I have a class with internal constructor and want to Resolve it from Unity (2.0).
public class MyClass {
internal MyClass(IService service) {
}
}
then I'm doing
_container.Resolve<MyClass>();
when I do so I have an exception
Exception is: InvalidOperationException - The type MyClass cannot be constructed.
IService is registered and the only problem is that constructor is internal.
I really want this class to be public, but I want it to be creatable only via a factory (in which I'm actually calling container.Resolve<MyClass>()).
Is there a way to make Unity see that internal constructor? Like InternalsVisibleTo or something?
I dug a little into how you might extend Unity for this purpose, and found some interesting information.
First, it seems that Unity selects which constructor to use by internally resolving an IConstructorSelectorPolicy. Included in Unity is the public abstract class ConstructorSelectorPolicyBase<TInjectionConstructorMarkerAttribute>, which includes this gem:
/// <summary>
/// Choose the constructor to call for the given type.
/// </summary>
/// <param name="context">Current build context</param>
/// <param name="resolverPolicyDestination">The <see cref='IPolicyList'/> to add any
/// generated resolver objects into.</param>
/// <returns>The chosen constructor.</returns>
public SelectedConstructor SelectConstructor(IBuilderContext context, IPolicyList resolverPolicyDestination)
{
Type typeToConstruct = context.BuildKey.Type;
ConstructorInfo ctor = FindInjectionConstructor(typeToConstruct) ?? FindLongestConstructor(typeToConstruct);
if (ctor != null)
{
return CreateSelectedConstructor(context, resolverPolicyDestination, ctor);
}
return null;
}
FindInjectionConstructor and company are private static methods in this class which ultimately end up calling Type.GetConstructors (the overload with no parameters, which only returns public constructors). This tells me that if you can arrange for Unity to use your own constructor selector policy, which would be able to select any constructor, you are golden.
There is good documentation about how to make and utilize your own container extensions, so I imagine it's quite possible to make your own CustomConstructorSelectorPolicy that includes the relevant portions of DefaultUnityConstructorSelectorPolicy (which derives from the abstract base class and is the default unless you register something else) and ConstructorSelectorPolicyBase (deriving from this directly would probably not work well because key methods are not virtual, but you can reuse the code).
Therefore I 'd say it's doable with a moderate amount of hassle, but the end result would be quite "pure" from an engineering point of view.
Unity will only look at public constructors, so you need to make this constructor public.
I really want this class to be public,
but I want it to be creatable only via
a factory
In that case, create a factory:
public class MyClassFactory : IMyClassFactory
{
private readonly IService service;
public MyClassFactory(IService service)
{
this.service = service;
}
MyClass IMyClassFactory.CreateNew()
{
return new MyClass(this.service);
}
}
And register:
_container.Register<IMyClassFactory, MyClassFactory>();
And resolve:
_container.Resolve<IMyClassFactory>().CreateNew();
You can also use Unity's InjectionFactory:
container.Register<MyClass>(new InjectionFactory(c =>
{
return new MyClass(c.Resolve<IService>());
}));
For this to work the assembly that holds this code should be able to see the internals of the assembly that holds the MyClass. In other words the MyClass assembly should be marked with InternalsVisibleTo.
What would also work is the following:
public static class MyClassFactory
{
public static MyClass CreateNew(IService service)
{
return new MyClass(service);
}
}
container.Register<MyClass>(new InjectionFactory(c =>
{
return MyClassFactory.Create(c.Resolve<IService>());
}));
Although you won't have to make the constructor public, it is a great way to obfuscate your code :-)
Just make the class internal and the constructor public...
Interface public
Class internal
Constructor of class public.
It's possible there are workarounds/hacks that would allow you to do this with Unity 9I don't know if any), but in general if you want a class to be managed by Unity (or any IOC container), it needs to be public with a public constructor.
One option might be to make an abstract factory that creates the class that has a public constructor, and keep the class's constructor internal. The downside is then your factory will be managed by Unity, but your class itself will not.
Related
I'm trying to understand how to use TypedFactoryFacility to create an abstract factory, and I have it working at a basic level, however I don't fully understand how to scale it with runtime dependencies
Suppose I have a service that needs to be created at runtime:
public interface IRuntimeService {
void DoThing();
}
with the following implementation
public class RuntimeService : IRuntimeService {
public void DoThing() {
// Do some work
}
}
To create my IRuntimeService, I've created an abstract factory
public interface IRuntimeServiceFactory {
IRuntimeService CreateService();
}
In my Castle installer, I'm using the TypedFactoryFacility to register my class and abstract factory.
public class TypeInstaller : IWindsorInstaller {
public void Install(IWindsorContainer container, IConfigurationStore store) {
container.AddFacility<TypedFactoryFacility>();
container.Register(Component.For<IRuntimeService>().ImplementedBy<RuntimeService>());
container.Register(Component.For<IRuntimeServiceFactory>().AsFactory());
}
Then in my class that will be using the service, I can use the factory to create new service instances at runtime.
var myService = m_ServiceFactory.CreateService();
Everything above works perfectly, however I'm running into a problem when my RuntimeService class needs to be injected with a dependency chain itself that include runtime parameters.
To expand the example above, suppose I have a new runtime dependency
public interface IRuntimeDependency {
void DoWork();
}
implemented by a class that takes a runtime string value through the constructor
public class RuntimeDependency : IRuntimeDependency {
private readonly string m_Param;
public RuntimeDependency(string param) {
m_Param = param;
}
public void DoWork() {
// Do work involving the param
}
}
And the previously defined service class now needs a reference to the dependency
public class RuntimeService : IRuntimeService {
private readonly IRuntimeDependency m_Dep;
public RuntimeService(IRuntimeDependency dep) {
m_Dep = dep;
}
public void DoThing() {
// Do some work involving the dependency
m_Dep.DoWork();
}
}
How do I now I create instances of my service using the TypedFactoryFacility?
I would expect do just be able to change my factory method to look like
IRuntimeService CreateService(string param);
but Windsor throws an error 'Could not resolve non-optional dependency for parameter 'param' type 'System.String'.
Windsor knows how to create an IRuntimeDependency if I give it a string, and it knows how to create a IRuntimeService if I give it the dependency, so why can't it directly create a IRuntimeService with the string param?
I can make it work by having two distinct factory methods
IRuntimeService CreateService(IRuntimeDependency dep);
IRuntimeDependency CreateDependency(string param);
and creating the dependency, manually myself
var dep = m_ServiceFactory.CreateDependency(param);
var myService = m_ServiceFactory.CreateService(dep );
^^^This works, but the whole point of using a container is so that it will take care of assembling new objects for me. This is a relatively simple example involving only one dependency, but it would easily grow out of control with a more complex object graph.
I could of course create my own factory implementations, but that also nullifies the benefit of using the TypedFactoryFacility which is supposed to create the abstract factory implementations for you. I have a hard time believing there's not an existing solution to this problem but the Windsor examples don't contain any chained run-time dependencies.
I don't think using a FactoryComponentSelector is the correct approach because there's only one possible path to create the RuntimeService instance. It should be able to auto-resolve.
In many or most cases, an object resolved by the container depends on implementations of other interfaces which are also resolved by the container. So as long as all of the interfaces have registered implementations, the container can resolve the entire dependency chain.
But in this case RuntimeDependency depends on a string, which isn't something the container can resolve.
public RuntimeDependency(string param) {
m_Param = param;
}
In this case you can use the DependsOn method to explicitly provide a value to fulfill that dependency.
container.Register(Component.For<IRuntimeDependency, RuntimeDependency>()
.DependsOn(Dependency.OnValue("param","whatEverTheValueIs")));
That value can, of course, come from configuration or wherever else. I use this a lot with SQL connection strings.
It is possible using DynamicParameters.
container.Register(Component.For<IRuntimeService>()
.ImplementedBy<RuntimeService>()
.LifestyleTransient()
.DynamicParameters((k, d) => {
d["dep"] = new RuntimeDependency((string)d["param"]);
}));
Keep in mind that the dictionary keys have to match the parameter names in the CreateService method and RuntimeService constructor.
Edit: You should also make it LifestyleTransient if you intend to create a new instance each time the factory method is called. (The default is singleton)
It seems that what I am asking for is not possible by design.
See this other SO answer.
https://stackoverflow.com/a/3905496/2029835
I have an abstract factory which creates some service represented by IService interface. In the factory I have two Create methods, because at one of them I allow the consumer to pass an existing IServiceLogger instance to be used by the constructed service tree.
public interface IMyServiceFactory {
IMyService Create(IServiceLogger loggerInstance);
IMyService Create();
}
Because an IServiceLogger should be shared among the service tree, I use the InCallScope when binding it to a concrete implementation.
How can I implement this scenario with Ninject? I've tried the following approaches.
1. Manually create a factory implementation
internal class MyServiceFactory : IMyServiceFactory {
private IResolutionRoot _kernel;
public MyServiceFactory
public IMyService Create(IServiceLogger loggerInstance) {
// what should go here? how can I pass the existing instance to Ninject Get method and make Ninject to use it for the whole resolution tree, just as it were created by Ninject and used as InCallScope?
}
// this one is trivial...
pulbic IMyService Create() {
return _kernel.Get<IMyService>();
}
}
UPDATE
Actually I've found a messy and not too safe way for this. I can get the current bindings via GetBindings, then Rebind IServiceLogger ToConstant, then Get the IMyService instance, and finally restore the original bindings with AddBinding. I don't like it, it feels stinky and what's worse, it's not thread-safe, because another thread can request for a IMyService in the middle of this code and hence use the local temporary binding.
2. Use Ninject.Extensions.Factory
Just use the ToFactory binding, but that's not working, because it just tries to use the parameter as a simple constructor argument (if applicable), and not as an object for the whole resolution tree.
I would give more control to the Kernel of Ninject and do not create a class for the factory at all.
And use Func binding in Ninject like this:
Bind<Func<IMyService>>().ToMethod(s => CreateService);
By binding of the ILoggerService or not binding this you can controll centrally whether you have logger or not in your service.(try by just comment it out)
Here implementation of the Bootstrapper:
public class Bootstrapper
{
private IKernel _kernel = new StandardKernel();
public Bootstrapper()
{
_kernel.Bind<MyStuff>().ToSelf();
_kernel.Bind<IServiceLogger>().To<ServiceLogger>();
_kernel.Bind<IMyService>().To<MyService>();
_kernel.Bind<Func<IMyService>>().ToMethod(s => CreateService);
}
public IKernel Kernel
{
get
{
return _kernel;
}
set
{
_kernel = value;
}
}
private IMyService CreateService()
{
if(_kernel.GetBindings(typeof(IServiceLogger)).Any())
{
return _kernel.Get<IMyService>(new ConstructorArgument("logger", _kernel.Get<IServiceLogger>()));
}
return _kernel.Get<IMyService>();
}
}
Implementation of consumer class for the factory:
internal class MyStuff
{
private readonly Func<IMyService> _myServiceFactory;
public MyStuff(Func<IMyService> myServiceFactory)
{
_myServiceFactory = myServiceFactory;
_myServiceFactory.Invoke();
}
}
Simple implementation of MyService:
internal class MyService
:IMyService
{
public MyService()
{
Console.WriteLine("with no parameters");
}
public MyService(IServiceLogger logger)
{
Console.WriteLine("with logger parameters");
}
}
Simple ServiceLogger:
internal class ServiceLogger
:IServiceLogger
{
public ServiceLogger()
{
}
}
internal interface IServiceLogger
{
}
IMPORTANT UPDATE
While my original answer gave me a working solution, by an accidental InteliSense navigation I've just found that there is a built-in tool for exactly this issue. I just have to use the built-in TypeMatchingArgumentInheritanceInstanceProvider which does this, and even more, because there are no more needs for naming conventions due to the parameter type matching.
It would be good to have a more detailed documentation about these options, or maybe it's just me who can't find it currently.
ORIGINAL ANSWER
I tried a few ways, and ended up with a slightly different, kind of a convention based approach utilizing Ninject's context parameter inheritance.
The convention is used at constructor argument naming through the dependency tree. For example whenever an IServiceLogger instance is injected to a service class, the argument should be called serviceLogger.
With the above convention in mind, I've tested the following approach. Firstly I've implemented a custom instance provider for the factory extension. This custom provider overrides the mechanism for creating constructor parameters for the context to let the developer specify several named arguments which should be set as inherited. This way all the parameters with the specified names will inherit through the whole request graph during the get operation.
public class ParameterInheritingInstanceProvider : StandardInstanceProvider
{
private readonly List<string> _parametersToInherit = new List<string>();
public ParameterInheritingInstanceProvider(params string[] parametersToInherit)
{
_parametersToInherit.AddRange(parametersToInherit);
}
protected override IConstructorArgument[] GetConstructorArguments(MethodInfo methodInfo, object[] arguments)
{
var parameters = methodInfo.GetParameters();
var constructorArgumentArray = new IConstructorArgument[parameters.Length];
for (var i = 0; i < parameters.Length; ++i)
constructorArgumentArray[i] = new ConstructorArgument(parameters[i].Name, arguments[i], _parametersToInherit.Contains(parameters[i].Name));
return constructorArgumentArray;
}
}
Then after at binding configuration I just threw it in with the corresponding parameter name.
kernel.Bind<IMyServiceFactory>().ToFactory(() => new ParameterInheritingInstanceProvider("serviceLogger"));
Finally I reviewed parameter naming, and for exampled changed loggerInstance in the factory interface to serviceLogger to match the convention.
This solution is still not the nicest one as it has several limitations.
It is error prone. One can make bugs which are hard to track by not keeping the naming convention, because currently it silently fails if the convention does not match. This could be improved probably, I'll think about it later.
It handles only constructor injection, however this should not be a big issue as that's the suggested technique. For example I almost never do other kind of injections.
I realise this was asked a long time ago but I was looking to do the same sort of thing myself and finally worked out that you can use the IParameter array passed to the Get() method to specify a ContructorArgument to use only for the current Get() call. This allowed me to use a specific constructor value when creating a Hangfire Job allowing the Hangfire job to use a different database connection on each invocation if required.
EnvironmentName forcedEnv = new EnvironmentName() { Name = dbName };
// For this instantiation, set the 'envName' parameter to be the one we've specified for this job
var instance = ResolutionExtensions.Get((IResolutionRoot) _kernel, jobType,
new IParameter[] {new ConstructorArgument("envName", forcedEnv, true)});
return instance;
By setting the shouldInherit value to true you can ensure the value gets passed down the resolution chain. So it get's passed to any objects in the dependency tree that use that argument (but only for this particular instantiation).
So let´s assume we have a Base-Assembly and a Custom-Assembly where every type within Base may or may not be overridden. So I have some code that creates a deep nested structure of some base-types. Now if I want to overwrite just some single type within this structure I would have to overwrite the whole structure to instantiate it. To ease this process I use a factory (as proposed here) that builds my inner-types.
public class MyFactory
{
private Assembly _customAssembly = // get custom-assembly;
private Type _actualType = null;
private static MyFactory _instance = new MyFactory();
private MyFactory()
{
// if we have custom assembly we search for classes that derive from our base-type
if (this._customAssembly != null) this._actualType = this._customAssembly.GetTypes().SingleOrDefault(x => x.BaseType == typeof(MyClass));
// no derived type found so use the base-type
if (this._actualType == null) this._actualType = typeof(MyClass);
}
/// <summary>
/// Gets an instance of either <see cref="MyClass"/> or an instance of a derived type of this class if there is any within the custom-assembly
/// </summary>
public static MyClass Create(string name) { return (MyClass)Activator.CreateInstance(MyFactory._instance._actualType, name); }
}
Now I can call the factory-method within my base-interface to create an inner-type. If this inner-type was derived within my custom-assembly I get an instance of that type instead of the base-type.
Now my question: As far as I know creating instances via reflection may take some time. Hence I´m creating such instances within a loop this may become a performance-relevant issue. I know that you may pimp up speed for invoking methods by using LINQ-Expressions (although I never did on my own). that point to the actual method. Thus we can directly invoke the method which may be much faster then using MethodInfo.Invoke. Is there any similar approach I can use to create new instances by declaring some kind of pointer to a constructor rather then a method?
Thanks for ya :)
You can use generics to do this:
public class MyFactory<T> where T : MyBaseClass
{
public static T Create(string name) { return new T{ Name = name }; }
}
I'm trying to remove a Service Locator from an abstract base class, but I'm not sure what to replace it with. Here is a psuedo-example of what I've got:
public abstract class MyController : Controller
{
protected IKernel kernel;
public MyController(IKernel kernel) { this.kernel = kernel); }
protected void DoActions(Type[] types)
{
MySpecialResolver resolver = new MySpecialResolver(kernel);
foreach(var type in types)
{
IMyServiceInterface instance = resolver.Get(type);
instance.DoAction();
}
}
}
The problem with this is that the instanciator of a derived class doesn't know what bindings the kernel must have in order to keep MySpecialResolver from throwing an exception.
This might be intrinsicly intractable because I don't know from here which types I'll have to resolve. The derived classes are responsible for creating the types parameter, but they aren't hardcoded anywhere. (The types are based on the presence of attributes deep within the derived class's composition hierarchy.)
I've trying to fix this with lazy loading delegates, but so far I haven't come up with a clean solution.
Update
There are really two issues here, one is that the IoC container is passed to the controller, acting as a service locator. This is easy to remove--you can move the location up or down the call stack using all sorts of techniques.
The second issue is the difficult one, how can you ensure that the controller has the necessary services when the requirements aren't exposed until runtime. It should have been obvious from the start: you can't! You will always be dependent upon either the state of the service locator or contents of a collection. In this particular case no amount of fiddling will ever resolve the problem described in this article with staticly typed dependencies. I think that what I'm going to end up doing is passing a Lazy array into the controller constructor and throwing an exception if a required dependency is missing.
I agree with #chrisichris and #Mark Seemann.
Ditch the kernel from the controller. I'd switch your resolver composition a little bit so that your controller can remove the dependency on the IoC container and allow the resolver to be the only item that worries about the IoC container.
Then I would let the resolver get passed into the constructor of the controller. This will allow your controller to be far more testable.
For example:
public interface IMyServiceResolver
{
List<IMyServiceInterface> Resolve(Type[] types);
}
public class NinjectMyServiceResolver : IMyServiceResolver
{
private IKernal container = null;
public NinjectMyServiceResolver(IKernal container)
{
this.container = container;
}
public List<IMyServiceInterface> Resolve(Type[] types)
{
List<IMyServiceInterface> services = new List<IMyServiceInterface>();
foreach(var type in types)
{
IMyServiceInterface instance = container.Get(type);
services.Add(instance);
}
return services;
}
}
public abstract class MyController : Controller
{
private IMyServiceResolver resolver = null;
public MyController(IMyServiceResolver resolver)
{
this.resolver = resolver;
}
protected void DoActions(Type[] types)
{
var services = resolver.Resolve(types);
foreach(var service in services)
{
service.DoAction();
}
}
}
Now your controller isn't coupled to a specific IoC container. Also your controller is much more testable since you can mock the resolvers and not require an IoC container at all for your tests.
Alternatively, if you don't get to control when a controller is instantiated, you can modify it slightly:
public abstract class MyController : Controller
{
private static IMyServiceResolver resolver = null;
public static InitializeResolver(IMyServiceResolver resolver)
{
MyController.resolver = resolver;
}
public MyController()
{
// Now we support a default constructor
// since maybe someone else is instantiating this type
// that we don't control.
}
protected void DoActions(Type[] types)
{
var services = resolver.Resolve(types);
foreach(var service in services)
{
service.DoAction();
}
}
}
You would then call this at your application start up to initialize the resolver:
MyController.InitializeResolver(new NinjectMyServiceResolver(kernal));
We did this to handle elements created in XAML who require dependencies resolved but we wanted to remove Service Locator like requests.
Please excuse any syntactical errors :)
I'm writing a blog post series on the topic of refactoring an MVVM application with Service Locator calls in the view models you might find interesting. Part 2 is coming soon :)
http://kellabyte.com/2011/07/24/refactoring-to-improve-maintainability-and-blendability-using-ioc-part-1-view-models/
Maybe you should just do away the Kernel, Types and MySpecialResolver and let the subclasses call DoActions with the IMyServiceInterface instances they need as argument directly. And let the subclasses decide how they get to these instances - they should know best (or in case they don't know which exactly the one who ever decides which instances of IMyServiceInterface are needed)
I would have liked to have a bit more information before posting this answer, but Kelly put me on the spot. :) Telling me to put my code where my mouth is, so to speak.
Like I said in my comment to Kelly, I disagree with moving the resolver/locator from a static implementation to an injected implementation. I agree with ChrisChris that the dependencies the derived type needs should be resolved in that class and not delegated to the base class.
That said, here is how I would remove the service location...
Create Command Interface
First of all I would create a command interface for the specific implementation. In this case the types sent with the DoActions method are generated from attributes, so I would create an IAttributeCommand. I am adding a Matches method to the command in order to declare the command for use by certain types.
public interface IAttributeCommand
{
bool Matches(Type type);
void Execute();
}
Add Command Implementations
To implement the interface, I pass in the specific dependencies I need to execute my command (to be resolved by my container). I add a predicate to my Matches method, and define my Execute behavior.
public class MyTypeAttributeCommand : IAttributeCommand
{
MyDependency dependency;
SomeOtherDependency otherDependency;
public MyTypeAttributeCommand (MyDependency dependency, ISomeOtherDependency otherDependency)
{
this.dependency = dependency;
this.otherDependency = otherDependency
}
public bool Matches(Type type)
{
return type==typeof(MyType)
}
public void Execute()
{
// do action using dependency/dependencies
}
}
Register Commands with Container
In StructureMap (use your favorite container), I would register the array like so:
Scan(s=>
{
s.AssembliesFromApplicationBaseDirectory();
s.AddAllTypesOf<IAttributeCommand>();
s.WithDefaultConventions();
}
Select and Execute Commands Based on Type
Finally, on the base class, I define an IAttributeCommand array in my constructor arguments to be injected by the IOC container. When the derived type passes in the types array, I will execute the correct command based on the predicate.
public abstract class MyController : Controller
{
protected IAttributeCommand[] commands;
public MyController(IAttributeCommand[] commands) { this.commands = commands); }
protected void DoActions(Type[] types)
{
foreach(var type in types)
{
var command = commands.FirstOrDefault(x=>x.Matches(type));
if (command==null) continue;
command.Execute();
}
}
}
If you multiple commands can handle one type, you can change the implementation: commands.Where(x=>x.Matches(type)).ToList().ForEach(Execute);
The effect is the same, but there is a subtle difference in how the class is constructed. The class has no coupling to an IOC container and there is no service location. The implementation is more testable as the class can be constructed with its real dependencies, with no need to wire up a container/resolver.
I chose to expose some new behavior using composition vs. injecting a new object into my consumers code OR making the consumer provide their own implementation of this new behavior. Did I make a bad design decision?
I had new requirements that said that I needed to implement some special behavior in only certain circumstances. I chose to define a new interface, implement the new interface in a concrete class that was solely responsible for carrying out the behavior. Finally, in the concrete class that the consumer has a reference to, I implemented the new interface and delegate down to the class that does the work.
Here are the assumptions that I was working with...
I haven an interface, named IFileManager that allows implementors to manage various types of files
I have a factory that returns a concrete implementation of IFileManager
I have 3 implementations of IFileManager, these are (LocalFileManager, DfsFileManager, CloudFileManager)
I have a new requirements that says that I need to manage permissions for only the files being managed by the CloudFileManager, so the behavior for managing permissions is unique to the CloudFileManager
Here is the test that led me to the code that I wrote...
[TestFixture]
public class UserFilesRepositoryTest
{
public interface ITestDouble : IFileManager, IAclManager { }
[Test]
public void CreateResume_AddsPermission()
{
factory.Stub(it => it.GetManager("cloudManager")).Return(testDouble);
repository.CreateResume();
testDouble.AssertWasCalled(it => it.AddPermission());
}
[SetUp]
public void Setup()
{
testDouble = MockRepository.GenerateStub<ITestDouble>();
factory = MockRepository.GenerateStub<IFileManagerFactory>();
repository = new UserFileRepository(factory);
}
private IFileManagerFactory factory;
private UserFileRepository repository;
private ITestDouble testDouble;
}
Here is the shell of my design (this is just the basic outline not the whole shibang)...
public class UserFileRepository
{
// this is the consumer of my code...
public void CreateResume()
{
var fileManager = factory.GetManager("cloudManager");
fileManager.AddFile();
// some would argue that I should inject a concrete implementation
// of IAclManager into the repository, I am not sure that I agree...
var permissionManager = fileManager as IAclManager;
if (permissionManager != null)
permissionManager.AddPermission();
else
throw new InvalidOperationException();
}
public UserFileRepository(IFileManagerFactory factory)
{
this.factory = factory;
}
private IFileManagerFactory factory;
}
public interface IFileManagerFactory
{
IFileManager GetManager(string managerName);
}
public class FileManagerFactory : IFileManagerFactory
{
public IFileManager GetManager(string managerName)
{
IFileManager fileManager = null;
switch (managerName) {
case "cloudManager":
fileManager = new CloudFileManager();
break;
// other managers would be created here...
}
return fileManager;
}
}
public interface IFileManager
{
void AddFile();
void DeleteFile();
}
public interface IAclManager
{
void AddPermission();
void RemovePermission();
}
/// <summary>
/// this class has "special" behavior
/// </summary>
public class CloudFileManager : IFileManager, IAclManager
{
public void AddFile() {
// implementation elided...
}
public void DeleteFile(){
// implementation elided...
}
public void AddPermission(){
// delegates to the real implementation
aclManager.AddPermission();
}
public void RemovePermission() {
// delegates to the real implementation
aclManager.RemovePermission();
}
public CloudFileManager(){
aclManager = new CloudAclManager();
}
private IAclManager aclManager;
}
public class LocalFileManager : IFileManager
{
public void AddFile() { }
public void DeleteFile() { }
}
public class DfsFileManager : IFileManager
{
public void AddFile() { }
public void DeleteFile() { }
}
/// <summary>
/// this class exists to manage permissions
/// for files in the cloud...
/// </summary>
public class CloudAclManager : IAclManager
{
public void AddPermission() {
// real implementation elided...
}
public void RemovePermission() {
// real implementation elided...
}
}
Your approach to add your new behavior only saved you an initialization in the grand scheme of things because you to implemented CloudAclManager as separate from CloudFileManager anyways. I disagree with some things with how this integrates with your existing design (which isn't bad)...
What's Wrong With This?
You separated your file managers and made use of IFileManager, but you didn't do the same with IAclManager. While you have a factory to create various file managers, you automatically made CloudAclManager the IAclManager of CloudFileManager. So then, what's the point of having IAclManager?
To make matters worse, you
initialize a new CloudAclManager
inside of CloudFileManager every time you try to get its ACL
manager - you just gave factory
responsibilities to your
CloudFileManager.
You have CloudFileManager implement IAclManager on top of having it as a property. You just moved the rule that permissions are unique to CloudFileManager into your model layer rather than your business rule layer. This also results in supporting the unnecessary
potential of circular referencing between self and property.
Even if you wanted
CloudFileManager to delegate the
permission functionality to
CloudAclManager, why mislead other
classes into thinking that
CloudFileManager handles its own
permission sets? You just made your
model class look like a facade.
Ok, So What Should I Do Instead?
First, you named your class CloudFileManager, and rightly so because its only responsibility is to manage files for a cloud. Now that permission sets must also be managed for a cloud, is it really right for a CloudFileManager to take on these new responsibilities? The answer is no.
This is not to say that you can't have code to manage files and code to manage permissions in the same class. However, it would then make more sense for the class to be named something more general like CloudFileSystemManager as its responsibilities would not be limited to just files or permissions.
Unfortunately, if you rename your class it would have a negative effect on those currently using your class. So how about still using composition, but not changing CloudFileManager?
My suggestion would be to do the following:
1. Keep your IAclManager and create IFileSystemManager
public interface IFileSystemManager {
public IAclManager AclManager { get; }
public IFileManager FileManager { get; }
}
or
public interface IFileSystemManager : IAclManager, IFileManager {
}
2. Create CloudFileSystemManager
public class CloudFileSystemManager : IFileSystemManager {
// implement IFileSystemManager
//
// How each manager is set is up to you (i.e IoC, DI, simple setters,
// constructor parameter, etc.).
//
// Either way you can just delegate to the actual IAclManager/IFileManager
// implementations.
}
Why?
This will allow you to use your new behavior with minimal impact to your current code base / functionality without affecting those who are using your original code. File management and permission management can also coincide (i.e. check permissions before attempting an actual file action). It's also extensible if you need any other permission set manager or any other type of managers for that matter.
EDIT - Including asker's clarification questions
If I create IFileSystemManager : IFileManager, IAclManager, would the repository still use the FileManagerFactory and return an instance of CloudFileSystemManager?
No, a FileManagerFactory should not return a FileSystemManager. Your shell would have to update to use the new interfaces/classes. Perhaps something like the following:
private IAclManagerFactory m_aclMgrFactory;
private IFileManagerFactory m_fileMgrFactory;
public UserFileRepository(IAclManagerFactory aclMgrFactory, IFileManagerFactory fileMgrFactory) {
this.m_aclMgrFactory = aclMgrFactory;
this.m_fileMgrFactory = fileMgrFactory;
}
public void CreateResume() {
// I understand that the determination of "cloudManager"
// is non-trivial, but that part doesn't change. For
// your example, say environment = "cloudManager"
var environment = GetEnvMgr( ... );
var fileManager = m_fileMgrFactory.GetManager(environment);
fileManager.AddFile();
// do permission stuff - see below
}
As for invoking permission stuff to be done, you have a couple options:
// can use another way of determining that a "cloud" environment
// requires permission stuff to be done
if(environment == "cloudManager") {
var permissionManager = m_aclMgrFactory.GetManager(environment);
permissionManager.AddPermission();
}
or
// assumes that if no factory exists for the environment that
// no permission stuff needs to be done
var permissionManager = m_aclMgrFactory.GetManager(environment);
if (permissionManager != null) {
permissionManager.AddPermission();
}
I think that composition is exactly the right means to to this kind of trick. But I think you should keep it more simple (KISS) and just make an IAclManager property in the IFileManager and set it to null by default and set the SecurityManager implementation for the cloud service there.
This has different upsides:
You can check if permissions need to be checked by nullchecking the securityManager property. This way, if there doesn't need to be permissionsManaging done (as with localfile system), you don't have exceptions popping up. Like this:
if (fileManager.permissionsManager != null)
fileManager.permissionsManager.addPermission();
When you then carry out the task (to add or delete a file), you can check again if there's a permissionsManager and if the permission is given, if not throw exception (as you'll want to throw the exception when a permission to do an action is missing, not if a permission is missing in general if you're not going to add or delete files).
You can later on implement more IAclManagers for the other IFileManagers when your customer changes the requirements next time the same way as you would now.
Oh, and then you won't have such a confusing hierarchy when somebody else looks at the code ;-)
In general it looks good, but I do have a few suggestions. It seems that your CreateResume() method implementation demands a IFileManager that is also an IAclManager (or else it throws an exception).
If that is the case, you may want to consider adding an overload to your GetManager() method in which you can specify the interface that you require, and the factory can have the code that throws an exception if it doesn't find the right file manager. To accompolish this you can add another interface that is empty but implements both IAclManager and IFileManager:
public interface IAclFileManager : IFileManager, IAclManager {}
And then add the following method to the factory:
public T GetManager<T>(string name){ /* implementation */}
GetManager will throw an exception if the manager with the name given doesn't implement T (you can also check if it derives from or is of type T also).
All that being said, if AddPermissions doesn't take any parameters (not sure if you just did this for the post), why not just call AddPermissions() from CloudFileManager.AddFile() method and have it completely encapsulated from the user (removing the need for the new IAclManager interface)?
In any event, doesn't seem like a good idea to call AddFile in the CreateResume() method and only then throw the exception (since you now you have now created a file without the correct permissions which could be a security issue and also the consumer got an exception so he may assume that AddFile didn't succeed, as opposed to AddPermission).
Good luck!