I'm trying to properly dispose of a legacy VFP (FoxPro) COM control wrapped in a RCW generated by Visual Studio. The control exposes a Destroy method I should call to allow the control to properly tear itself down. There is a very good chance a method on the control may be executing on a background thread when a request is made to dispose of the COM instance. VFP is a single-threaded apartment model, so when calling Destroy it should just be added to the VFP execution stack.
Calling Destroy would ideally be the right thing to do as it allows the COM instance to clean up some resources. My concern is that instantiating a VFP COM control actually starts up a VFP language runtime instance that the control is hosted in and that instance may be locked up (non-responsive). This COM component exposes functionality in a large enterprise-scale 20-year-old legacy app and I have seen situations where a .NET thread attempting to call a method on this control simply blocks without throwing an error (always caused by bugs in the legacy VFP code). This doesn't happen often, but it is often enough that it prompted me to build an instance manager that runs methods on the VFP COM instance in a background thread and periodically checks to see if that thread is blocked, and if so, destroys the COM instance and thread and restarts a new instance to monitor.
Is this the right way to dispose of the thread that a background method may be executing on?
Should I attempt to get fancier by trying to call the Destroy method to allow the COM control to properly tear down?
if (_vfpThread != null)
{
try
{
if (_vfpThread.IsAlive)
_vfpThread.Abort();
}
catch (ThreadAbortException)
{ }
finally
{
_vfpThread = null;
}
}
if (_vfpInstance != null)
{
Marshal.ReleaseComObject(_vfpInstance);
_vfpInstance = null;
}
When a method call is pending on a VFP-based COM object (which always runs in an STA apartment), invoking any method on that same COM object from another thread will block until the former call returns (exits the apartment).
That means, any thread attempting to call Destroy() concurrently will be at the mercy of that first thread. And if that thread doesn't know to exit voluntarily, it could in theory keep the disposing thread blocked indefinitely. So, in other words, there's no direct way to ask the 1st thread to exit the method immediately by calling another method on the COM object from within another thread. Calling _vfpThread.Abort() should work, but the safety of this approach largely depends on the internals of the VFP class.
In many cases, due to it being legacy code, it won't have anything like a try/catch/finally section that would allow for a graceful exit, therefore resources may wind up being left unreleased. - BAD!
Another approach would be to set an external flag somewhere (registry, file, whatever), which would be available for reading by that 1st thread from within the method it is executing. That of course requires that the VFP class be aware of having to read the flag from each of its COM-published methods, and act accordingly and quickly.
Also, regarding your code snippet.
Catching ThreadAbortException in the code that is aborting a thread only makes sense if the thread executing this code is aborting itself. Which would be pretty awkward, since it could instead just return from the method. (Or, is this thread that is calling _vfpThread.Abort() also potentially being aborted from yet another thread?)
In a normal scenario, what you'd need wrapped in a ThreadAbortException catcher is the 1st thread's main code that performs calls to all those business methods on the COM object.
Ideally, you'd have this as deep down the stack as the VFP methods themselves where the code would be able to gracefully close all resources/tables etc before re-throwing the exception.
And then in the main method that you passed to the ThreadStart, you'd have a similar catcher except it would peacefully return from the method, thereby terminating the thread or releasing it to the thread pool.
Yes, I did understand your code correctly.-Thanks.
Aborting the vfp thread if it does not exit gracefully within 60 seconds is perhaps the only thing you could do.
In terms of what Dispose should do - it should try its best to release all unmanaged resources, which are unfortunately hidden from this code as they are used/opened from within the VFP COM class. So, if the COM object is seized, the main thread won't be able to force it to release those resources. Perhaps what you could try doing is wrapping the entire body of the COM business method in a VFP try-catch block and releasing resources/closing tables in the catch section. There's a good chance that the try-catch block would capture the ThreadAbortException caused by calling _vfpThread.Abort() from the main thread.
Related
I have the following code:
using (Mutex mut = new Mutex(false, MUTEX_NAME))
{
if (mut.WaitOne(new TimeSpan(0, 0, 30)))
{
// Some code that deals with a specific TCP port
// Don't want this to run at the same time in another process
}
}
I've set a breakpoint within the if block, and ran the same code within another instance of Visual Studio. As expected, the .WaitOne call blocks. However, to my surprise, as soon as I continue in the first instance and the using block terminates, I get an exception in the second process about an abandoned Mutex.
The fix is to call ReleaseMutex:
using (Mutex mut = new Mutex(false, MUTEX_NAME))
{
if (mut.WaitOne(new TimeSpan(0, 0, 30)))
{
// Some code that deals with a specific TCP port
// Don't want this to run twice in multiple processes
}
mut.ReleaseMutex();
}
Now, things work as expected.
My Question: Usually the point of an IDisposable is it cleans up whatever state you put things in. I could see perhaps having multiple waits and releases within a using block, but when the handle to the Mutex is disposed, shouldn't it get released automatically? In other words, why do I need to call ReleaseMutex if I'm in a using block?
I'm also now concerned that if the code within the if block crashes, I'll have abandoned mutexes lying around.
Is there any benefit to putting Mutex in a using block? Or, should I just new up a Mutex instance, wrap it in a try/catch, and call ReleaseMutex() within the finally block (Basically implementing exactly what I thought Dispose() would do)
The documentation explains (in the "Remarks" section) that there is a conceptual difference between instantiating a Mutex object (which does not, in fact, do anything special as far as synchronization goes) and acquiring a Mutex (using WaitOne). Note that:
WaitOne returns a boolean, meaning that acquiring a Mutex can fail (timeout) and both cases must be handled
When WaitOne returns true, then the calling thread has acquired the Mutex and must call ReleaseMutex, or else the Mutex will become abandoned
When it returns false, then the calling thread must not call ReleaseMutex
So, there's more to Mutexes than instantiation. As for whether you should use using anyway, let's take a look at what Dispose does (as inherited from WaitHandle):
protected virtual void Dispose(bool explicitDisposing)
{
if (this.safeWaitHandle != null)
{
this.safeWaitHandle.Close();
}
}
As we can see, the Mutex is not released, but there is some cleanup involved, so sticking with using would be a good approach.
As to how you should proceed, you can of course use a try/finally block to make sure that, if the Mutex is acquired, that it gets properly released. This is likely the most straightforward approach.
If you really don't care about the case where the Mutex fails to be acquired (which you haven't indicated, since you pass a TimeSpan to WaitOne), you could wrap Mutex in your own class that implements IDisposable, acquire the Mutex in the constructor (using WaitOne() with no arguments), and release it inside Dispose. Although, I probably wouldn't recommend this, as this would cause your threads to wait indefinitely if something goes wrong, and regardless there are good reasons for explicitly handling both cases when attempting an acquire, as mentioned by #HansPassant.
This design decision was made a long, long time ago. Over 21 years ago, well before .NET was ever envisioned or the semantics of IDisposable were ever considered. The .NET Mutex class is a wrapper class for the underlying operating system support for mutexes. The constructor pinvokes CreateMutex, the WaitOne() method pinvokes WaitForSingleObject().
Note the WAIT_ABANDONED return value of WaitForSingleObject(), that's the one that generates the exception.
The Windows designers put the rock-hard rule in place that a thread that owns the mutex must call ReleaseMutex() before it exits. And if it doesn't that this is a very strong indication that the thread terminated in an unexpected way, typically through an exception. Which implies that synchronization is lost, a very serious threading bug. Compare to Thread.Abort(), a very dangerous way to terminate a thread in .NET for the same reason.
The .NET designers did not in any way alter this behavior. Not in the least because there isn't any way to test the state of the mutex other than by performing a wait. You must call ReleaseMutex(). And do note that your second snippet is not correct either; you cannot call it on a mutex that you didn't acquire. It must be moved inside of the if() statement body.
Ok, posting an answer to my own question. From what I can tell, this is the ideal way to implement a Mutex that:
Always gets Disposed
Gets Released iff WaitOne was successful.
Will not get abandoned if any code throws an exception.
Hopefully this helps someone out!
using (Mutex mut = new Mutex(false, MUTEX_NAME))
{
if (mut.WaitOne(new TimeSpan(0, 0, 30)))
{
try
{
// Some code that deals with a specific TCP port
// Don't want this to run twice in multiple processes
}
catch(Exception)
{
// Handle exceptions and clean up state
}
finally
{
mut.ReleaseMutex();
}
}
}
Update: Some may argue that if the code within the try block puts your resource in an unstable state, you should not release the Mutex and instead let it get abandoned. In other words, just call mut.ReleaseMutex(); when the code finishes successfully, and not put it within the finally block. The code acquiring the Mutex could then catch this exception and do the right thing.
In my situation, I'm not really changing any state. I'm temporarily using a TCP port and can't have another instance of the program run at the same time. For this reason, I think my solution above is fine but yours may be different.
One of the primary uses of a mutex is to ensure that the only code which will ever see a shared object in a state which doesn't satisfy its invariants is the code which (hopefully temporarily) put the object into that state. A normal pattern for code which needs to modify an object is:
Acquire mutex
Make changes to object which cause its state to become invalid
Make changes to object which cause its state to become valid again
Release mutex
If something goes wrong in after #2 has begun and before #3 has finished, the object may be left in a state which does not satisfy its invariants. Since the proper pattern is to release a mutex before disposing it, the fact that code disposes a mutex without releasing it implies that something went wrong somewhere. As such, it may not be safe for code to enter the mutex (since it hasn't been released), but there's no reason to wait for the mutex to be released (since--having been disposed--it never will be). Thus, the proper course of action is to throw an exception.
A pattern which is somewhat nicer than the one implemented by the .NET mutex object is to have the "acquire" method return an IDisposable object which encapsulates not the mutex, but rather a particular acquisition thereof. Disposing that object will then release the mutex. Code can then look something like:
using(acq = myMutex.Acquire())
{
... stuff that examines but doesn't modify the guarded resource
acq.EnterDanger();
... actions which might invalidate the guarded resource
... actions which make it valid again
acq.LeaveDanger();
... possibly more stuff that examines but doesn't modify the resource
}
If the inner code fails between EnterDanger and LeaveDanger, then the acquisition object should invalidate the mutex by calling Dispose on it, since the guarded resource may be in a corrupted state. If the inner code fails elsewhere, the mutex should be released since the guarded resource is in a valid state, and the code within the using block won't need to access it anymore. I don't have any particular recommendations of libraries implementing that pattern, but it isn't particularly difficult to implement as a wrapper around other kinds of mutex.
We need to understand more then .net to know what is going on the start of the MSDN page gives the first hint that someone “odd” is going on:
A synchronization primitive that can also be used for interprocess
synchronization.
A Mutex is a Win32 “Named Object”, each process locks it by name, the .net object is just a wrapper round the Win32 calls. The Muxtex itself lives within the Windows Kernal address space, not your application address space.
In most cases you are better off using a Monitor, if you are only trying to synchronizes access to objects within a single process.
If you need to garantee that the mutex is released switch to a try catch finally block and put the mutex release in the finally block. It is assumed that you own and have a handle for the mutex. That logic needs to be included before release is invoked.
Reading the documentation for ReleaseMutex, it seems the design decision was that a Mutex should be released consciously. if ReleaseMutex isn't called, it signifies an abnormal exit of the protected section. putting the release in a finally or dispose, circumvents this mechanism. you are still free to ignore the AbandonedMutexException, of course.
Be aware: The Mutex.Dispose() executed by the Garbage collector fails because the garbage collection process does not own the handle according Windows.
Dispose depends on WaitHandle to be released. So, even though using calls Dispose, it won't go into affect until the the conditions of stable state are met. When you call ReleaseMutex you're telling the system that you're releasing the resource, and thus, it is free to dispose of it.
For the last question.
Is there any benefit to putting Mutex in a using block? Or, should I just new up a Mutex instance, wrap it in a try/catch, and call ReleaseMutex() within the finally block (Basically implementing exactly what I thought Dispose() would do)
If you don't dispose of the mutex object, creating too many mutex objects may encounter the following issue.
---> (Inner Exception #4) System.IO.IOException: Not enough storage is available to process this command. : 'ABCDEFGHIJK'
at System.Threading.Mutex.CreateMutexCore(Boolean initiallyOwned, String name, Boolean& createdNew)
at NormalizationService.Controllers.PhysicalChunkingController.Store(Chunk chunk, Stream bytes) in /usr/local/...
The program uses the named mutex and runs 200,000 times in the parallel for loop. Adding using statement resolves the issue.
Although there are many questions about COM and STA/MTA (e.g. here), most of them talk about applications which have a UI. I, however, have the following setup:
A console application, which is by default Multi-Threaded Apartment (Main() explicitly has the [MTAThread] attribute).
The main thread spawns some worker threads.
The main thread instantiates a single-threaded COM object.
The main thread calls Console.ReadLine() until the user hits 'q', after which the application terminates.
A few questions:
Numerous places mentions the need of a message pump for COM objects. Do I need to manually create a message-pump for the main thread, or will the CLR create it for me on a new STA thread, as this question suggests?
Just to make sure - assuming the CLR automagically creates the necessary plumbing, can I then use the COM object from any worker thread without the need of explicit synchronization?
Which of the following is better in terms of performance:
Let the CLR take care of the marshaling to and from the COM object.
Explicitly instantiate the object on a separate STA thread, and have other thread communicate with it via e.g. a ConcurrentQueue.
This is done automagically by COM. Since your COM object is single-threaded, COM requires a suitable home for the object to ensures it is used in a thread-safe way. Since your main thread is not friendly enough to provide such guarantees, COM automatically creates another thread and creates the object on that thread. This thread also automatically pumps, nothing you have to do to help. You can see it being created in the debugger. Enable unmanaged debugging and look in the Debug + Windows + Threads window. You'll see the thread getting added when you step over the new call.
Nice and easy, but it does have a few consequences. First off, the COM component needs to provide a proxy/stub implementation. Helper code that knows how to serialize the arguments of a method call so the real method call can be made on another thread. That's usually provided, but not always. You'll get a hard to diagnose E_NOINTERFACE exception if it is missing. Sometimes TYPE_E_LIBNOTREGISTERED, a common install problem.
And most significantly, every call on the COM component will be marshaled. That's slow, a marshaled call is usually around 10,000x slower than a direct call on a method that itself takes very little time. Like a property getter call. That can really bog your program down of course.
An STA thread avoids this and is therefore the recommended way to use a single-threaded component. And yes, it is a requirement for an STA thread to pump a message loop. Application.Run() in a .NET program. It is the message loop that marshals calls from one thread to another in COM. Do note that it doesn't necessarily mean that you must have a message loop. If no call ever needs to marshaled, or in other words, if you make all the calls on the component from the same thread, then the message loop isn't needed. That's typically easy to guarantee, particularly in a console mode app. Not if you create threads yourself of course.
One more nasty detail: a single-threaded COM component sometimes assumes it is created on a thread that pumps. And will use PostMessage() itself, typically when it uses worker threads internally and needs to raise events on the STA thread. That will of course not work correctly anymore when you don't pump. You normally diagnose this by noticing that events are not being raised. The common example of such a component is WebBrowser. Which heavily uses threads internally but raises events on the thread on which it was created. You'll never get the DocumentCompleted event if you don't pump.
So putting [STAThread] on your Main() method might be enough to get happy fast code, even without a call to Application.Run(). Just keep the consequences in mind, seeing a method call deadlock or an event not getting raised is the tell-tale sign that pumping is required.
Yes, it is possible to create a STA COM object from an MTA thread.
In this case, COM (not CLR) will create an implicit STA apartment (a separate COM-owned thread) or re-use the existing one, created ealier. The COM object will be instantiated there, then a thread-safe proxy object (COM marshalling wrapper) will be created for it and returned to the MTA thread. All calls to the object made on the MTA thread will be marshalled by COM to that implicit STA apartment.
This scenario is usually undesirable. It has a lot of shortcomings and may simply not work as expected, if COM is unable to marshal some interfaces of the object. Check this question for more details. Besides, the message pump loop, run by the implicit STA apartment, pumps only a limited number of COM-specific messages. That may also affect the functionality of the COM.
You may try it and it may work well for you. Or, you may run into some unpleasant issues like deadlocks, quite difficult to diagnose.
Here is a closely related question I just recently answered:
StaTaskScheduler and STA thread message pumping
I'd personally prefer to manually control the logic of the inter-thread calls and thread affinity, with something like ThreadAffinityTaskScheduler proposed in my answer.
You may also want to read this: INFO: Descriptions and Workings of OLE Threading Models, highly recommended.
Do I need to manually create a message-pump for the main thread,
No. It is in the MTA therefore no message pump is needed.
or will the CLR create it for me on a new STA thread
If COM creates the thread (because there is no STA in the process) then it also creates the message pump (and a hidden window: can be seen with the SPY++ and similar debugging tools).
COM object from any worker thread without the need of explicit synchronization
Depends.
If the reference to the single threaded object (STO) was created in the MTA then COM will supply the appropriate proxy. This proxy is good for all threads in the MTA.
In any other case the reference will need to be marshalled to ensure it has the correct proxy.
is better in terms of performance
The only answer to this is to test both and compare.
(Remember if you create the thread for the STA and then instantiate the object locally you need to do the message pumping. It is not clear to me that there is any CLR level lightweight message pump—including WinForms just for this certainly isn't.)
NB. The only in depth explanatory coverage of COM and the CLR is .NET and COM: The Complete Interoperability Guide by Adam Nathan (Sams, January 2002). But it is based on .NET 1.1 and now out of print (but there is a Kindle edition and is available via Safari Books Online). Even this book doesn't describe directly what you are trying to do. I would suggest some prototyping.
I am creating a wrapper for a COM library that interacts with IBM mainframes. It can only be accessed from a single thread. To get around this, I've created a System.Windows.Threading.Dispatcher to handle running all interactions on a dedicated thread.
My problem is that if the object is not disposed explicitly, the dispatcher stays running after a WinForm application exits. The finalize method is never called for the object that creates the dispatcher. I need the sessions to be closed reliably to prevent unnecessary connections.
If I call GC.Collect on application exit, it will close fine. However, the library that I created will be used by mostly inexperienced developers. I cannot count on them always Disposing, collecting garbage or all committing to either WinForms or WPF to hook into application exit events.
I've read that if a class has a finalizer, its cleanup gets deferred until later. That may be part of the issue, but I can get around having a finalizer?
The finalize method is never called for the object that creates the dispatcher
The finalizer is called, when GC decides to perform grabage collection. You shouldn't rely on finalizer, when you need to dispose resources explicitly, because you shouldn't interfere in GC work.
I cannot count on them always Disposing
I'm afraid, you have no choice. Implement IDisposable and force your users to call Dispose. This is normal practice in .NET.
Using WPF's dispatcher in a Winforms app isn't exactly a great idea. Check this answer for the equivalent Winforms approach.
Getting the COM objects released otherwise doesn't take a great effort. Just set the thread's IsBackground property to true. Which will make the CLR automatically abort the thread when the program's main thread exits. The CLR then runs one final garbage collection, the exact equivalent of you calling GC.Collect() explicitly.
I am having problems closing an application that uses WaitForSingleObject() with an INFINITE timout.
The full picture is this. I am doing the following to allow my application to handle the device wakeup event:
Register the event with:
CeRunAppAtEvent("\\\\.\\Notifications\\NamedEvents\\WakeupEvent",
NOTIFICATION_EVENT_WAKEUP);
Start a new thread to wait on:
Thread waitForWakeThread = new Thread(new ThreadStart(WaitForWakeup));
waitForWakeThread.Start();
Then do the following in the target method:
private void WaitForWakeup()
{
IntPtr handle = CreateEvent(IntPtr.Zero, 0, 0, "WakeupEvent");
while (true)
{
WaitForSingleObject(handle, INFINITE);
MessageBox.Show("Wakey wakey");
}
}
This all works fine until I try to close the application when, predictably, WaitForSingleObject continues to wait and does not allow the app to close properly. We only allow one instance of our app to run at a time and we check for this on startup. It appears to continue running until the device is soft reset.
Is there a way to kill the handle that WaitForSingleObject is waiting for, to force it to return?
Many thanks.
Use WaitForMultipleObject instead, and pass 2 handles. The existing one, and one for an event called something like 'exit'. During app shutdown, SetEvent on the exit event, and the WaitForMultipleObject will return and you can get it to exit the thread gracefully.
You need to switch on the return value of WaitForMultipleObject to do the appropriate behaviour depending on which one of the handles was triggered.
Possibly, also, you can set the thread to be a background thread. This will prevent it from stopping your application from shutting down when the main thread terminates.
See:
http://msdn.microsoft.com/en-us/library/system.threading.thread.isbackground.aspx
This is what I would do...
Use the EventWaitHandle class instead of calling CreateEvent directly. There shouldn't be any need to use the Windows API other than CeRunAppAtEvent (and API calls make code ugly...). Get this working first.
Before creating the thread, create a ManualResetEvent variable that is not initially flagged. Call it "TerminateEvent".
Replace the WaitForSingleObject API call with WaitHandle.WaitAny(WaitHandle[]) and pass an array containing "TerminateEvent" and the EventWaitHandle class wrapping the CeRunAppAtEvent notification.
Your loop can use the return value of WaitAny to determine what to do. The return value is the array index of the wait handle that unblocked the thread, so you can determine whether to continue the loop or not.
To cleanly end the thread, you can call "Set" on your "TerminateEvent" and then "Join" the thread to wait for it to terminate.
'This all works fine until I try to close the application when, predictably, WaitForSingleObject continues to wait and does not allow the app to close properly.'
Any app can close, no matter what its threads are doing. If you call ExitProcess(0) from any thread in your app, the app will close, no matter if there are threads waiting INFINITE on some API/sychro, sleeping, running on another processor, whatever. The OS will change the state of all theads that are not running to 'never run again' and use its interprocessor driver to hard-interrupt any other processors that are actually running your thread code. Once all the threads are stopped, the OS frees handles, segments etc and your app no longer exists.
Problems arise when developers try to 'cleanly' shut down threads that are stuck - like yours, when the app is closing. So..
Do you have a TThread.WaitFor, or similar, in an OnClose/OnCloseQuery handler, FormDestroy or destructor? If you have, and have no vital reason to ensure that the thread is terminated, just comment it out!
This allows the main form to close and so your code will finally reach the ExitProcess() it has been trying to get at since you clicked on the red cross button
You could, of coure, just call ExitProcess() yourself, but this may leave you with resources leaked in other proceses - database connections, for example.
'216/217 errors on close if I don't stop the threads'. This often happens because developers have followed the er... 'unfortunate' Delphi thread examples and communicate with threads by directly exchanging data between secondary thread fields and main thread fields, (eg. TThread.synchronize). This just sucks and is hell-bent on causing problems, even in the app run, never mind at shutdown when a form has been destroyed and a thread is trying to write to it or a thread has been destroyed and a main-thread form is trying ot call methods on it. It is much safer to communicate asynchronously with threads by means of queueing/PostMessaging objects that outlive both of them, eg. objects created in the thread/form and freed in the form/thread, or by means of a (thread-safe), pool of objects created in an initialization section. Forms can then close/free safely while associated threads may continue to pointlessly fill up objects for handling until the main form closes, ExitProcess() is reached and the OS annihilates the threads.
'My Form handle is invalid because it has closed but my thread tries to post a message to it'. If the PostMessage excepts, exit your thread. A better way is similar to the approach above - only post messages to a window that outlives all forms. Create one in an initialization section with a trivial WndProc that only handles one const message number that all threads use for posting. You can use wParam to pass the TwinControl instance that the thread is trying to communicate with, (usually a form variable), while lParam passes the object being communicated. When it gets a message from a thread, WndProc calls 'Peform' on the TwinControl passed and the TwinControl will get the comms object in a message-handler. A simple global boolean, 'AppClosing', say, can stop the WndProc calling Peform() on TwinControls that are freeing themselves during shutdown. This approach also avoids problems arising when the OS recreates your form window with a different handle - the Delphi form handle is not used and Windows will not recreate/change the handle of the simple form created in initialization.
I have followed these approaches for decades and do not get any shutdown problems, even with apps with dozens of threads slinging objects around on queues.
Rgds,
Martin
Of course the preferable way to solve this is to use WaitForMultipleObjects, or any other suitable function that is able to wait for multiple criterias (such as WaitForMultipleObjects, MsgWaitForMultipleObjects, etc.).
However if you have no control over which function is used - there're some tricky methods to solve this.
You may hack the functions imported from system DLL, by altering in memory the import table of any module. Since WaitForMultipleObjects is exported from kernel32.dll - it's ok.
using this technics you may redirect the function caller into your hands, and there you will be able to use the WaitForMultipleObjects.
I'm trying to fix problem with "COM object that has been separated from its underlying RCW cannot be used" error, and I think what's causing it is that COM objects are used on a thread that didn't instantiate them.
I'm not allowed to do much refactoring, and since objects should be available on multiple threads I wonder if there is a way to find out if they have been created on current thread before doing something with them that would cause aforementioned error. And, if they haven't, create them.
Also, I'm new to this interop thing, so if someone would be kind enough to help me understand, I'd much appreciate it:
What happens with the COM object once the thread finishes, and why is RCW still available on the other thread even when it doesn't have the COM object in it anymore (why isn't it null?). Also, why would it cause that error and in the same time return true on Marshal.IsCOMObject?
What happens in the following scenario(s) with reference count and the wrapper and the memory:
Create COM object x on the thread A
Pass it and save it on the thread B
Create another x (alternatively, what would happen if it were y?) on the thread C
Pass it and overwrite x on the thread B
What happens with the COM object once the thread finishes
The COM object gets destroyed automatically by COM. Which will produce the 'COM object that has been separated' exception message when another thread continues to use it. You cannot allow the thread to exit.
Clearly you have an single threaded COM server, by far the most common kind. It has affinity to the STA thread on which it was created. COM makes sure to automatically marshal any calls made on another thread to the thread that created the object. That can no longer work when the thread is gone. Also beware that you don't get any concurrency.
Another way to get this exception is by making the mistake of handling reference counts explicitly with Marshal.ReleaseComObject(). Not unlikely either since you should have gotten an MDA warning.