I would like to know the difference between two conventions:
Creating an abstract base class with an abstract method
which will be implemented later on the derived classes.
Creating an abstract base class without abstract methods
but adding the relevant method later on the level of the derived classes.
What is the difference?
Much like interfaces, abstract classes are designed to express a set of known operations for your types. Unlike interfaces however, abstract classes allow you to implement common/shared functionality that may be used by any derived type. E.g.:
public abstract class LoggerBase
{
public abstract void Write(object item);
protected virtual object FormatObject(object item)
{
return item;
}
}
In this really basic example above, I've essentially done two things:
Defined a contract that my derived types will conform to.
Provides some default functionality that could be overriden if required.
Given that I know that any derived type of LoggerBase will have a Write method, I can call that. The equivalent of the above as an interface could be:
public interface ILogger
{
void Write(object item);
}
As an abstract class, I can provide an additional service FormatObject which can optionally be overriden, say if I was writing a ConsoleLogger, e.g.:
public class ConsoleLogger : LoggerBase
{
public override void Write(object item)
{
Console.WriteLine(FormatObject(item));
}
}
By marking the FormatObject method as virtual, it means I can provide a shared implementation. I can also override it:
public class ConsoleLogger : LoggerBase
{
public override void Write(object item)
{
Console.WriteLine(FormatObject(item));
}
protected override object FormatObject(object item)
{
return item.ToString().ToUpper();
}
}
So, the key parts are:
abstract classes must be inherited.
abstract methods must be implemented in derived types.
virtual methods can be overriden in derived types.
In the second scenario, because you wouldn't be adding the functionality to the abstract base class, you couldn't call that method when dealing with an instance of the base class directly. E.g., if I implemented ConsoleLogger.WriteSomethingElse, I couldn't call it from LoggerBase.WriteSomethingElse.
The idea of putting abstract methods in a base class and then implementing them in subclasses is that you can then use the parent type instead of any specific subclass. For example say you want to sort an array. You can define the base class to be something like
abstract class Sorter {
public abstract Array sort(Array arr);
}
Then you can implement various algorithms such as quicksort, mergesort, heapsort in subclasses.
class QuickSorter {
public Array sort(Array arr) { ... }
}
class MergeSorter {
public Array sort(Array arr) { ... }
}
You create a sorting object by choosing an algorithm,
Sorter sorter = QuickSorter();
Now you can pass sorter around, without exposing the fact that under the hood it's a quicksort. To sort an array you say
Array sortedArray = sorter.sort(someArray);
In this way the details of the implementation (which algorithm you use) are decoupled from the interface to the object (the fact that it sorts an array).
One concrete advantage is that if at some point you want a different sorting algorithm then you can change QuickSort() to say MergeSort in this single line, without having to change it anywhere else. If you don't include a sort() method in the parent, you have to downcast to QuickSorter whenever calling sort(), and then changing the algorithm will be more difficult.
In the case 1) you can access those methods from the abstract base type without knowing the exact type (abstract methods are virtual methods).
The point of the abstract classes is usually to define some contract on the base class which is then implemented by the dervied classes (and in this context it is important to recognize that interfaces are sort of "pure abstract classes").
Uhm, well, the difference is that the base class would know about the former, and not about the latter.
In other words, with an abstract method in the base class, you can write code in other methods in the base class that call that abstract method.
Obviously, if the base class doesn't have those methods... you can't call them...
An abstract function can have no functionality. You're basically saying, any child class MUST give their own version of this method, however it's too general to even try to implement in the parent class. A virtual function, is basically saying look, here's the functionality that may or may not be good enough for the child class. So if it is good enough, use this method, if not, then override me, and provide your own functionality...
And of course, if you override a virtual method, you can always refer to the parent method by calling base.myVirtualMethod()
Okay, when you see a method like this:
A.Foo();
What you really have (behind the scenes) is a signature like this.
Foo(A x);
And when you call A.Foo() you're really calling Foo(this) where this is a reference to an object of type A.
Now, sometimes you'd like to have Foo(A|B|C|D...) where Foo is a method that can take either a type A, or B, or C, or D. But you don't want to worry about what type you're passing, you just want it to do something different based on the type that was passed in. Abstract methods let you do that, that's their only purpose.
Related
I have and interface defining a bunch of different properties and a State property that is a compact summary of all the other.
So I have a common interface named IStateful
interface IStateFul
{
string State { get; set; }
}
I have some classes implementing this interface in different ways - one asks for user input, another read the values from a service, one could get data from a DB.
But all of them have to compute the state in exactly the same way to be "compatible" with each other. So the implementation of State in the different classes have to use the other property in exactly the same way to compute the state string.
As of today I copy and paste the state implementing method from a class to the other. This is obviously the worst option.
Other options could be
Common abstract base class (I tried this and it's ankward, the abstract class have to implement abstractly all the interface method that it does not care at all, then the derived classes have to override them all)
Another class with a static method to be called (a "serializer" ???)
An extension method for the interface (just the same as option 2 but with different sintactic sugar)
There is a common pattern to follow? Or is there a basic design flaw that I'm missing to see?
In an abstract class you should only mark the methods that need to be overridden as abstract, otherwise mark them virtual:
public abstract class MyBase
{
protected virtual void DoSomething()
{
//My Implementation here
Console.WriteLine("Base implementation");
}
//Will give compile-time error if you don't override this in derived class
protected abstract void DoSomethingElse();
}
Then in your derived classes you can use either the base implementation of the virtual methods or override them and the abstract methods will need to be implemented:
public class Derived : MyBase
{
protected override void DoSomethingElse()
{
Console.WriteLine("Derived implementation");
}
}
public static void Main(String[] args)
{
var derived = new Derived();
derived.DoSomething(); //Base Implementation
derived.DoSomethingElse(); //Derived implementation
}
If using an interface is not absolutely required by your design, you can use an abstract class instead of the interface and not both at the same time. It will work practically the same way but allows you to define a method/property implementation.
Your case is a common pattern addressed by abstract classes.
I would define the interface IRequireState
public interface IRequireState
{
bool GetState();
}
And use that for all classes requiring state. There is a programming principle called "The Interface Segregation Principle" (ISP) which basically states that you should ONLY implement an interface in the classes where it makes sense to do so.
According to the Open Closed Principle you can always subtitute a derivative, so for example, if you have 3 classes, all implementing the IRequireState you can then type code like:
foreach(var job in myListOfJobs)
if(job.GetType() == typeof(IRequireState))
((IRequireState)job).GetState();
I hope that helps you on the path to good Object Oriented design. Make sure to read up on the SOLID principles. They help alot in these questions.
If you have some jobs that do the same GetState() thing, then it would make sense to have a base class which implements the same interface, but you're then free to ALSO have jobs with various, different GetState() implementations.
I came across a bit of code and am not quite sure why it works or why you'd want to do it this way. I would love it if someone could tear it down for me. I do understand well OOP concepts, I simply have not seen this technique before. Thanks
Here is the example:
public interface IInterface
{
IEnumerable<object> DoSomething();
}
public abstract class MyBase : IInterface
{
protected MyBase()
{
}
IEnumerable<object> IInterface.DoSomething()
{
return DoSomething();
}
protected virtual IEnumerable<object> DoSomething()
{
return new List<object>();
}
}
public class MyClass : MyBase
{
internal MyClass() : base() {}
protected override IEnumerable<object> DoSomething()
{
return new List<object>();
}
}
If you're talking about this line of code:
IEnumerable<object> IInterface.DoSomething()
That's called explicit interface implementation.
That forces consumers to access this method only via the interface,
and not to your class directly.
The above method is not private, it's just not explicitly set as public in code. In fact, with explicit interface implementation, you can't even use access modifiers.
One of the reasons for taking this approach is to force better coding practices. If you're the developer of this class, and you know it should only be accessed via an interface, this is the way to force that to happen.
In C#, explicitly implementing an interface by using a sealed method which does nothing but call a protected virtual method allows derived-classes great flexibility with regard to what they want to do with the interface; the method should be given a name other than the name of the interface method (in the above example, it could perhaps be DoSomething_Prot). Explicit interface implementation makes it impossible for a derived class re-implementation to chain to the base-class implementation, but if the only thing the base-class implementation is doing is chaining to a protected virtual or abstract method, there's no need for a derived class to re-implement the interface. Further, even if the derived class were to re-implement the interface either deliberately or as a result of covariance it would still be able to invoke the "guts" of the base-class implementation using the protected method from the base class.
Putting all the code for the interface implementation in a public virtual method which implicitly implements the interface is better than putting code in an explicit implementation, since derived-class code can generally chain to the private member. Such an approach, however, requires that all derived classes publicly implement the method with the same signature. While it may seem like what one would naturally expect anyway, it isn't always. For example, in the above example a derived class may wish to have its DoSomething method return a type other than IEnumerable<object> (e.g. it might return an IList<Kangaroo>). The method which implements the interfae would still have to return precise type IList<Kangaroo>, but code that knew it was dealing with the derived type could use the return type as an IList<Kangaroo> without a typecast. If the actual code for the method were in a method called DoSomething_Prot(), the derived class could both override DoSomething_Prot and declare a new public IList<Kangaroo> DoSomething(). If the base-class method were called DoSomething(), there would be no way for the derived class to both override it and define a new method with a different return type.
Off the top of my head I'm having trouble of thinking of a practical use for this, but one thing that this accomplishes is that objects of type MyBase or its subclasses do not have a public or internally visible DoSomething() method:
MyClass a = new MyClass();
a.DoSomething(); // Compile error
but the DoSomething() method is visible when the object is used as an IInterface:
void AMethod(IInterface i)
{
i.DoSomething(); // compiles just fine
}
void AnotherMethod(MyBase a)
{
AMethod(a); // as does this
}
Making the non-explicit version protected virtual allows subclasses to override the behavior of the DoSomething() method.
This is a way of implementing a method that cannot be called directly when working with MyBases as MyBases, but can be used when they are being treated as IInterfaces. There's nothing to prevent someone from doing this: ((IInterface)a).DoSomething(); but it seems the hiding is done for semantic reasons.
My take on this is that it is an implementation of the template pattern as described here. Typically you see the template pattern used along with the strategy pattern. In your particular example, users of the IInterface could call the DoSomething
method without regard for how the concrete subclass implemented the method.
This kind of OO programming allows you to take advantage of quite a few other patterns such as the AbstractFactory for creating your concrete subclasses of MyBase which implement IInterface.
The important thing to note is that the two DoSomething methods have nothing to do with each other - they just happen to have the same name.
Basically, you've just got a normal interface that exposes a DoSomething method, so the caller who has a IInterface object can call it. It will then in turn pass the call on to the appropriate implementation of the protected DoSomething method, which can either be from the base class or the derived one.
Explicit implementation like this forces you to code by contract instead of implementation - doesn't really provide any actual protection, just makes it more difficult to accidentally use the wrong type when you declare your variable. They just as easily could have done:
public abstract class MyBase : IInterface {
public virtual IEnumerable<object> DoSomething() {
// blah
}
}
public class MyClass : MyBase {
public override IEnumerable<object> DoSomething() {
// blah
}
}
but that would let you call DoSomething on a variable declared as MyClass or MyBase, which you may not want them to do.
I want to know the reason behind the design of restricting Abstract Methods in Non Abstract Class (in C#).
I understand that the class instance won't have the definition and thus they wont be callable, but when static methods are defined,they are excluded from the instance too. Why abstract methods are not handled that way, any specific reason for the same?
They could be allowed in concrete class and the deriving class can be forced to implement methods, basically that is what, is done in case of abstract methods in an abstract class.
First, I think that what you're asking doesn't logically make sense. If you have an abstract method, it basically means that the method is unfinished (as #ChrisSinclair pointed out). But that also means the whole class is unfinished, so it also has to be abstract.
Or another way to put it: if you had an abstract method on a class that wasn't abstract, that would mean you had a method that cannot be called. But that means the method is not useful, you could remove it and it would all work the same.
Now, I'll try to be more concrete by using an example: imagine the following code:
Animal[] zoo = new Animal[] { new Monkey(), new Fish(), new Animal() };
foreach (Animal animal in zoo)
animal.MakeSound();
Here, Animal is the non-abstract base class (which is why I can put it directly into the array), Monkey and Fish are derived from Animal and MakeSound() is the abstract method. What should this code do? You didn't state that clearly, but I can imagine few options:
You can't call MakeSound() on a variable typed as Animal, you can call it only using a variable typed as one of the derived classes, so this is a compile error.
This is not a good solution, because the whole point of abstract is to be able to treat instances of derived classes as the base class, and still get behaviour that's specific to the derived class. If you want this, just put a normal (no abstract, virtual or override) method into each derived class and don't do anything with the base class.
You can't call MakeSound() on an object whose runtime type is actually Animal, so this is a runtime error (an exception).
This is also not a good solution. C# is a statically typed language and so it tries to catch errors like “you can't call this method” at compile time (with obvious exceptions like reflection and dynamic), so making this into a runtime error wouldn't fit with the rest of the language. Besides, you can do this easily by creating a virtual method in the base class that throws an exception.
To sum up, you want something that doesn't make much sense, and smells of bad design (a base class that behaves differently than its derived classes) and can be worked around quite easily. These are all signs of a feature that should not be implemented.
So, you want to allow
class C { abstract void M(); }
to compile. Suppose it did. What do you then want to happen when someone does
new C().M();
? You want an execution-time error? Well, in general C# prefers compile-time errors to execution-time errors. If you don't like that philosophy, there are other languages available...
I think you've answered your own question, an abstract method isn't defined initially. Therefore the class cannot be instanciated. You're saying it should ignore it, but by definition when adding an abstract method you're saying "every class created from this must implement this {abstract method}" hence the class where you define the abstract class must also be abstract because the abstract method is still undefined at that point.
The abstract class may contain abstract member. There is the only method declaration if any method has an abstract keyword we can't implement in the same class. So the abstract class is incompleted. That is why the object is not created for an abstract class.
Non-abstract class can't contain abstract member.
Example:
namespace InterviewPreparation
{
public abstract class baseclass
{
public abstract void method1(); //abstract method
public abstract void method2(); //abstract method
public void method3() { } //Non- abstract method----->It is necessary to implement here.
}
class childclass : baseclass
{
public override void method1() { }
public override void method2() { }
}
public class Program //Non Abstract Class
{
public static void Main()
{
baseclass b = new childclass(); //create instance
b.method1();
b.method2();
b.method3();
}
}
}
You can achieve what you want using "virtual" methods but using virtual methods can lead to more runtime business logic errors as a developer is not "forced" to implement the logic in the child class.
I think there's a valid point here. An abstract method is the perfect solution as it would "enforce" the requirement of defining the method body in children.
I have come across many many situations where the parent class had to (or it would be more efficient to) implement some logic but "Only" children could implement rest of the logic"
So if the opportunity was there I would happily mix abstract methods with complete methods.
#AakashM, I appreciate C# prefers compile time errors. So do I. And so does anybody. This is about thinking out-of-the-box.
And supporting this will not affect that.
Let's think out of the box here, rather than saying "hurrah" to big boy decisions.
C# compiler can detect and deny someone of using an abstract class directly because it uses the "abstract" keyword.
C# also knows to force any child class to implement any abstract methods. How? because of the use of the "abstract" keyword.
This is pretty simple to understand to anyone who has studied the internals of a programming language.
So, why can't C# detect an "abstract" keyword next to a method in a normal class and handle it at the COMPILE TIME.
The reason is it takes "reworking" and the effort is not worth supporting the small demand.
Specially in an industry that lacks people who think out of the boxes that big boys have given them.
It's still not clear why you would want that, but an alternative approach could be to force derived classes to provide a delegate instance. Something like this
class MyConcreteClass
{
readonly Func<int, DateTime, string> methodImpl;
// constructor requires a delegate instance
public MyConcreteClass(Func<int, DateTime, string> methodImpl)
{
if (methodImpl == null)
throw new ArgumentNullException();
this.methodImpl = methodImpl;
}
...
}
(The signature string MethodImpl(int, DateTime) is just an example, of course.)
Otherwise, I can recommend the other answers to explain why your wish probably isn't something which would make the world better.
So the answers above are correct: having abstract methods makes the class inherently abstract. If you cannot instance part of a class, then you cannot instance the class itself. However, the answers above didn't really discuss your options here.
First, this is mainly an issue for public static methods. If the methods aren't intended to be public, then you could have protected non-abstract methods, which are allowed in an abstract class declaration. So, you could just move these static methods to a separate static class without much issue.
As an alternative, you could keep those methods in the class, but then instead of having abstract methods, declare an interface. Essentially, you have a multiple-inheritance problem as you want the derived class to inherit from two conceptually different objects: a non-abstract parent with public static members, and an abstract parent with abstract methods. Unlike some other frameworks, C# does permit multiple inheritance. Instead, C# offers a formal interface declaration that is intended to fill this purpose. Moreover, the whole point of abstract methods, really, is just to impose a certain conceptual interface.
I have a scenario very similar to what the OP is trying to achieve. In my case the method that I want to make abstract would be a protected method and would only be known to the base class. So the "new C().M();" does not apply because the method in question is not public. I want to be able to instantiate and call public methods on the base class (therefore it needs to be non-abstract), but I need these public methods to call a protected implementation of the protected method in the child class and have no default implementation in the parent. In a manner of speaking, I need to force descendants to override the method. I don't know what the child class is at compile time due to dependency injection.
My solution was to follow the rules and use a concrete base class and a virtual protected method. For the default implementation, though, I throw a NotImplementedException with the error "The implementation for method name must be provided in the implementation of the child class."
protected virtual void MyProtectedMethod()
{
throw new NotImplementedException("The implementation for MyProtectedMethod must be provided in the implementation of the child class.");
}
In this way a default implementation can never be used and implementers of descendant implementations will quickly see that they missed an important step.
If I have a project that contains similar classes and some may use the same implementation, but in most cases they implement their own way of handling the methods defined in an interface or abstract class. I am trying to figure out if an interface/abstract class is better or not. I don't get the point of an interface if you can just use an abstract class with virtual abstract methods.
Here is an interface:
public interface IAthlete
{
void Run();
}
Here is an abstract class:
public abstract class Athlete
{
public abstract void Run();
}
Here is an implementation of the interface:
public class Sprinter : IAthlete
{
public void Run()
{
Console.WriteLine("Running Fast....");
}
}
Here is an extension of the abstract class:
public class MarathonRunner : Athlete
{
public override void Run()
{
Console.Write("Jogging....");
}
}
Now if I decide to add a method called Stop to either the interface or abstract method, Sprinter and MarathonRunner both break and because I can provide some default implementation to abstract, it seems like a better choice. Am I missing something?
There are 2 main differences between Interfaces and abstract super-classes:
Abstract Classes
code reuse is possible by using an abstract super-class
you can only inherit one super-class
Interfaces
every method has to be implemented in each sub-class
a class can inherit more than 1 interface (multiple inheritance)
In the case where all you have is one piece of commonality to extract, you're quite right that there isn't a substantive difference between the two. But this is rather like saying "in the case of adding 1 to 2, there's no difference between an int and a double" - it's technically true, but not a particularly useful guide to how to think.
In case with any more complexity than this (that is, in most cases) there will be more classes, and pieces of common baheaviour to extract. Then you have to start making a significant choice between class inheritance and interface implementation, taking into account things like:
you only get one shot at choosing a base class, but you can implement as many interfaces as you like
if you want your 'parent' to do any work, it needs to be a class not an interface
and so on.
In general, the semantics of your classes should guide you - where the 'things' have an "IS A" relationship (like MarathonRunner to Athlete), inheritance is suggested; where the 'things' have an "I CAN FULFIL THE CONTRACT OF A" (like, say, Person to Runner), interface implementation is suggested.
Interfaces are a btter way to go as the current consensus amongst the .NET developer comunity is that you should favour composition over inheritance, so Interfaces are a much better strategy (think of Injection Containers and how usefull they are as well, and lets not get started on unit testing).
also, classes can implement many interfaces but can only inherit from one class (abstract or otherwise). also structs can implement interfaces but not inherit from another class.
At the runtime level, interfaces are more efficient as the runtime doesnt have to walk the inheritance stack in order to work out the polymorphic implications of calling a specific member.
Interfaces are a very useful feature, and are very similar to abstract classes, and in some circumstances, exchangable with abstract classes.
But, don't jump straight to interfaces, unleass you have to (very common antipattern in Java developers). I suggest, by reading your example, to stick to abstract classes.
Most of the times I only use interfaces, when I have several non related classes, and I need them to have common members, as If these classes came from the same base class.
In your example, you are trying to find what happen if you need a new stop method, when adding a base virtual method. These can be solved in a different approach, that is not Abstract Classes versus interfaces.
There are 3 choices:
(1) Add an abstract method that coerce the programmer to override it, in order to instantiate objects.
(2) Add a new virtual method that does something, but doesn't have to be overriden.
(3) Add a new method that does nothing, maybe applies to your case.
// cannot instantiate an abstract class
public abstract class Athlete
{
// helper method:
public /* non-abstract */ void DoNothing()
{
// does nothing on purpouse !!!
}
// (1) virtual & abstract method, must be overriden
public abstract void Run();
// (2) new virtual method, doesn't need to be overriden,
// but, maybe you dont like what it does
public virtual void Stop()
{
Message.Show("Stop !!!");
}
// (3) new virtual method, doesn't need to be overriden,
// its safe to be called
public virtual void TakeBreak()
{
// works like an abstract virtual method, but, you don't need to override
DoNothing();
}
} // class Athlete
// in a non abstract class, you must override all abstract methods
public /* non-abstract */ class Runner: Athlete
{
public override void Run()
{
DoNothing();
}
public override void Stop()
{
DoNothing();
}
// don't need to override this method
// public virtual void TakeBreak();
} // class Trekker
// ...
Runner ARunner = new Runner();
ARunner.Run();
ARunner.Stop();
ARunner.TakeBreak();
The third kind of virtual method, that may apply to your example, doesnt' have a special name, I already post a question about it on stackoverflow, but, nobody knew an special name for this case.
Cheers.
An important difference between interfaces and abstract classes is how their members handle multi-generational inheritance. Suppose there's an abstract class BaseFoo with abstract method Bar and interface IFoo with method Boz; class Foo inherits BaseFoo and implements IFoo, and class DerivedFoo inherits from Foo.
If DerivedFoo needs to override BaseFoo.Bar, it may do so, and its override may call base.Bar() if it needs to use its parent's implementation. If Foo implements Boz implicitly using a virtual method, then DerivedFoo may override that method and call base.Boz() (the override being a function of the class rather than the interface) but if Foo explicitly implements IFoo.Boz, then the only way for DerivedFoo to change the behavior of IFoo.Boz will be to re-implement it. If it does so, then Foo's implementation of IFoo.Boz will become inaccessible, even within DerivedFoo's implementation of the same interface member.
I am surprised to know that an abstract class in C# is possible with no abstract methods also.
abstract class AbstractDemo
{
public void show()
{
Console.WriteLine("In Show Method");
}
}
class MainDemo:AbstractDemo
{
public static void Main()
{
Console.WriteLine("In Main Method");
}
}
Any explaination ?
Sometimes you don't want to give the possibility to instantiate a class but you need this class as a base class for other classes.
The reason for choosing abstract classes over interfaces is that you can provide some basic implementation.
This is entirely valid, and occasionally useful if you want to provide event-like behaviour: provide an abstract class with all the "event handlers" implemented as virtual methods with a default behaviour of doing nothing.
I've also personally used this a lot for abstract remote API client classes where all methods throw exceptions: they're abstract for the purposes of test doubles, expecting our implementations to be the only production implementations, but allowing users to create their own test doubles either by hand or via mocking frameworks. Making the methods virtual instead of abstract means that new RPCs can be added without that being a breaking change.
A derived class can then override some of the methods, but doesn't have to override any specific one, because nothing's abstract. It still makes sense for the class to be abstract because an instance of the base class would be pointless (as everything would be a no-op).
This pattern is much more common in Java than C#, however - as in C# you'd normally just use "proper" events.
An abstract class is a class that must be extended before it can be used. This does not it any way mean that the function themselves must be abstract.
Take for example an Animal class
public abstract class Animal
{
void Move()
{
//whatever
}
}
public class Fish : Animal
{
void Swim()
{
}
}
public class Dog : Animal
{
void Bark()
{
}
}
All animals can move but only the fish can swim and the dog can bark.
Or for a real life example. I have an Asp.net MVC base controller I use in my application. It has some basic methods I need very often like GetCurrentUser() and a function I wrote to help with localization. It also takes care of tracking so I don't have to rewrite that code in all of my controllers. The class has about 200 lines of code but not a single abstract method.
I think you're confusing abstract classes with interfaces. Interfaces can't have methods with body, abstract classes can. There are times when you want to prevent user from instantiating an object of a specific class; but still provide some base functionality for the classes that derive from it; this is what an abstract class is useful for.
If your class is just a base for other classes and it does not have an full usablility - in other words as a base itselfe is not usable at all then you want to prevent from creating instances of it. In this case you can make abstract class without abstract members.
You could use abstract keyword on a class just to signal the compiler that it can only used inheriting from it, and not directly; In this case you are not oblied to put abstract member on the class.
This is equivalent to put in the class only one protected constructor, but using abstract is more clear and understandable.
No better explanation than MSDN it self
http://msdn.microsoft.com/en-us/library/aa645615(v=VS.71).aspx
An abstract class cannot be instantiated directly, and it is a
compile-time error to use the new
operator on an abstract class. While
it is possible to have variables and
values whose compile-time types are
abstract, such variables and values
will necessarily either be null or
contain references to instances of
non-abstract classes derived from the
abstract types.
An abstract class is permitted (but not required) to contain abstract
members.
An abstract class cannot be sealed.
We have heard that in abstract class, there must be an abstarct member. But when I compile the abstarct class without an abstract method, it compiles. It gives me surprise. Now I am unable to find the article which explain exact behavior of an abstarct class.