I am developing .Net 5.0 console application in Visual Studio 2017 Community Edition on Windows 7.
When evaluating this C# code:
int weirdIndex = child.Depth - 1; or similarly int weirdIndex = child._depth - 1; an IndexOutOfRangeException gets thrown.
child is of record type Step, which has a private field _depth as well as a public getter Depth. Here is an extract of this record:
record Step
{
/* a bunch of logic */
private readonly int _depth;
public int Depth => _depth;
}
I tried to use struct instead of record type, but it didn't fix the problem.
weirdIndex later is used to access an array, but the bounds are perfectly fine. Here is an extract from the function where weirdIndex is used:
foreach (var child in AllFather.Children)
levels[child.Depth - 1][levelPtrs[child.Depth - 1]] = child.Sum.ToString();
int weirdIndex = child._depth - 1;
Console.WriteLine("Just separating the lines");
levelPtrs[weirdIndex] = levelPtrs[weirdIndex] + 1;
}
Here is a screenshot of the situation:
I want to point out that the message Just separating the lines actually appears in the Console twice before the Exception is thrown.
I tried evaluating the following expressions in the Watch 1 of the Debug Window, and everything had expected values:
Expression | Value
----------------------------------
levelPtrs[0] | 2
child.Depth - 1 | 0
levelPtrs[child.Depth - 1] | 2
I quickly read IndexOutOfRangeException Class reference by Microsoft, and then also found this thread on StackOverflow: What is an IndexOutOfRangeException / ArgumentOutOfRangeException and how do I fix it?, but neithere of them seem to adress the issue I'm having, as far as my understanding goes.
I am very confused and would really appreciate some help. What am I missing? Is this some kind of bug by any chance?
EDIT: levels is of type string[][], levelPtrs is of type int[], and AllFather.Children is of type Step[].
EDIT: I put all the code in public GitLab repo under the branch "indexoutofrangeexception" in case somebody would like to see the whole codebase. It's not big, but quite noisy. Here is the repo: https://gitlab.com/wizardsanimals/funny-problems .
As #jalepi pointed out in the comments, levels[0] indeed is an array that has not index 2, as it only has a length of 2. That's the reason the exception was thrown.
On line 39 though, not 41. I don't know why Visual Studio decided that the line "int weirdIndex = ..." was the issue, I think it shouldn't have done so. Perhaps it was trying to help.
Thanks everybody for your comments. Moral of the story: check code both below and ABOVE when the cause of exception is unclear.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
Is it a bad practice to use break statement inside a for loop?
Say, I am searching for an value in an array. Compare inside a for loop and when value is found, break; to exit the for loop.
Is this a bad practice? I have seen the alternative used: define a variable vFound and set it to true when the value is found and check vFound in the for statement condition. But is it necessary to create a new variable just for this purpose?
I am asking in the context of a normal C or C++ for loop.
P.S: The MISRA coding guidelines advise against using break.
No, break is the correct solution.
Adding a boolean variable makes the code harder to read and adds a potential source of errors.
Lots of answers here, but I haven't seen this mentioned yet:
Most of the "dangers" associated with using break or continue in a for loop are negated if you write tidy, easily-readable loops. If the body of your loop spans several screen lengths and has multiple nested sub-blocks, yes, you could easily forget that some code won't be executed after the break. If, however, the loop is short and to the point, the purpose of the break statement should be obvious.
If a loop is getting too big, use one or more well-named function calls within the loop instead. The only real reason to avoid doing so is for processing bottlenecks.
You can find all sorts of professional code with 'break' statements in them. It perfectly make sense to use this whenever necessary. In your case this option is better than creating a separate variable just for the purpose of coming out of the loop.
Using break as well as continue in a for loop is perfectly fine.
It simplifies the code and improves its readability.
Far from bad practice, Python (and other languages?) extended the for loop structure so part of it will only be executed if the loop doesn't break.
for n in range(5):
for m in range(3):
if m >= n:
print('stop!')
break
print(m, end=' ')
else:
print('finished.')
Output:
stop!
0 stop!
0 1 stop!
0 1 2 finished.
0 1 2 finished.
Equivalent code without break and that handy else:
for n in range(5):
aborted = False
for m in range(3):
if not aborted:
if m >= n:
print('stop!')
aborted = True
else:
print(m, end=' ')
if not aborted:
print('finished.')
General rule: If following a rule requires you to do something more awkward and difficult to read then breaking the rule, then break the rule.
In the case of looping until you find something, you run into the problem of distinguishing found versus not found when you get out. That is:
for (int x=0;x<fooCount;++x)
{
Foo foo=getFooSomehow(x);
if (foo.bar==42)
break;
}
// So when we get here, did we find one, or did we fall out the bottom?
So okay, you can set a flag, or initialize a "found" value to null. But
That's why in general I prefer to push my searches into functions:
Foo findFoo(int wantBar)
{
for (int x=0;x<fooCount;++x)
{
Foo foo=getFooSomehow(x);
if (foo.bar==wantBar)
return foo;
}
// Not found
return null;
}
This also helps to unclutter the code. In the main line, "find" becomes a single statement, and when the conditions are complex, they're only written once.
There is nothing inherently wrong with using a break statement but nested loops can get confusing. To improve readability many languages (at least Java does) support breaking to labels which will greatly improve readability.
int[] iArray = new int[]{0,1,2,3,4,5,6,7,8,9};
int[] jArray = new int[]{0,1,2,3,4,5,6,7,8,9};
// label for i loop
iLoop: for (int i = 0; i < iArray.length; i++) {
// label for j loop
jLoop: for (int j = 0; j < jArray.length; j++) {
if(iArray[i] < jArray[j]){
// break i and j loops
break iLoop;
} else if (iArray[i] > jArray[j]){
// breaks only j loop
break jLoop;
} else {
// unclear which loop is ending
// (breaks only the j loop)
break;
}
}
}
I will say that break (and return) statements often increase cyclomatic complexity which makes it harder to prove code is doing the correct thing in all cases.
If you're considering using a break while iterating over a sequence for some particular item, you might want to reconsider the data structure used to hold your data. Using something like a Set or Map may provide better results.
break is a completely acceptable statement to use (so is continue, btw). It's all about code readability -- as long as you don't have overcomplicated loops and such, it's fine.
It's not like they were the same league as goto. :)
It depends on the language. While you can possibly check a boolean variable here:
for (int i = 0; i < 100 && stayInLoop; i++) { ... }
it is not possible to do it when itering over an array:
for element in bigList: ...
Anyway, break would make both codes more readable.
I agree with others who recommend using break. The obvious consequential question is why would anyone recommend otherwise? Well... when you use break, you skip the rest of the code in the block, and the remaining iterations. Sometimes this causes bugs, for example:
a resource acquired at the top of the block may be released at the bottom (this is true even for blocks inside for loops), but that release step may be accidentally skipped when a "premature" exit is caused by a break statement (in "modern" C++, "RAII" is used to handle this in a reliable and exception-safe way: basically, object destructors free resources reliably no matter how a scope is exited)
someone may change the conditional test in the for statement without noticing that there are other delocalised exit conditions
ndim's answer observes that some people may avoid breaks to maintain a relatively consistent loop run-time, but you were comparing break against use of a boolean early-exit control variable where that doesn't hold
Every now and then people observing such bugs realise they can be prevented/mitigated by this "no breaks" rule... indeed, there's a whole related strategy for "safer" programming called "structured programming", where each function is supposed to have a single entry and exit point too (i.e. no goto, no early return). It may eliminate some bugs, but it doubtless introduces others. Why do they do it?
they have a development framework that encourages a particular style of programming / code, and they've statistical evidence that this produces a net benefit in that limited framework, or
they've been influenced by programming guidelines or experience within such a framework, or
they're just dictatorial idiots, or
any of the above + historical inertia (relevant in that the justifications are more applicable to C than modern C++).
In your example you do not know the number of iterations for the for loop. Why not use while loop instead, which allows the number of iterations to be indeterminate at the beginning?
It is hence not necessary to use break statemement in general, as the loop can be better stated as a while loop.
I did some analysis on the codebase I'm currently working on (40,000 lines of JavaScript).
I found only 22 break statements, of those:
19 were used inside switch statements (we only have 3 switch statements in total!).
2 were used inside for loops - a code that I immediately classified as to be refactored into separate functions and replaced with return statement.
As for the final break inside while loop... I ran git blame to see who wrote this crap!
So according to my statistics: If break is used outside of switch, it is a code smell.
I also searched for continue statements. Found none.
It's perfectly valid to use break - as others have pointed out, it's nowhere in the same league as goto.
Although you might want to use the vFound variable when you want to check outside the loop whether the value was found in the array. Also from a maintainability point of view, having a common flag signalling the exit criteria might be useful.
I don't see any reason why it would be a bad practice PROVIDED that you want to complete STOP processing at that point.
In the embedded world, there is a lot of code out there that uses the following construct:
while(1)
{
if (RCIF)
gx();
if (command_received == command_we_are_waiting_on)
break;
else if ((num_attempts > MAX_ATTEMPTS) || (TickGet() - BaseTick > MAX_TIMEOUT))
return ERROR;
num_attempts++;
}
if (call_some_bool_returning_function())
return TRUE;
else
return FALSE;
This is a very generic example, lots of things are happening behind the curtain, interrupts in particular. Don't use this as boilerplate code, I'm just trying to illustrate an example.
My personal opinion is that there is nothing wrong with writing a loop in this manner as long as appropriate care is taken to prevent remaining in the loop indefinitely.
Depends on your use case. There are applications where the runtime of a for loop needs to be constant (e.g. to satisfy some timing constraints, or to hide your data internals from timing based attacks).
In those cases it will even make sense to set a flag and only check the flag value AFTER all the for loop iterations have actually run. Of course, all the for loop iterations need to run code that still takes about the same time.
If you do not care about the run time... use break; and continue; to make the code easier to read.
On MISRA 98 rules, that is used on my company in C dev, break statement shall not be used...
Edit : Break is allowed in MISRA '04
Ofcourse, break; is the solution to stop the for loop or foreach loop. I used it in php in foreach and for loop and found working.
I think it can make sense to have your checks at the top of your for loop like so
for(int i = 0; i < myCollection.Length && myCollection[i].SomeValue != "Break Condition"; i++)
{
//loop body
}
or if you need to process the row first
for(int i = 0; i < myCollection.Length && (i == 0 ? true : myCollection[i-1].SomeValue != "Break Condition"); i++)
{
//loop body
}
This way you can have a singular body function without breaks.
for(int i = 0; i < myCollection.Length && (i == 0 ? true : myCollection[i-1].SomeValue != "Break Condition"); i++)
{
PerformLogic(myCollection[i]);
}
It can also be modified to move Break into its own function as well.
for(int i = 0; ShouldContinueLooping(i, myCollection); i++)
{
PerformLogic(myCollection[i]);
}
I want to make a small kind of calculator.
This calculator would randomly choose numbers between 1 and 1000, and you would have to answer them.
You would keep a score from the good and wrong answers.
Everything is working as long as I only run it once.
If I set a loop it only allows me to answer the last time. How can I make my program stop after every loop? I've tried to set focus to the textbox where you should give the answer, but it doesn't set the focus until the last loop is finished.
for (int i = 1; i <= 5; i++)
{
txtResultaat.Focus();
}
Apparently this makes it run 5 times through the loop, but it only allows me one opportunity to type something into the textbox.
Does anyone have a solution for this?
Well you didn't tell the program to actually stop at all, as you are just having it loop 5 times and set the focus each time to the textbox. A better way to do this would be to maintain some sort of counter of how many times they have answered so far (a global variable would be easiest for this level of program. Then just on program load have the program ask for the first numbers, then have that event end. When the user clicks the answer button, in the button event you then determine if they were right or wrong. Then at the end of the event, you output the new question.
Well, if I want to be strictly theoretical, the answer for your question is: use the break instruction.
for (int i = 1; i <= 5; i++)
{
txtResultaat.Focus();
break;
}
That will achieve what you asked for:
Can anyone tell me how i can make my program stop after every loop?
If it will make your program run correctly and do what you want to do... that my friend, is another thing.
Another design ( working with a while loop instead of a for loop) made it work.
I'm a student and I got a homework i need some minor help with =)
Here is my task:
Write an application that prompts the user to enter the size of a square and display a square of asterisks with the sides equal with entered integer. Your application works for side’s size from 2 to 16. If the user enters a number less than 2 or greater then 16, your application should display a square of size 2 or 16, respectively, and an error message.
This is how far I've come:
start:
int x;
string input;
Console.Write("Enter a number between 2-16: ");
input = Console.ReadLine();
x = Int32.Parse(input);
Console.WriteLine("\n");
if (x <= 16 & x >= 2)
{
control statement
code
code
code
}
else
{
Console.WriteLine("You must enter a number between 2 and 16");
goto start;
}
I need help with...
... what control statment(if, for, while, do-while, case, boolean) to use inside the "if" control.
My ideas are like...
do I write a code that writes out the boxes for every type of number entered? That's a lot of code...
..there must be a code containing some "variable++" that could do the task for me, but then what control statement suits the task best?
But if I use a "variable++" how am I supposed to write the spaces in the output, because after all, it has to be a SQUARE?!?! =)
I'd love some suggestions on what type of statements to use, or maybe just a hint, of course not the whole solution as I am a student!
It's not the answer you're looking for, but I do have a few suggestions for clean code:
Your use of Int32.Parse is a potential exception that can crash the application. Look into Int32.TryParse (or just int.TryParse, which I personally think looks cleaner) instead. You'll pass it what it's parsing and an "out" parameter of the variable into which the value should be placed (in this case, x).
Try not to declare your variables until you actually use them. Getting into the habit of declaring them all up front (especially without instantiated values) can later lead to difficult to follow code. For my first suggestions, x will need to be declared ahead of time (look into default in C# for default instantiation... it's, well, by default, but it's good information to understand), but the string doesn't need to be.
Try to avoid using goto when programming :) For this code, it would be better to break out the code which handles the value and returns what needs to be drawn into a separate method and have the main method just sit around and wait for input. Watch for hard infinite loops, though.
It's never too early to write clean and maintainable code, even if it's just for a homework assignment that will never need to be maintained :)
You do not have to write code for every type of number entered. Instead, you have to use loops (for keyword).
Probably I must stop here and let you do the work, but I would just give a hint: you may want to do it with two loops, one embedded in another.
I have also noted some things I want to comment in your code:
Int32.Parse: do not use Int32, but int. It will not change the meaning of your code. I will not explain why you must use int instead: it is quite difficult to explain, and you would understand it later for sure.
Avoid using goto statement, except if you were told to use it in the current case by your teacher.
Console.WriteLine("\n");: avoid "\n". It is platform dependent (here, Linux/Unix; on Windows it's "\r\n", and on MacOS - "\n\r"). Use Environment.NewLine instead.
x <= 16 & x >= 2: why & and not ||?
You can write string input = Console.ReadLine(); instead of string input; followed by input = Console.ReadLine();.
Since it's homework, we can't give you the answer. But here are some hints (assuming solid *'s, not white space in-between):
You're going to want to iterate from 1 to N. See for (int...
There's a String constructor that will allow you to avoid the second loop. Look at all of the various constructors.
Your current error checking does not meet the specifications. Read the spec again.
You're going to throw an exception if somebody enters a non-parsable integer.
goto's went out of style before bell-bottoms. You actually don't need any outer control for the spec you were given, because it's "one shot and go". Normally, you would write a simple console app like this to look for a special value (e.g., -1) and exit when you see that value. In that case you would use while (!<end of input>) as the outer control flow.
If x is greater or equal to 16, why not assign 16 to it (since you'll eventually need to draw a square with a side of length 16) (and add an appropriate message)?
the control statement is:
for (int i = 0; i < x; i++)
{
for ( int j = 0; j < x; j++ )
{
Console.Write("*");
}
Console.WriteLine();
}
This should print a X by X square of asterisks!
I'ma teacher and I left the same task to my students a while ago, I hope you're not one of them! :)