEnums();
}
//Provide a static method of getting the number of enums. The Length property also returns this, but it is not static and cannot be use in many circumstances.
public static int GetNumEnums()
{
return GetEnums().Length;
}
//This should always return the same as GetNumEnums, but is not static and does it in a way that guarantees consistency with the member array.
public int Length { get { return data.Length; } }
//public int Count { get { return data.Length; } }
public EnumIndexedArray() { }
// [WDS 2015-04-17] Remove. This can be dangerous. Just force people to use EnumIndexedArray(T[] inputArray).
// [DIM 2015-04-18] Actually, if you think about it, EnumIndexedArray(T[] inputArray) is just as dangerous:
// For value types, both are fine. For object types, the latter causes each object in the input array to be referenced twice,
// while the former causes the single object t to be multiply referenced. Two references to each of many is no less dangerous
// than 3 or more references to one. So all of these are dangerous for object types.
// We could remove all these ctors from this base class, and create a separate
// EnumIndexedValueArray<T, TEnum> : EnumIndexedArray<T, TEnum> where T: struct ...
// but then specializing to TEnum = AssetClass would have to be done twice below, once for value types and once
// for object types, with a repetition of all the property definitions. Violating the DRY principle that much
// just to protect against stupid usage, clearly documented as dangerous, is not worth it IMHO.
public EnumIndexedArray(T t)
{
int i = Length;
while (--i >= 0)
{
this[i] = t;
}
}
public EnumIndexedArray(T[] inputArray)
{
if (inputArray.Length > Length)
{
throw new Exception(string.Format("Length of enum-indexed array ({0}) to big. Can't be more than {1}.", inputArray.Length, Length));
}
Array.Copy(inputArray, data, inputArray.Length);
}
public EnumIndexedArray(EnumIndexedArray<T, TEnum> inputArray)
{
Array.Copy(inputArray.data, data, data.Length);
}
//Clean data access
public T this[int ac] { get { return data[ac]; } set { data[ac] = value; } }
public T this[TEnum ac] { get { return data[Convert.ToInt32(ac)]; } set { data[Convert.ToInt32(ac)] = value; } }
}
public class EnumIndexedObjectArray<T, TEnum> : EnumIndexedArray<T, TEnum>
where TEnum : struct, SystemEnum
where T : new()
{
public EnumIndexedObjectArray(bool doInitializeWithNewObjects = true)
{
if (doInitializeWithNewObjects)
{
for (int i = Length; i > 0; this[--i] = new T()) ;
}
}
// The other ctor's are dangerous for object arrays
}
public class EnumIndexedArrayComparator<T, TEnum> : EqualityComparer<EnumIndexedArray<T, TEnum>>
where TEnum : struct, SystemEnum
{
private readonly EqualityComparer<T> elementComparer = EqualityComparer<T>.Default;
public override bool Equals(EnumIndexedArray<T, TEnum> lhs, EnumIndexedArray<T, TEnum> rhs)
{
if (lhs == rhs)
return true;
if (lhs == null || rhs == null)
return false;
//These cases should not be possible because of the way these classes are constructed.
// HOWEVER, the data member is public, so somebody _could_ do something stupid and make
// data=null, or make lhs.data == rhs.data, even though lhs!=rhs (above check)
//On the other hand, these are just optimizations, so it won't be an issue if we reomve them anyway,
// Unless someone does something really dumb like setting .data to null or resizing to an incorrect size,
// in which case things will crash, but any developer who does this deserves to have it crash painfully...
//if (lhs.data == rhs.data)
// return true;
//if (lhs.data == null || rhs.data == null)
// return false;
int i = lhs.Length;
//if (rhs.Length != i)
// return false;
while (--i >= 0)
{
if (!elementComparer.Equals(lhs[i], rhs[i]))
return false;
}
return true;
}
public override int GetHashCode(EnumIndexedArray<T, TEnum> enumIndexedArray)
{
//This doesn't work: for two arrays ar1 and ar2, ar1.GetHashCode() != ar2.GetHashCode() even when ar1[i]==ar2[i] for all i (unless of course they are the exact same array object)
//return engineArray.GetHashCode();
//Code taken from comment by Jon Skeet - of course - in http://stackoverflow.com/questions/7244699/gethashcode-on-byte-array
//31 and 17 are used commonly elsewhere, but maybe because everyone is using Skeet's post.
//On the other hand, this is really not very critical.
unchecked
{
int hash = 17;
int i = enumIndexedArray.Length;
while (--i >= 0)
{
hash = hash * 31 + elementComparer.GetHashCode(enumIndexedArray[i]);
}
return hash;
}
}
}
}
//Because of the above hack, this fails at compile time - as it should. It would, otherwise, only fail at run time.
//public class ThisShouldNotCompile : EConstraint.EnumIndexedArray<int, bool>
//{
//}
//An example
public enum AssetClass { Ir, FxFwd, Cm, Eq, FxOpt, Cr };
public class AssetClassArrayComparator<T> : EConstraint.EnumIndexedArrayComparator<T, AssetClass> { }
public class AssetClassIndexedArray<T> : EConstraint.EnumIndexedArray<T, AssetClass>
{
public AssetClassIndexedArray()
{
}
public AssetClassIndexedArray(T t) : base(t)
{
}
public AssetClassIndexedArray(T[] inputArray) : base(inputArray)
{
}
public AssetClassIndexedArray(EConstraint.EnumIndexedArray<T, AssetClass> inputArray) : base(inputArray)
{
}
public T Cm { get { return this[AssetClass.Cm ]; } set { this[AssetClass.Cm ] = value; } }
public T FxFwd { get { return this[AssetClass.FxFwd]; } set { this[AssetClass.FxFwd] = value; } }
public T Ir { get { return this[AssetClass.Ir ]; } set { this[AssetClass.Ir ] = value; } }
public T Eq { get { return this[AssetClass.Eq ]; } set { this[AssetClass.Eq ] = value; } }
public T FxOpt { get { return this[AssetClass.FxOpt]; } set { this[AssetClass.FxOpt] = value; } }
public T Cr { get { return this[AssetClass.Cr ]; } set { this[AssetClass.Cr ] = value; } }
}
//Inherit from AssetClassArray<T>, not EnumIndexedObjectArray<T, AssetClass>, so we get the benefit of the public access getters and setters above
public class AssetClassIndexedObjectArray<T> : AssetClassIndexedArray<T> where T : new()
{
public AssetClassIndexedObjectArray(bool bInitializeWithNewObjects = true)
{
if (bInitializeWithNewObjects)
{
for (int i = Length; i > 0; this[--i] = new T()) ;
}
}
}
EDIT:
If you are using C# 7.3 or later, PLEASE don't use this ugly solution. See Ian Goldby's answer from 2018.
You can always do some extra mapping to get an array index of an enum value in a consistent and defined way:
int ArrayIndexFromDaysOfTheWeekEnum(DaysOfWeek day)
{
switch (day)
{
case DaysOfWeek.Sunday: return 0;
case DaysOfWeek.Monday: return 1;
...
default: throw ...;
}
}
Be as specific as you can. One day someone will modify your enum and the code will fail because the enum's value was (mis)used as an array index.
For future reference the above problem can be summarized as follows:
I come from Delphi where you can define an array as follows:
type
{$SCOPEDENUMS ON}
TDaysOfTheWeek = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);
TDaysOfTheWeekStrings = array[TDaysOfTheWeek];
Then you can iterate through the array using Min and Max:
for Dow := Min(TDaysOfTheWeek) to Max(TDaysOfTheWeek)
DaysOfTheWeekStrings[Dow] := '';
Though this is quite a contrived example, when you are dealing with array positions later in the code I can just type DaysOfTheWeekStrings[TDaysOfTheWeek.Monday]. This has the advantage of the fact that I should the TDaysOfTheWeek increase in size then I do not have to remember the new size of the array etc..... However back to the C# world. I have found this example C# Enum Array Example.
It was a very good answer by #ian-goldby, but it didn't address the issue raised by #zar-shardan, which is an issue I hit myself. Below is my take on a solution, with a an extension class for converting an IEnumerable, and a test class below that:
/// <summary>
/// An array indexed by an enumerated type instead of an integer
/// </summary>
public class ArrayIndexedByEnum<TKey, TElement> : IEnumerable<TElement> where TKey : Enum
{
private readonly Array _array;
private readonly Dictionary<TKey, TElement> _dictionary;
/// <summary>
/// Creates the initial array, populated with the defaults for TElement
/// </summary>
public ArrayIndexedByEnum()
{
var min = Convert.ToInt64(Enum.GetValues(typeof(TKey)).Cast<TKey>().Min());
var max = Convert.ToInt64(Enum.GetValues(typeof(TKey)).Cast<TKey>().Max());
var size = max - min + 1;
// Check that we aren't creating a ridiculously big array, if we are,
// then use a dictionary instead
if (min >= Int32.MinValue &&
max <= Int32.MaxValue &&
size < Enum.GetValues(typeof(TKey)).Length * 3L)
{
var lowerBound = Convert.ToInt32(min);
var upperBound = Convert.ToInt32(max);
_array = Array.CreateInstance(typeof(TElement), new int[] {(int)size }, new int[] { lowerBound });
}
else
{
_dictionary = new Dictionary<TKey, TElement>();
foreach (var value in Enum.GetValues(typeof(TKey)).Cast<TKey>())
{
_dictionary[value] = default(TElement);
}
}
}
/// <summary>
/// Gets the element by enumerated type
/// </summary>
public TElement this[TKey key]
{
get => (TElement)(_array?.GetValue(Convert.ToInt32(key)) ?? _dictionary[key]);
set
{
if (_array != null)
{
_array.SetValue(value, Convert.ToInt32(key));
}
else
{
_dictionary[key] = value;
}
}
}
/// <summary>
/// Gets a generic enumerator
/// </summary>
public IEnumerator<TElement> GetEnumerator()
{
return Enum.GetValues(typeof(TKey)).Cast<TKey>().Select(k => this[k]).GetEnumerator();
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
Here's the extension class:
/// <summary>
/// Extensions for converting IEnumerable<TElement> to ArrayIndexedByEnum
/// </summary>
public static class ArrayIndexedByEnumExtensions
{
/// <summary>
/// Creates a ArrayIndexedByEnumExtensions from an System.Collections.Generic.IEnumerable
/// according to specified key selector and element selector functions.
/// </summary>
public static ArrayIndexedByEnum<TKey, TElement> ToArrayIndexedByEnum<TSource, TKey, TElement>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector, Func<TSource, TElement> elementSelector) where TKey : Enum
{
var array = new ArrayIndexedByEnum<TKey, TElement>();
foreach(var item in source)
{
array[keySelector(item)] = elementSelector(item);
}
return array;
}
/// <summary>
/// Creates a ArrayIndexedByEnum from an System.Collections.Generic.IEnumerable
/// according to a specified key selector function.
/// </summary>
public static ArrayIndexedByEnum<TKey, TSource> ToArrayIndexedByEnum<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector) where TKey : Enum
{
return source.ToArrayIndexedByEnum(keySelector, i => i);
}
}
And here are my tests:
[TestClass]
public class ArrayIndexedByEnumUnitTest
{
private enum OddNumbersEnum : UInt16
{
One = 1,
Three = 3,
Five = 5,
Seven = 7,
Nine = 9
}
private enum PowersOf2 : Int64
{
TwoP0 = 1,
TwoP1 = 2,
TwoP2 = 4,
TwoP3 = 8,
TwoP4 = 16,
TwoP5 = 32,
TwoP6 = 64,
TwoP7 = 128,
TwoP8 = 256,
TwoP9 = 512,
TwoP10 = 1_024,
TwoP11 = 2_048,
TwoP12 = 4_096,
TwoP13 = 8_192,
TwoP14 = 16_384,
TwoP15 = 32_768,
TwoP16 = 65_536,
TwoP17 = 131_072,
TwoP18 = 262_144,
TwoP19 = 524_288,
TwoP20 = 1_048_576,
TwoP21 = 2_097_152,
TwoP22 = 4_194_304,
TwoP23 = 8_388_608,
TwoP24 = 16_777_216,
TwoP25 = 33_554_432,
TwoP26 = 67_108_864,
TwoP27 = 134_217_728,
TwoP28 = 268_435_456,
TwoP29 = 536_870_912,
TwoP30 = 1_073_741_824,
TwoP31 = 2_147_483_648,
TwoP32 = 4_294_967_296,
TwoP33 = 8_589_934_592,
TwoP34 = 17_179_869_184,
TwoP35 = 34_359_738_368,
TwoP36 = 68_719_476_736,
TwoP37 = 137_438_953_472,
TwoP38 = 274_877_906_944,
TwoP39 = 549_755_813_888,
TwoP40 = 1_099_511_627_776,
TwoP41 = 2_199_023_255_552,
TwoP42 = 4_398_046_511_104,
TwoP43 = 8_796_093_022_208,
TwoP44 = 17_592_186_044_416,
TwoP45 = 35_184_372_088_832,
TwoP46 = 70_368_744_177_664,
TwoP47 = 140_737_488_355_328,
TwoP48 = 281_474_976_710_656,
TwoP49 = 562_949_953_421_312,
TwoP50 = 1_125_899_906_842_620,
TwoP51 = 2_251_799_813_685_250,
TwoP52 = 4_503_599_627_370_500,
TwoP53 = 9_007_199_254_740_990,
TwoP54 = 18_014_398_509_482_000,
TwoP55 = 36_028_797_018_964_000,
TwoP56 = 72_057_594_037_927_900,
TwoP57 = 144_115_188_075_856_000,
TwoP58 = 288_230_376_151_712_000,
TwoP59 = 576_460_752_303_423_000,
TwoP60 = 1_152_921_504_606_850_000,
}
[TestMethod]
public void TestSimpleArray()
{
var array = new ArrayIndexedByEnum<OddNumbersEnum, string>();
var odds = Enum.GetValues(typeof(OddNumbersEnum)).Cast<OddNumbersEnum>().ToList();
// Store all the values
foreach (var odd in odds)
{
array[odd] = odd.ToString();
}
// Check the retrieved values are the same as what was stored
foreach (var odd in odds)
{
Assert.AreEqual(odd.ToString(), array[odd]);
}
}
[TestMethod]
public void TestPossiblyHugeArray()
{
var array = new ArrayIndexedByEnum<PowersOf2, string>();
var powersOf2s = Enum.GetValues(typeof(PowersOf2)).Cast<PowersOf2>().ToList();
// Store all the values
foreach (var powerOf2 in powersOf2s)
{
array[powerOf2] = powerOf2.ToString();
}
// Check the retrieved values are the same as what was stored
foreach (var powerOf2 in powersOf2s)
{
Assert.AreEqual(powerOf2.ToString(), array[powerOf2]);
}
}
}

Categories