void MyMethod(string something, params object[] parameters)
{
foreach (object parameter in parameters)
{
// Get the name of each passed parameter
}
}
For example, if I call the method in the following way, I want to get the names "myFirstParam" and "anotherParam".
string myFirstParam = "some kind of text";
string anotherParam = 42;
MyMethod("test", myFirstParam, anotherParam);
Perhaps reflection is the answer? Perhaps it's just not possible? I am aware of the existance of this question, but that solution won't work here.
(Please do not respond with "This is not a good idea". That is not my question.)
This is totally impossible.
Here are just a few cases where it doesn't even make sense:
MyMethod("abc", new object[5]);
MyMethod("abc", "def");
MyMethod("abc", var1 + var2);
MyMethod("abc", SomeMethod());
MyMethod("abc", b ? a : c);
MyMethod("abc", new object());
MyMethod("abc", null);
In fact, local variable names aren't even compiled into the assembly.
Building on #shingo's answer.
Since C#10, you can get the name of the variable passed using CallerArgumentExpressionAttribute Class.
This is .NET6:
using System.Runtime.CompilerServices;
void F(object arg1, [CallerArgumentExpression("arg1")] string arg1Exp = "?")
=> Console.WriteLine($"{arg1Exp} => {arg1}");
var var1 = "C#10";
var var2 = "_";
var b = var1.Length > 7;
F(var1);
F(new object[5]);
F("def");
F(var1 + var2);
F(SomeMethod());
F(b ? var1 : var2);
F(new object());
F(null);
F(int.Parse(var1.Substring(2)) switch {
>= 10 => "Supported",
_ => "Not supported"
});
int SomeMethod() => 7 + 8;
Output (which seems magical):
var1 => C#10
new object[5] => System.Object[]
"def" => def
var1 + var2 => C#10_
SomeMethod() => 15
b ? var1 : var2 => _
new object() => System.Object
null =>
int.Parse(var1.Substring(2)) switch {
>= 10 => "Supported",
_ => "Not supported"
} => Supported
C# 10 has introduced a new attribute CallerArgumentExpressionAttribute.
Getting names from params parameters is still impossible, but if you have fixed number of parameters (like overload methods), then it's possible.
void MyMethod(object p0,
[CallerArgumentExpression("p0") string p0exp = "p0")
{
Console.WriteLine(p0exp);
}
void MyMethod(object p0, object p1,
[CallerArgumentExpression("p0") string p0exp = "p0",
[CallerArgumentExpression("p1") string p1exp = "p1")
{
}
In addition to SLaks's answer - variable names are not available at run-time at all. The variables are represented by stack slots and are addressed by an index. Thus you can't get this information even for the example you provided, not to mention all these examples SLaks provided. Reflection is no help here. Nothing is.
It is not possible, and I wonder why you would need that.
I RAISE THIS QUESTION FROM THE DEAD!
Check out C# 6.0's new nameof() operator. It allows you to do exactly what you want, and it actually isn't always a bad idea.
A good use case is Argument Exceptions, or INotifyPropertyChanged. (Especially when you get inheritance in the mix)
Example:
interface IFooBar
{
void Foo(object bar);
}
public class FooBar : IFooBar
{
public void Foo(object bar)
{
if(bar == null)
{
//Old and Busted
//throw new ArgumentException("bar");
//The new HOTNESS
throw new ArgumentException(nameof(bar)); // nameof(bar) returns "bar"
}
//....
}
}
Now, if you were rename the parameter 'bar' on the method 'Foo' in the interface IFooBar, your argument exceptions would update accordingly (prevents you from forgetting to change the "bar" string)
Pretty neat actually!
What about this;
void MyMethod(string something, object parameters)
{
RouteValueDictionary dic = HtmlHelper.AnonymousObjectToHtmlAttributes(options);
}
MyMethod("test", new { #myFirstParam=""some kind of text", anotherParam=42);
This has already been implemented in System.Web.MVC.Html InputExtension.
I was inspired and using this technique in my code.
It is very flexible.
Dont bother about "Html" naming in the helper methods. There is nothing to do with html, or html attributes inside the helper method.
It just converts named, anonymous arguments to RouteValueDictionary, a special dictionary having IDictionary<string,object> interface where key holds the argument name and object is the value of the argument.
Using reflection, and #Martin's example of null argument testing:
using System.Reflection;
public SomeMethod(ClassA a, ClassB b, ClassC c)
{
CheckNullParams(MethodBase.GetCurrentMethod(), a, b, c);
// do something here
}
accessing the parameter names:
public void CheckNullParams(MethodBase method, params object[] args)
{
for (var i=0; i < args.Count(); i++)
{
if (args[i] == null)
{
throw new ArgumentNullException(method.GetParameters()[i].Name);
}
}
}
This works with constructors and public methods, but I haven't tested beyond unit tests within VS, so possibly there are some runtime JIT issues (reading through articles referenced above).
EDIT: Just noticed, this is essentially the same as linked answer.
Related
When i get exception, it quite hard read error stack if I have lamda functions.
For example for this code:
public void Test()
{
Func<AnotherClass, bool> myLambda = (AnotherClass p) =>
{
if (p != null)
{
throw new Exception("Exception in method");
}
return true;
};
AnotherClass ac = new AnotherClass();
var r = myLambda(ac);
}
public class AnotherClass
{
}
I will get stack error like:
"CSharpTests.exe Error: 0 : System.Exception: Exception in method
at CSharpTests.MarketingEntityManager.<>c.<Test>b__0_0(AnotherClass p)
at CSharpTests.MarketingEntityManager.Test()
at CSharpTests.DisplayClassTest.Test()"
It was asked many times, what is <>c.b__0_0
But additionally interesting, may be why myLabda name I used in my code, was not used for generate name, and b__0_0 was generated.
and where is DisplayName text?
Your anonymous method isn't named myLambda. A delegate to the anonymous method is assigned to the myLambda local variable. In truth, your anonymous method has a "secret" name, given to it by the compiler, and it is <Test>b__0_0 (and it is then "hidden" in a nested class named <>c), but this name can change between compilations based on the number of other anonymous methods in the same class.
To give a (degenerate) example (that is very common in Javascript), this is legal:
((Func<AnotherClass, bool>)((AnotherClass p) =>
{
if (p != null)
{
throw new Exception("Exception in method");
}
return true;
}))(new AnotherClass());
Here we don't assign the delegate of the method to any variable, but we use it immediately to invoke the class. The number of brackets is terrible :-)
Another classical example:
var coll = new int[5];
var enu = coll.Select(x => x + 1).ToArray();
Here x => x + 1 is an anonymous method (of which a delegate is created by the .NET and passed to Enumerable.Select)... There is no name anywhere.
myLamda is just the name of the delegate that references your method. It´s not the name of that method. The latter is generated from the compiler, you can´t change it.
To clearify this a little imagine you didn´t have an anonymous method at all and would reference named method with your delegate:
myLambda = MyMethod;
Now it´s pretty clear that the stacktrace would contain MyMethod, not myLambda, wouldn´t it?
I'm trying to call a function in a dynamic linq select statement, but im getting error:
No property or field 'A' exists in type 'Tuple2'
Example code:
void Main()
{
var a = new Tuple<int, int>(1,1);
var b = new[]{ a };
var q = b.AsQueryable().Select("A.Test(it.Item1)");
q.Dump();
}
public static class A
{
public static int Test(int i)
{
return i++;
}
}
How should I change my code to get this working?
If I call built in function Convert.ToInt32 for example it works fine.
var q = b.AsQueryable().Select("Convert.ToInt32(it.Item1)");
Also how do I cast a property using dynamic linq?
var q = b.AsQueryable().Select("((float)it.Item1)");
I'll say that the dynamic-linq isn't "strong enough" to do these things. It looks for methods only in the given objects and some special classes: Math, Convert, the various base types (int, float, string, ...), Guid, Timespan, DateTime
The list of these types is clearly visible if you use ilspy/reflector on the file. They are in System.Linq.Dynamic.ExpressionParser.predefinedTypes .
Now, clearly I could be wrong, but this works: .Select("Guid.NewGuid().ToString()").Cast<string>().ToArray()
showing that it's quite probable that that is the "correct" list.
There is an article here on how to modify Dynamic LINQ if you are interested http://www.krizzcode.com/2012/01/extending-dynamiclinq-language.html
Now, an intelligent man would take the source of dynamic linq and simply expand that array... But here there aren't intelligent men... There are only programmers that want blood! Blood but especially innards!
var type = typeof(DynamicQueryable).Assembly.GetType("System.Linq.Dynamic.ExpressionParser");
FieldInfo field = type.GetField("predefinedTypes", BindingFlags.Static | BindingFlags.NonPublic);
Type[] predefinedTypes = (Type[])field.GetValue(null);
Array.Resize(ref predefinedTypes, predefinedTypes.Length + 1);
predefinedTypes[predefinedTypes.Length - 1] = typeof(A); // Your type
field.SetValue(null, predefinedTypes);
Do this (with the types you want) BEFORE the first call to Dynamic Linq (because after the first call the methods/properties of these types are cached)
Explanation: we use reflection to add our object(s) to this "special list".
I know there is already an accepted answer on this but it did not work for me. I am using Dynamic Linq 1.1.4. I wanted to do a query like this
$.GetNewestRisk() == null
Where GetNewestRisk() is a public method on the object represented by $. I kept getting this error "Error running query, Methods on type 'Patient' are not accessible (at index 2)".
I found in the source code there is a GlobalConfig object that allows a custom provider to be assigned which will hold all of the types you may want to work with. Here is the source code for the custom provider:
public class CustomTypeProvider: IDynamicLinkCustomTypeProvider
{
public HashSet<Type> GetCustomTypes()
{
HashSet<Type> types = new HashSet<Type>();
types.Add(typeof(Patient));
types.Add(typeof(RiskFactorResult));
types.Add(typeof(PatientLabResult));
types.Add(typeof(PatientVital));
return types;
}
}
Here is how I am using it:
System.Linq.Dynamic.GlobalConfig.CustomTypeProvider = new CustomType();
After making this call I am able to call methods on the objects inside of the expression.
#xanatos answer doesn't work for .Net Core version. So I've found something similar related by #Kent on the System.Dynamic.Linq.Core tests DynamicExpressionParserTests written by the library's author himself.
The given TestCustomTypeProviderClass allows you to use the DynamicLinqType class annotation which is pretty usefull for this problem.
To answer to question, you then just needed to defined the class (ensure to annotate with DynamicLinqType) :
[DynamicLinqType]
public static class A
{
public static int Test(int i)
{
return i++;
}
}
Add a customTypeProvider as mentioned above :
private class TestCustomTypeProvider : AbstractDynamicLinqCustomTypeProvider, IDynamicLinkCustomTypeProvider
{
private HashSet<Type> _customTypes;
public virtual HashSet<Type> GetCustomTypes()
{
if (_customTypes != null)
{
return _customTypes;
}
_customTypes = new HashSet<Type>(FindTypesMarkedWithDynamicLinqTypeAttribute(new[] { GetType().GetTypeInfo().Assembly }));
return _customTypes;
}
}
and use a ParsingConfig with the configurable Select to call it :
var config = new ParsingConfig
{
CustomTypeProvider = new TestCustomTypeProvider()
};
var q = b.AsQueryable().Select(config, "A.Test(it.Item1)");
#Armand has put together a brilliant solution for this issue, and being the only solution I was able to find regarding this I want to add to it for anyone who tries the same approach.
The class that is marked with...
[DynamicLinqType]
... must be taken into consideration when you run the following line:
FindTypesMarkedWithDynamicLinqTypeAttribute(new[] { GetType().GetTypeInfo().Assembly })
In the solution provided above, this assumes the class that contains the function to be evaluated is on the same class the code currently resides in. If the methods are to be used outside of said class, the assembly will need to change.
FindTypesMarkedWithDynamicLinqTypeAttribute(new[] { typeof(AnotherClassName).Assembly })
Nothing changes from the solution above, this is just for clarification for anyone attempting to use it.
As regards the current version (1.2.19) of Dynamic LINQ, you will probably get another exception:
System.Linq.Dynamic.Core.Exceptions.ParseException : Enum value 'Test' is not defined in enum type 'A'
To make DLINQ know your type 'A', you have two options:
Set up parsing config with your own custom types provider where you directly specify the type 'A'.
Mark your type with the attribute [DynamicLinqType]. If that type is loaded into the current domain (that's the usual case), you don't have to do anything more since the default custom type provider already scans the current AppDomain for types marked with [DynamicLinqType]. And only if that's not the case, i.e. your type is not loaded into the current domain, you have to do something like in that answer.
What if you would like to use both approaches - the first for type 'A' and the second for type 'B'? In that case, you just have to "merge" your type 'A' with the default provider types:
public class DynamicLinqTests
{
[Test]
public void Test()
{
var a = new Tuple<int, int>(1, 1);
var b = new[] { a };
var parsingConfig = new ParsingConfig
{
ResolveTypesBySimpleName = true,
CustomTypeProvider = new TestCustomTypesProvider()
};
var queryWithA = b.AsQueryable().Select(parsingConfig, "A.Test(it.Item1)");
queryWithA.ToDynamicList();
var queryWithB = b.AsQueryable().Select(parsingConfig, "B.Test(it.Item1)");
queryWithB.ToDynamicList();
}
public static class A
{
public static int Test(int i)
{
return i++;
}
}
[DynamicLinqType]
public static class B
{
public static int Test(int i)
{
return i++;
}
}
public class TestCustomTypesProvider : DefaultDynamicLinqCustomTypeProvider
{
public override HashSet<Type> GetCustomTypes()
{
var customTypes = base.GetCustomTypes();
customTypes.Add(typeof(A));
return customTypes;
}
}
}
I may be confused but your syntax whereby you are using a string in your Selects doesn't compile for me. The following syntax works:
var q = b.AsQueryable().Select(it => A.Test(it.Item1));
var b = new[]{ a };
The above array is don't know what type of array , and it's not type safe ?
Your values are assigned in variant data type so it's not integer value (I think string value) ,when you get this values in your query must need to convert.toint32() because your class parameter data type is integer
Please try it
var b = new **int**[]{ a };
instead of var b = new[]{ a };
The important hint is here (in bold):
No property or field 'xxx' exists in **type** 'xxx'
And Please look this for previous discussion :
Dynamic Linq - no property or field exists in type 'datarow'
The following works for me:
var a = new Tuple<int, int>(1, 1);
var b = new[] { a };
var q = b.AsQueryable().Select(it=>A.Test(it.Item1));
var q1 = b.AsQueryable().Select(it => Convert.ToInt32(it.Item1));
var q2 = b.AsQueryable().Select(it => (float) it.Item1);
I've noticed this code crops up a lot in my constructors:
if (someParam == null) throw new ArgumentNullException("someParam");
if (someOtherParam == null) throw new ArgumentNullException("someOtherParam");
...
I have a few constructors where several things are injected and must all be non-null. Can anyone think of a way to streamline this? The only thing I can think of is the following:
public static class ExceptionHelpers
{
public static void CheckAndThrowArgNullEx(IEnumerable<KeyValuePair<string, object>> parameters)
{
foreach(var parameter in parameters)
if(parameter.Value == null) throw new ArgumentNullException(parameter.Key);
}
}
However, the usage of that would be something like:
ExceptionHelper.CheckAndThrowArgNullEx(new [] {
new KeyValuePair<string, object>("someParam", someParam),
new KeyValuePair<string, object>("someOtherParam", someOtherParam),
... });
... which doesn't really help streamline the code. Tuple.Create() instead of KVPs doesn't work because Tuple's GTPs aren't covariant (even though IEnumerable's GTP is). Any ideas?
Update for C# 7
You can use a throw expression with the null coalescing operator. Here is an example from that page:
public string Name
{
get => name;
set => name = value ??
throw new ArgumentNullException(paramName: nameof(value), message: "New name must not be null");
}
Original Answer
Personally, I use the ThrowIfNull extension method. I don't know who to credit but I definitely didn't invent it. It's nice because you can do assignment with the return value:
public static T ThrowIfNull<T>(this T argument, string argumentName)
{
if (argument == null)
{
throw new ArgumentNullException(argumentName);
}
return argument;
}
Usage:
this.something = theArgument.ThrowIfNull("theArgument");
// or in C# 6
this.something = theArgument.ThrowIfNull(nameof(theArgument));
(Although some people think it's weird to call an extension method on a null instance)
If you really want to check more than one argument at a time, your example might be more streamlined if you used a params signature like so:
public static void CheckAndThrowArgNullEx(params object[] argsAndNames)
{
for (int i = 0; i < argsAndNames.Length; i += 2)
{
if (argsAndNames[i] == null)
{
string argName = (string)argsAndNames[i + 1];
throw new ArgumentNullException(argName);
}
}
}
and the usage would be:
CheckAndThrowArgNullEx(arg1, "arg1", arg2, "arg2");
// or in C# 6
CheckAndThrowArgNullEx(arg1, nameof(arg1), arg2, nameof(arg2));
On second thought, as KeithS mentions in the comments, it would probably be better to implement this as a set of overloads rather than using params object[] like this:
static void Check(object arg1, string arg1Name) { ... }
static void Check(object arg1, string arg1Name, object arg2, string arg2Name) { ... }
// and so on...
Try this: One line.
accounts = accounts ?? throw new ArgumentNullException(nameof(accounts));
Also, use nameof(), if the variable is ever renamed you will not have to hunt down all the "variable"s, let nameof() do that.
.NET 6 and beyond
There is a new method in .NET API ArgumentNullException.ThrowIfNull(someParameter).
This method is probably the best option which you can get.
C# 11 (currently as proposal)
Use new Bang Bang operator !! on a parameter to implicit check for null.
public string SomeFunction(Foo foo!!)
{
// here, foo is already checked for null
// ArgumentNullException(nameof(foo)) is thrown when foo = null
return $"Here is {foo.Bar}";
}
TL;DR
The compiler will emit this code for every !! use
if (someArgument is null)
{
throw new ArgumentNullException(nameof(someArgument));
}
Our SomeFunction will be transformed into
public string SomeFunction(Foo foo!!)
{
if (foo is null)
{
throw new ArgumentNullException(nameof(foo));
}
return $"Here is {foo.Bar}";
}
There are several way to go about this.
Option A:
Break your functions into two - validation and implementation (you can see examples of this in Jon Skeet's EduLinq).
Option B:
Use code contracts that expect the parameters to be non-null.
Option C:
Using aspect oriented technologies such as code weaving to extract these checks out into an aspect. (as J Torres answered).
Option D:
Use Spec#, as CodeInChaos commented.
Option E:
???
Upticks for most of you guys; your answers contributed to the solution I finally arrived at, which incorporated bits and pieces but ultimately is different from all of them.
I created a couple of static methods that work on lambda expressions of a specific form (EDIT - small change; the methods can't be generic or they will require all expressions to return the same type. Func is fine instead, with an extra condition in the GetName method to unwrap the cast):
public static class ExpressionReader
{
/// <summary>
/// Gets the name of the variable or member specified in the lambda.
/// </summary>
/// <param name="expr">The lambda expression to analyze.
/// The lambda MUST be of the form ()=>variableName.</param>
/// <returns></returns>
public static string GetName(this Expression<Func<object>> expr)
{
if (expr.Body.NodeType == ExpressionType.MemberAccess)
return ((MemberExpression) expr.Body).Member.Name;
//most value type lambdas will need this because creating the
//Expression from the lambda adds a conversion step.
if (expr.Body.NodeType == ExpressionType.Convert
&& ((UnaryExpression)expr.Body).Operand.NodeType
== ExpressionType.MemberAccess)
return ((MemberExpression)((UnaryExpression)expr.Body).Operand)
.Member.Name;
throw new ArgumentException(
"Argument 'expr' must be of the form ()=>variableName.");
}
}
public static class ExHelper
{
/// <summary>
/// Throws an ArgumentNullException if the value of any passed expression is null.
/// </summary>
/// <param name="expr">The lambda expressions to analyze.
/// The lambdas MUST be of the form ()=>variableName.</param>
/// <returns></returns>
public static void CheckForNullArg(params Expression<Func<object>>[] exprs)
{
foreach (var expr in exprs)
if(expr.Compile()() == null)
throw new ArgumentNullException(expr.GetName());
}
}
... which can be used thusly:
//usage:
ExHelper.CheckForNullArg(()=>someParam, ()=>someOtherParam);
This reduces the boilerplate to one line, without third-party tools. The ExpressionReader, and thus the exception-generating method, work on any lambda of the form ()=>variableName that compiles in the caller, meaning it works for local variables, parameters, instance fields and instance properties, at least. I haven't checked to see if it works on statics.
In c# 10 you can just do this:
ArgumentNullException.ThrowIfNull(z);
And you will got this error:
System.ArgumentNullException: Value cannot be null. (Parameter 'z')
at System.ArgumentNullException.Throw(String paramName)
at System.ArgumentNullException.ThrowIfNull(Object argument, String paramName)
at ConsoleApp1.SomeClass.Join(String a, String b)
Under the hood, it use the new CallerArgumentExpression attribure.
public class TestClass
{
public TestClass()
{
this.ThrowIfNull(t=>t.Str, t=>t.Test);
//OR
//this.ThrowIfNull(t => t.X)
// .ThrowIfNull(t => t.Test);
}
string Str = "";
public TestClass Test {set;get;}
}
public static class SOExtension
{
public static T ThrowIfNull<T>(this T target, params Expression<Func<T, object>>[] exprs)
{
foreach (var e in exprs)
{
var exp = e.Body as MemberExpression;
if (exp == null)
{
throw new ArgumentException("Argument 'expr' must be of the form x=>x.variableName");
}
var name = exp.Member.Name;
if (e.Compile()(target) == null)
throw new ArgumentNullException(name,"Parameter [" + name + "] can not be null");
}
return target;
}
}
In c# 7 can be done like this:
_ = someParam ?? throw new ArgumentNullException(nameof(someParam));
After release optimisation you will get:
if (someParam == null)
throw new ArgumentNullException(nameof(someParam));
If you aren't opposed to third party utilities, PostSharp provides clean ways to inject such validations. This blog post provides a solution to your problem.
Update: See new Validating-parameters features in PostSharp 3
How about an extension method?
public static void ThrowExceptionIfNull(this object argument, string argumentName)
{
if(argument == null)
throw new ArgumentNullException(argumentName);
}
Then your code at least reads a little more fluently:
someParam.ThrowExceptionIfNull("someParam");
Otherwise, I would agree with the others to split the functionality or use AOP (ie. PostSharp)
Well, the boilerplate is hard to avoid. You could switch to using the Bertrand Meyers' Eiffel programming language and EiffelStudio instead of C# and Visual Studio and start practicing "design by contract™".
Eiffel is fully CLR-compliant these days.
There are a lot of valid solutions already, but here's my take:
using System.Diagnostics;
using System.Reflection;
public SomeConstructor(int? par1, int? par2, string par3)
{
CheckThrowNull(par1, par2, par3);
//rest of constructor code...
}
///<param name="values"> Values must be given in order </param>
public static void CheckThrowNull(params object[] values)
{
StackTrace stackTrace = new StackTrace();
ParameterInfo[] parameters = stackTrace.GetFrame(1).GetMethod().GetParameters(); //get calling method's parameters (or constructor)
if (parameters.Length != values.Length)
{
throw new ArgumentException("Incorrect number of values passed in");
}
for (int i = 0; i < parameters.Length; i++)
{
if (values[i] == null)
{
//value was null, throw exception with corresponding parameter name
throw new ArgumentNullException(parameters[i].Name);
}
}
}
The general idea is that two parallel arrays are established, one of type ParameterInfo, and one containing the values of the parameter. The latter has to passed in because parameter values aren't easily (and I think impossible) obtainable via reflection. To give credit where it is due, I found how to get the calling method here: http://www.csharp-examples.net/reflection-calling-method-name/
Personally, I don't like using System.Diagnosics except for debugging, so I would make a slight modification, having calling code be:
CheckThrowNull(MethodBase.GetCurrentMethod(), par1, par2, par3);
and the method being
CheckThrowNull(MethodBase method, params object[] values)
{
ParameterInfo[] parameters = method.GetParameters();
//rest of code same
}
The down-side is its a little non-extensible and can't easily be made to check if just some of the arguments are null.
I wrote benchmark application with multiple variations of extracting argument name (via anonymous class + reflection / MemberExpression / Func / etc)
Github link to benchmark sources: https://github.com/iXab3r/NullCheckCompetition
I got results, that are showing, that the fastest method is through use of anonymous class.
.NET 40 / X64
Fail (i.e. argument IS null and name extraction method is executed)
FailAnonymousClass 67.87 ns
FailDoubleLambda 643.98 ns
FailLazyAnonymousClass 69.36 ns
FailRawCheck 1.08 ns
FailSingleLambda 643.27 ns
Success (i.e. argument is not null)
SuccessAnonymousClass 6.33 ns
SuccessDoubleLambda 8.48 ns
SuccessLazyAnonymousClass 8.78 ns
SuccessRawCheck 1.08 ns
SuccessSingleLambda 628.28 ns
I think most of the above are ok but none of them are really an improvement to what you already have so I would just go for the KIS, Keep It Simple, and that is what you started with.
It's clean, extremly readable and its fast. The only thing it's a bit long
Update for C# 10 (.NET >= 6):
_person = person.ThrowIfNull();
public static T ThrowIfNull<T>(this T? argument, string? message = default, [CallerArgumentExpression("argument")] string? paramName = default)
{
return argument ?? throw new ArgumentNullException(paramName, message);
}
Reference:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-10.0/caller-argument-expression
With C# 11 and .NET 6.0 you can do this:
public bool DoSomething(string name)
{
ArgumentNullException.ThrowIfNull(name);
// Do your stuff, name is not null
}
ArgumentNullException.ThrowIfNull Method
It is actually possible to retrieve the argument name from the lambda expression without going through the Expression type. This is how it can be done:
static void SampleMethod(string arg1)
{
ThrowIfNull(() => arg1);
// continue to other normal stuff here...
}
public static void ThrowIfNull<T>(Func<T> lambda)
where T : class
{
if (lambda() == null)
{
throw new ArgumentNullException(lambda.Target.GetType().GetFields()[0].Name);
}
}
I've a method on a generic base class that I want to execute for all superclasses of it
The logic is something like:
BuildAverageDateStats(List<type> items, DateProperty1 exp, DateProperty2 exp2)
{
return new Stat{
Value = items.Average(c => (c.DateProperty2 - c.DateProperty1).Milliseconds)
};
}
myobject.BuildAverageDateStats(list, () => c.QueuedDate, () => c.CompletedDate);
myobject.BuildAverageDateStats(list, () => c.ActionedDate, () => c.CompletedDate);
I think I need expressions, but not sure how...
I could send it in as Func i.e. Value = items.Average(c => myfunc(c)) but looking for a property substitution example.
Stat BuildAverageDateStats<U>(List<type> items, Func<U, double> exp)
where U:type
{
return new Stat{
Value = items.OfType<U>().Average(exp);
};
}
You can call it like this
BuidlAverageDateStats<Dog>(items, d=>d.Age - d.Height);
Though my example doesn't make sense.
If you are really only ever going to use one of the three DateTime properties that you have right now, I would keep the method signature the way you have it right now.
To make things neater, make some public static readonly delegate fields on your class for your properties, and use those, instead of writing the same expression time and time again:
public static readonly DateSelector Date1Property = delegate(CompareTest c) { return c.Date1; };
public static readonly DateSelector Date2Property = delegate(CompareTest c) { return c.Date2; };
public static readonly DateSelector Date3Property = delegate(CompareTest c) { return c.Date3; };
If, on the other hand, you expect inheriting classes to implement more properties than the three you have right now, you could consider passing in the properties as String and using the Dynamic Linq Library (and build a dynamic expression that returns the property) or a DynamicMethod to return your property. Both would have the benefits of reflection with the painful performance. If you need it, I have some code laying around for that.
Type safety will be out the window though, so I wouldn't use it unless necessary, and it sounds like it isn't.
Menno
static Stat BuildAverageDateStats<T>(List<T> items, string pname1, string pname2){
return new Stat {
Value = items.Average( c =>
{
var ty = c.GetType();
var pv1 = (dynamic)ty.GetProperty(pname1).GetValue(c,null);
var pv2 = (dynamic)ty.GetProperty(pname2).GetValue(c,null);
return pv2 - pv1;
})
};
}
Is it possible to evaluate the following in C# at runtime
I have a class that contains 3 properties (Field,Operator,Value)
rule.Field;
rule.Operator;
rule.Value;
this is my rule class...
Now I have a loop
foreach(item in items)
{
// here I want to create a dynamic expression to evaluate at runtime
// something like
if (item.[rule.field] [rule.operator] [rule.value])
{ do work }
}
I just don't know the syntax, or if its possible in C#, I know in JS its possible but that's not a compiled language.
Update
Essentially I want a way to eval(stringCode) or a better more supported way.
No, C# doesn't support anything like this directly.
The closest options are:
Create a full valid C# program and dynamically compile it with CSharpCodeProvider.
Build an expression tree, compile and execute it
Perform the evaluation yourself (this may actually be easiest, depending on your operators etc)
Disclaimer: I'm the owner of the project Eval Expression.NET
This library is close to being the JS Eval equivalent. You can almost evaluate and compile all the C# language.
Here is a simple example using your question, but the library goes way beyond this simple scenario.
int field = 2;
int value = 1;
string binaryOperator = ">";
string formula = "x " + binaryOperator + " y";
// For single evaluation
var value1 = Eval.Execute<bool>(formula, new { x = field, y = value });
// For many evaluation
var compiled = Eval.Compile<Func<int, int, bool>>(formula, "x", "y");
var value2 = compiled(field, value);
EDIT Answer comment:
Proprietary library to do simple evaluation? No, thanks
This library does not support only simple evaluation but almost all the C# languages. Allowing you to add dynamically a method, use async, linq, loop, etc., which is more than "to do simple evaluation"
The closest options solution provided by Jon Skeet are great but will surely take several days of development and testing to support all cases, depending on the operators. Surely this library helps some developers, but in some other scenarios, like yours, it could be done without it.
I'm not entirely sure what you are saying. Can you try clarifying it a bit?
Are you wanting to to take a string expression and evaluate it at runtime in C#? If so the answer is no. C# does not support such types of dynamic evaluation.
You'd have to either use the CodeDOM libraries or create an Expression tree, compile it, and execute it. I think building up the expression tree is the best option.
Of course you could put in a switch statement on your operator, which is not bad because there is a limited number of operators you could use anyways.
Here's a way to do this with expression trees (written in LINQPad):
void Main()
{
var programmers = new List<Programmer>{
new Programmer { Name = "Turing", Number = Math.E},
new Programmer { Name = "Babbage", Number = Math.PI},
new Programmer { Name = "Lovelace", Number = Math.E}};
var rule0 = new Rule<string>() { Field = "Name", Operator = BinaryExpression.Equal, Value = "Turing" };
var rule1 = new Rule<double>() { Field = "Number", Operator = BinaryExpression.GreaterThan, Value = 2.719 };
var matched0 = RunRule<Programmer, string>(programmers, rule0);
matched0.Dump();
var matched1 = RunRule<Programmer, double>(programmers, rule1);
matched1.Dump();
var matchedBoth = matched0.Intersect(matched1);
matchedBoth.Dump();
var matchedEither = matched0.Union(matched1);
matchedEither.Dump();
}
public IEnumerable<T> RunRule<T, V>(IEnumerable<T> foos, Rule<V> rule) {
var fieldParam = Expression.Parameter(typeof(T), "f");
var fieldProp = Expression.Property (fieldParam, rule.Field);
var valueParam = Expression.Parameter(typeof(V), "v");
BinaryExpression binaryExpr = rule.Operator(fieldProp, valueParam);
var lambda = Expression.Lambda<Func<T, V, bool>>(binaryExpr, fieldParam, valueParam);
var func = lambda.Compile();
foreach(var foo in foos) {
var result = func(foo, rule.Value);
if(result)
yield return foo;
}
}
public class Rule<T> {
public string Field { get; set; }
public Func<Expression, Expression, BinaryExpression> Operator { get; set; }
public T Value { get; set; }
}
public class Programmer {
public string Name { get; set; }
public double Number { get; set; }
}
A better design for you would be for your rule to apply the test itself (or to an arbitrary value)
By doing this with Func instances you will get the most flexibility, like so:
IEnumerable<Func<T,bool> tests; // defined somehow at runtime
foreach (var item in items)
{
foreach (var test in tests)
{
if (test(item))
{
//do work with item
}
}
}
then your specific test would be something like this for strong type checking at compile time:
public Func<T,bool> FooEqualsX<T,V>(V x)
{
return t => EqualityComparer<V>.Default.Equals(t.Foo, x);
}
For a reflective form
public Func<T,bool> MakeTest<T,V>(string name, string op, V value)
{
Func<T,V> getter;
var f = typeof(T).GetField(name);
if (f != null)
{
if (!typeof(V).IsAssignableFrom(f.FieldType))
throw new ArgumentException(name +" incompatible with "+ typeof(V));
getter= x => (V)f.GetValue(x);
}
else
{
var p = typeof(T).GetProperty(name);
if (p == null)
throw new ArgumentException("No "+ name +" on "+ typeof(T));
if (!typeof(V).IsAssignableFrom(p.PropertyType))
throw new ArgumentException(name +" incompatible with "+ typeof(V));
getter= x => (V)p.GetValue(x, null);
}
switch (op)
{
case "==":
return t => EqualityComparer<V>.Default.Equals(getter(t), value);
case "!=":
return t => !EqualityComparer<V>.Default.Equals(getter(t), value);
case ">":
return t => Comparer<V>.Default.Compare(getter(t), value) > 0;
// fill in the banks as you need to
default:
throw new ArgumentException("unrecognised operator '"+ op +"'");
}
}
If you wanted to be really introspective and handle any literal without knowing at compile time you could use the CSharpCodeProvider to compile a function assuming something like:
public static bool Check(T t)
{
// your code inserted here
}
This is of course a massive security hole so whoever can supply code for this must be fully trusted. Here is a somewhat limited implementation for your specific needs (no sanity checking at all)
private Func<T,bool> Make<T>(string name, string op, string value)
{
var foo = new Microsoft.CSharp.CSharpCodeProvider()
.CompileAssemblyFromSource(
new CompilerParameters(),
new[] { "public class Foo { public static bool Eval("+
typeof(T).FullName +" t) { return t."+
name +" "+ op +" "+ value
+"; } }" }).CompiledAssembly.GetType("Foo");
return t => (bool)foo.InvokeMember("Eval",
BindingFlags.Static | BindingFlags.Public | BindingFlags.InvokeMethod ,
null, null, new object[] { t });
}
// use like so:
var f = Make<string>("Length", ">", "2");
For this to work with arbitrary types you would have to do a bit more reflection to find the target assembly for the type to reference it in the compiler parameters.
private bool Eval(object item, string name, string op, string value)
{
var foo = new Microsoft.CSharp.CSharpCodeProvider()
.CompileAssemblyFromSource(
new CompilerParameters(),
new[] { "public class Foo { public static bool Eval("+
item.GetType().FullName +" t) "+
"{ return t."+ name +" "+ op +" "+ value +"; } }"
}).CompiledAssembly.GetType("Foo");
return (bool)foo.InvokeMember("Eval",
BindingFlags.Static | BindingFlags.Public | BindingFlags.InvokeMethod ,
null, null, new object[] { item });
}
All the above code is simply a proof of concept, it lacks sanity checking and has serious performance issues.
If you wanted to be even fancier you could use Reflection.Emit with DynamicMethod instances to do it (using proper operators rather than the default comparer instances) but this would require complex handling for types with overridden operators.
By making your check code highly generic you may include more tests in future as you need to. Essentially isolate the part of your code that cares only about a function from t -> true/false from the code that supplies these functions.
CSharpCodeProvider; switch statements that pick the proper different "operators"; the DLR... they are all ways you could do this; but they seem weird solutions to me.
How about just using delegates?
Assuming your Field and Value are numbers, declare something like this:
delegate bool MyOperationDelegate(decimal left, decimal right);
...
class Rule {
decimal Field;
decimal Value;
MyOperationDelegate Operator;
}
Now you can define your 'rule' as, for example, a bunch of lambdas:
Rule rule1 = new Rule;
rule1.Operation = (decimal l, decimal r) => { return l > r; };
rule1.Field = ...
You can make arrays of rules and apply them whichever way you wish.
IEnumerable<Rule> items = ...;
foreach(item in items)
{
if (item.Operator(item.Field, item.Value))
{ /* do work */ }
}
If Field and Values are not numbers, or the type depends on the specific rule, you can use object instead of decimal, and with a little bit of casting you can make it all work.
That's not a final design; it's just to give you some ideas (for example, you would likely have the class evaluate the delegate on its own via a Check() method or something).
You can retrieve the field by reflection. And then implement the operators as methods and uses reflection or some types of enum-delegate mapping to call the operators. The operators should have at least 2 parameters, the input value and the value you are using to test against with.
While it is true that you probably won't find an elegant way to evaluate full C# code on the fly without the use of dynamically compiling code (which is never pretty), you can almost certainly get your rules evaluated in short order using either the DLR (IronPython, IronRuby, etc) or an expression evaluator library that parses and executes a custom syntax. There is one, Script.NET, that provides a very similar syntax to C#.
Take a look here:Evaluating Expressions a Runtime in .NET(C#)
If you have the time / inclination to learn a little Python, then IronPython and the DLR will solve all your issues:
Extending your App with IronPython