Related
I have a class, EventContainer.cs, which contains an event, say:
public event EventHandler AfterSearch;
I have another class, EventRaiser.cs. How do I raise (and not handle) the above said event from this class?
The raised event will in turn call the handler of the event in the EventContainer class. Something like this (this is obviously not correct):
EventContainer obj = new EventContainer();
RaiseEvent(obj.AfterSearch);
This is not possible, Events can only be risen from inside the class. If you could do that, it would defeat the purpose of events (being able to rise status changes from inside the class). I think you are misunderstanding the function of events - an event is defined inside a class and others can subscribe to it by doing
obj.AfterSearch += handler; (where handler is a method according to the signature of AfterSearch). One is able to subscribe to the event from the outside just fine, but it can only be risen from inside the class defining it.
It is POSSIBLE, but using clever hack.
Inspired by http://netpl.blogspot.com/2010/10/is-net-type-safe.html
If you don't believe, try this code.
using System;
using System.Runtime.InteropServices;
namespace Overlapping
{
[StructLayout(LayoutKind.Explicit)]
public class OverlapEvents
{
[FieldOffset(0)]
public Foo Source;
[FieldOffset(0)]
public OtherFoo Target;
}
public class Foo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello Foo";
}
public void Click()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
}
public class OtherFoo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello OtherFoo";
}
public void Click2()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
public void Clean()
{
Clicked = null;
}
}
class Test
{
public static void Test3()
{
var a = new Foo();
a.Clicked += AClicked;
a.Click();
var o = new OverlapEvents { Source = a };
o.Target.Click2();
o.Target.Clean();
o.Target.Click2();
a.Click();
}
static void AClicked(object sender, EventArgs e)
{
Console.WriteLine(sender.ToString());
}
}
}
You can write a public method on the class you want the event to fire from and fire the event when it is called. You can then call this method from whatever user of your class.
Of course, this ruins encapsulation and is bad design.
It looks like you're using the Delegate pattern. In this case, the AfterSearch event should be defined on the EventRaiser class, and the EventContainer class should consume the event:
In EventRaiser.cs
public event EventHandler BeforeSearch;
public event EventHandler AfterSearch;
public void ExecuteSearch(...)
{
if (this.BeforeSearch != null)
this.BeforeSearch();
// Do search
if (this.AfterSearch != null)
this.AfterSearch();
}
In EventContainer.cs
public EventContainer(...)
{
EventRaiser er = new EventRaiser();
er.AfterSearch += this.OnAfterSearch;
}
public void OnAfterSearch()
{
// Handle AfterSearch event
}
I stumbled across this problem as well, because i was experimenting with calling PropertyChanged events from outside. So you dont have to implement everything in every class. The solution from halorty wouldn't work using interfaces.
I found a solution working using heavy reflection. It is surely slow and is breaking the principle that events should only be called from inside a class. But it is interesting to find a generic solution to this problem....
It works because every event is a list of invocation methods being called.
So we can get the invocation list and call every listener attached to that event by our own.
Here you go....
class Program
{
static void Main(string[] args)
{
var instance = new TestPropertyChanged();
instance.PropertyChanged += PropertyChanged;
instance.RaiseEvent(nameof(INotifyPropertyChanged.PropertyChanged), new PropertyChangedEventArgs("Hi There from anywhere"));
Console.ReadLine();
}
private static void PropertyChanged(object sender, PropertyChangedEventArgs e)
{
Console.WriteLine(e.PropertyName);
}
}
public static class PropertyRaiser
{
private static readonly BindingFlags staticFlags = BindingFlags.Instance | BindingFlags.NonPublic;
public static void RaiseEvent(this object instance, string eventName, EventArgs e)
{
var type = instance.GetType();
var eventField = type.GetField(eventName, staticFlags);
if (eventField == null)
throw new Exception($"Event with name {eventName} could not be found.");
var multicastDelegate = eventField.GetValue(instance) as MulticastDelegate;
if (multicastDelegate == null)
return;
var invocationList = multicastDelegate.GetInvocationList();
foreach (var invocationMethod in invocationList)
invocationMethod.DynamicInvoke(new[] {instance, e});
}
}
public class TestPropertyChanged : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
}
There is good way to do this. Every event in C# has a delegate that specifies the sign of methods for that event. Define a field in your external class with type of your event delegate. get the the reference of that field in the constructor of external class and save it. In main class of your event, send the reference of event for delegate of external class. Now you can easily call the delegate in your external class.
public delegate void MyEventHandler(object Sender, EventArgs Args);
public class MyMain
{
public event MyEventHandler MyEvent;
...
new MyExternal(this.MyEvent);
...
}
public MyExternal
{
private MyEventHandler MyEvent;
public MyExternal(MyEventHandler MyEvent)
{
this.MyEvent = MyEvent;
}
...
this.MyEvent(..., ...);
...
}
Agree with Femaref -- and note this is an important difference between delegates and events (see for example this blog entry for an good discussion of this and other differences).
Depending on what you want to achieve, you might be better off with a delegate.
Not a good programming but if you want to do that any way you can do something like this
class Program
{
static void Main(string[] args)
{
Extension ext = new Extension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
}
static void ext_MyEvent(int num)
{
Console.WriteLine(num);
}
}
public class Extension
{
public delegate void MyEventHandler(int num);
public event MyEventHandler MyEvent;
public void Dosomething()
{
int no = 0;
while(true){
if(MyEvent!=null){
MyEvent(++no);
}
}
}
}
I had a similar confusion and honestly find the answers here to be confusing. Although a couple hinted at solutions that I would later find would work.
My solution was to hit the books and become more familiar with delegates and event handlers.
Although I've used both for many years, I was never intimately familiar with them.
http://www.codeproject.com/Articles/20550/C-Event-Implementation-Fundamentals-Best-Practices
gives the best explanation of both delegates and event handlers that I've ever read and clearly explains that a class can be a publisher of events and have other classes consume them.
This article: http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single discusses how to single-cast events to only one handler since delegates are multicast by definition . A delegate inherits system.MulticastDelegate most including the system delegates are Multicast.
I found that multicast meant that any event handler with the same signature would receive the raised event. Multicast behavior has caused me some sleepless nights as I stepped through code and saw my event seemingly erroneously being sent to handlers that I had no intention of getting this event. Both articles explains this behavior.
The second article shows you one way, and the first article shows you another, by making the delegate and the signature tightly typed.
I personally believe strong typing prevents stupid bugs that can be a pain to find. So I'd vote for the first article, even though I got the second article code working. I was just curious. :-)
I also got curious if I could get #2 articles code to behave like how I interpreted the original question above. Regardless of your chosen approach or if I'm also misinterpreting the original question, my real message is that I still think you would benefit from reading the first article as I did, especially if the questions or answers on this page leave you confused. If you are having multicast nightmares and need a quick solution then article 2 may help you.
I started playing with the second article's eventRaiser class. I made a simple windows form project.
I added the second articles class EventRaiser.cs to my project.
In the Main form's code, I defined a reference to that EventRaiser class at the top as
private EventRaiser eventRaiser = new EventRaiser();
I added a method in the main form code that I wanted to be called when the event was fired
protected void MainResponse( object sender, EventArgs eArgs )
{
MessageBox.Show("got to MainResponse");
}
then in the main form's constructor I added the event assignment:
eventRaiser.OnRaiseEvent += new EventHandler(MainResponse);`
I then created a class that would be instantiated by my main form called "SimpleClass" for lack of creative ingenuity at the moment.
Then I added a button and in the button's click event
I instantiated the SimpleClass code I wanted to raise an event from:
private void button1_Click( object sender, EventArgs e )
{
SimpleClass sc = new SimpleClass(eventRaiser);
}
Note the instance of "eventRaiser" that I passed to SimpleClass.cs. That was defined and instantiated earlier in the Main form code.
In the SimpleClass:
using System.Windows.Forms;
using SinglecastEvent; // see SingleCastEvent Project for info or http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single
namespace GenericTest
{
public class SimpleClass
{
private EventRaiser eventRaiser = new EventRaiser();
public SimpleClass( EventRaiser ev )
{
eventRaiser = ev;
simpleMethod();
}
private void simpleMethod()
{
MessageBox.Show("in FileWatcher.simple() about to raise the event");
eventRaiser.RaiseEvent();
}
}
}
The only point to the private method I called SimpleMethod was to verify that a privately scoped method could still raise the event, not that I doubted it, but I like to be positive.
I ran the project and this resulted in raising the event from the "simpleMethod" of the "SimpleClass" up to the main form and going to the expected correct method called MainResponse proving that one class can indeed raise an event that is consumed by a different class.
Yes the event has to be raised from within the class that needs it's change broadcast to other classes that care. Receiving classes can be one class or many many classes depending on how strongly typed you defined them or by making them single cast as in 2nd article.
Hope this helps and not muddy the water. Personally I've got a lot of delegates and events to clean up! Multicast demons begone!
The raising class has to get a fresh copy of the EventHandler.
One possible solution below.
using System;
namespace ConsoleApplication1
{
class Program
{
class HasEvent
{
public event EventHandler OnEnvent;
EventInvoker myInvoker;
public HasEvent()
{
myInvoker = new EventInvoker(this, () => OnEnvent);
}
public void MyInvokerRaising() {
myInvoker.Raise();
}
}
class EventInvoker
{
private Func<EventHandler> GetEventHandler;
private object sender;
public EventInvoker(object sender, Func<EventHandler> GetEventHandler)
{
this.sender = sender;
this.GetEventHandler = GetEventHandler;
}
public void Raise()
{
if(null != GetEventHandler())
{
GetEventHandler()(sender, new EventArgs());
}
}
}
static void Main(string[] args)
{
HasEvent h = new HasEvent();
h.OnEnvent += H_OnEnvent;
h.MyInvokerRaising();
}
private static void H_OnEnvent(object sender, EventArgs e)
{
Console.WriteLine("FIRED");
}
}
}
Use public EventHandler AfterSearch;
not
public event EventHandler AfterSearch;
Use a Delegate (an Action or Func) instead of an event. An event is essentially a delegate that can only be triggered from within the class.
I took a slightly different approach in solving this problem. My solution consisted of a winform front end, a main Class Library (DLL) and within that dll, a secondary working class:
WinForm
|------> PickGen Library
|---------> Allocations class
What I decided to do is to create events in the main dll (PickGen) that the Allocations class could call, then those event methods would called the events within the UI.
So, allocations raises an event in PickGen which takes the parameter values and raises the event in the form. From a code standpoint, this is in the lowest class:
public delegate void AllocationService_RaiseAllocLog(string orderNumber, string message, bool logToDatabase);
public delegate void AllocationService_RaiseAllocErrorLog(string orderNumber, string message, bool logToDatabase);
public class AllocationService { ...
public event AllocationService_RaiseAllocLog RaiseAllocLog;
public event AllocationService_RaiseAllocErrorLog RaiseAllocErrorLog;
then later in the subclass code:
RaiseAllocErrorLog(SOHNUM_0, ShipmentGenerated + ": Allocated line QTY was: " + allocatedline.QTY_0 + ", Delivered was: " + QTY_0 + ". Problem batch.", false);
In the main DLL Class library I have these two event methods:
private void PickGenLibrary_RaiseAllocLog(string orderNumber, string message, bool updateDB)
{
RaiseLog(orderNumber, message, false);
}
private void PickGenLibrary_RaiseAllocErrorLog(string orderNumber, string message, bool updateDB)
{
RaiseErrorLog(orderNumber, message, false);
}
and I make the connection here when I create the allocation object:
AllocationService allsvc = new AllocationService(PickResult);
allsvc.RaiseAllocLog += new AllocationService_RaiseAllocLog(PickGenLibrary_RaiseAllocLog);
allsvc.RaiseAllocErrorLog += new AllocationService_RaiseAllocErrorLog(PickGenLibrary_RaiseAllocErrorLog);
and I also then have delegates that are set up to tie the main class with the winform code:
public delegate void JPPAPickGenLibrary_RaiseLog(string orderNumber, string message, bool logToDatabase);
public delegate void JPPAPickGenLibrary_RaiseErrorLog(string orderNumber, string message, bool logToDatabase);
It may not be the most elegant way to do it, but in the end, it does work and without being too obscure.
A nested class with an instance of the outer class provided in the constructor can access even private members of the outer class. As explained more here: stackoverflow question on inner classes.
This includes the ability to raise events in the outer class. This EventRaisers class could be internal, or otherwise controlled somehow, because it could technically otherwise be created by any script with a reference to the outer class instance.
Very simple example. i like to do it this way using EventHandler.
class Program
{
static void Main(string[] args)
{
MyExtension ext = new MyExtension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
Console.ReadLine();
}
static void ext_MyEvent(object sender, int num)
{
Console.WriteLine("Event fired.... "+num);
}
}
public class MyExtension
{
public event EventHandler<int> MyEvent;
public void Dosomething()
{
int no = 1;
if (MyEvent != null)
MyEvent(this, ++no);
}
}
}
I have the interfaces
public interface IBar
{
}
and
public interface IFoo
{
event EventHandler<IBar> MyEvent;
}
and a class
public class Foobar
{
public Foobar(IFoo foo)
{
foo.MyEvent += MyEventMethod;
}
private void MyEventMethod(object sender, IBar bar)
{
// do nothing
}
}
Now I want to unit test this brilliant piece of code using Moq 4:
[Test]
public void MyTest()
{
Mock<IFoo> foo = new Mock<IFoo>();
Mock<IBar> bar = new Mock<IBar>();
Foobar foobar = new Foobar(foo.Object);
foo.Raise(e => e.MyEvent += null, bar.Object);
}
From my understanding Foobar.MyEventMethod should be called through the raise. What happens is that I get a runtime exception that says System.Reflection.TargetParameterCountEception {"Parameter count mismatch."}.
Funny thing: when I Raise the following in the unit test:
foo.Raise(e => e.MyEvent += null, EventArgs.Empty, bar.Object);
Everything works as I want it. Can anybody explain why three arguments are needed for the call?
Thank you
I assume you use .NET 4.5 then. Type constraint was removed from EventHandler<TEventArgs> which allows you to do something like this:
event EventHandler<IBar> MyEvent;
Where IBar is just some interface.
IN 4.0, with constraint restricting TEventArgs to be assignable to EventArgs type, your code wouldn't compile.
As a result of this (IBar not deriving from EventArgs), Moq doesn't consider your event as "corresponding to Event Handler pattern", and treats it as any other delegate:
// Raising a custom event which does not adhere to the EventHandler pattern
...
// Raise passing the custom arguments expected by the event delegate
mock.Raise(foo => foo.MyEvent += null, 25, true);
Which means you have to provide all parameters, including sender.
The reason the first is not working because EventHandlers have 2 parameters (object sender, EventArgs args).
When you are setting up mocking
foo.Raise(e => e.MyEvent += null, EventArgs.Empty, bar.Object);
thee => e.MyEvent += null is an expression to tell Moq which event to raise,
The following 2 parameters are the 2 arguments you want to raise it with.
EventArgs.Empty, bar.Object
Note: If memory serves me right, those should be the other way around.
When you try to raise an event with 1 argument (bar.Object) Moq throws an exception saying that event handler requires 2 as it uses reflection to invoke it.
Your first case could be written like this:
public class Foo : IFoo
{
public event EventHandler<IBar> MyEvent;
public void OnMyEvent(IBar bar)
{
MyEvent(EventArgs.Empty)
}
}
Which gives you a compiler error: Delegate 'EventHandler' does not take 1 arguments
So that's why you need 2 parameters, as you would invoke it with the following:
public class Foo : IFoo
{
public event EventHandler<IBar> MyEvent;
public void OnMyEvent(IBar bar)
{
MyEvent(this, bar);
}
}
I have seen on another post this and its confusing me...
public class MyClass : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
protected void NotifyPropertyChanged(String info)
{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(info));
}
}
public string MyProperty
{
set
{
if (_myProperty != value)
{
_myProperty = value;
NotifyPropertyChanged("MyProperty");
}
}
}
}
MyClass myClass = new MyClass();
myClass.PropertyChanged += delegate(object sender, PropertyChangedEventArgs e)
{
actual = e.PropertyName;
};
I'm wondering about the last few lines are doing to be honest, why would the user be assiging a delegate to an event? Would't they assign a method to it (as an event handler) or even an anonymous method as the event handler?
I thought that events were meant to encapsulate delegates.....?
You always subscribe to an event (or unsubscribe from it) using a delegate. Even if you do:
button.Click += HandleButtonClick;
that's equivalent to
button.Click += new EventHandler(HandleButtonClick);
When you say:
Would't they assign a method to it (as an event handler) or even an anonymous method as the event handler?
That's exactly what the last few lines of code do. That's what delegate (...) { ... } is.
I thought that events were meant to encapsulate delegates.....?
Events provide an implementation of the observer pattern, using delegates as the observers.
This syntax was introduced in C# 2.0
They are using an anonymous method here, rather than having to create an actual instance method of the class. It's generally considered cleaner.
In C# 3 and above, a Lambda expression could have been used as well.
The += adds an anonymous delegate to the event. Instead of creating a named method with the signature object sender, PropertyChangedEventArgs e, you can use C#2.0 syntax to create such delegates anonymously in the body of another function. Another way of doing it would be to use a more concise lambda syntax from C#3.5+:
myClass.PropertyChanged += (sender, e) { actual = e.PropertyName; };
They are not assigning a delegate to an event, they are adding a subscriber to that event using an anonymous method.
Also, as an aside, the NotifyPropertyChanged method should be changed to:
protected void NotifyPropertyChanged(String info)
{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
handler(this, new PropertyChangedEventArgs(info));
}
}
Since there is a potential race condition between the null check and invocation of the delegate.
Technically, you are correct; events encapsulate delegates. However, event handlers themselves are delegates.
Description
This class implements the INotifyPropertyChanged interface
MSDN Notifies clients that a property value has changed.
The INotifyPropertyChanged interface is used to notify clients, typically binding clients, that a property value has changed.
This is used for example on controls like the Datagrid. It signals the control that the property has changed and the control should rerender.
About the Event
You always subscribe to an event.
MyClass myClass = new MyClass();
myClass.PropertyChanged += delegate(object sender, PropertyChangedEventArgs e)
{
actual = e.PropertyName;
};
is doing the same as
MyClass myClass = new MyClass();
myClass.PropertyChanged += new PropertyChangedEventHandler(myClass_PropertyChanged);
void myClass_PropertyChanged(object sender, PropertyChangedEventArgs e)
{
actual = e.PropertyName;
}
or
MyClass myClass = new MyClass();
myClass.PropertyChanged += myClass_PropertyChanged;
void myClass_PropertyChanged(object sender, PropertyChangedEventArgs e)
{
actual = e.PropertyName;
}
More Information
INotifyPropertyChanged Interface
I want to test that class A's RegisterEventHandlers() method registers one of its methods as an EventHandler for an event on class B. How can I do that? I'm using moq, if that matters.
I don't think there's a way to inspect the event handler delegate from outside the class (please correct me if I'm wrong).
It'd be nice if I could trigger the event and then assert that my callback was called, but if I mock the interface of the A class (and set up an expectation for the callback) then I lose the implementation of RegisterEventHandlers(), which is the method I'm testing in the first place.
Mocking the B class's event would be the best option, but I don't see what method I'd have to intercept to do this. Is there some way to set up a mock for an event, and intercept the += method call?
Is there a clean solution to this?
You can get the invocation list for an event outside the class declaring the event - but it involves reflection. Below is a code example showing how you can determine which methods (on target instance a) are added to the event b.TheEvent after a call to a.RegisterEventHandlers(). Paste the code below in a code file and add to a form or console project: Test test = new Test(); test.Run();
using System;
using System.Reflection;
using System.Diagnostics;
using System.Collections.Generic;
public class A
{
B m_b = new B();
public void RegisterEventHandlers()
{
m_b.TheEvent += new EventHandler(Handler_TheEvent);
m_b.TheEvent += new EventHandler(AnotherHandler_TheEvent);
}
public A()
{
m_b.TheEvent += new EventHandler(InitialHandler_TheEvent);
}
void InitialHandler_TheEvent(object sender, EventArgs e)
{ }
void Handler_TheEvent(object sender, EventArgs e)
{ }
void AnotherHandler_TheEvent(object sender, EventArgs e)
{ }
}
public class B
{
public event EventHandler TheEvent;
//{
// //Note that if we declared TheEvent without the add/remove methods, the
// //following would still generated internally and the underlying member
// //(here m_theEvent) can be accessed via Reflection. The automatically
// //generated version has a private field with the same name as the event
// //(i.e. "TheEvent")
// add { m_theEvent += value; }
// remove { m_theEvent -= value; }
//}
//EventHandler m_theEvent; //"TheEvent" if we don't implement add/remove
//The following shows how the event can be invoked using the underlying multicast delegate.
//We use this knowledge when invoking via reflection (of course, normally we just write
//if (TheEvent != null) TheEvent(this, EventArgs.Empty)
public void ExampleInvokeTheEvent()
{
Delegate[] dels = TheEvent.GetInvocationList();
foreach (Delegate del in dels)
{
MethodInfo method = del.Method;
//This does the same as ThisEvent(this, EventArgs.Empty) for a single registered target
method.Invoke(this, new object[] { EventArgs.Empty });
}
}
}
public class Test
{
List<Delegate> FindRegisteredDelegates(A instanceRegisteringEvents, B instanceWithEventHandler, string sEventName)
{
A a = instanceRegisteringEvents;
B b = instanceWithEventHandler;
//Lets assume that we know that we are looking for a private instance field with name sEventName ("TheEvent"),
//i.e the event handler does not implement add/remove.
//(otherwise we would need more reflection to determine what we are looking for)
BindingFlags filter = BindingFlags.Instance | BindingFlags.NonPublic;
//Lets assume that TheEvent does not implement the add and remove methods, in which case
//the name of the relevant field is just the same as the event itself
string sName = sEventName; //("TheEvent")
FieldInfo fieldTheEvent = b.GetType().GetField(sName, filter);
//The field that we get has type EventHandler and can be invoked as in ExampleInvokeTheEvent
EventHandler eh = (EventHandler)fieldTheEvent.GetValue(b);
//If the event handler is null then nobody has registered with it yet (just return an empty list)
if (eh == null) return new List<Delegate>();
List<Delegate> dels = new List<Delegate>(eh.GetInvocationList());
//Only return those elements in the invokation list whose target is a.
return dels.FindAll(delegate(Delegate del) { return Object.ReferenceEquals(del.Target, a); });
}
public void Run()
{
A a = new A();
//We would need to check the set of delegates returned before we call this
//Lets assume we know how to find the all instances of B that A has registered with
//For know, lets assume there is just one in the field m_b of A.
FieldInfo fieldB = a.GetType().GetField("m_b", BindingFlags.Instance | BindingFlags.NonPublic);
B b = (B)fieldB.GetValue(a);
//Now we can find out how many times a.RegisterEventHandlers is registered with b
List<Delegate> delsBefore = FindRegisteredDelegates(a, b, "TheEvent");
a.RegisterEventHandlers();
List<Delegate> delsAfter = FindRegisteredDelegates(a, b, "TheEvent");
List<Delegate> delsAdded = new List<Delegate>();
foreach (Delegate delAfter in delsAfter)
{
bool inBefore = false;
foreach (Delegate delBefore in delsBefore)
{
if ((delBefore.Method == delAfter.Method)
&& (Object.ReferenceEquals(delBefore.Target, delAfter.Target)))
{
//NOTE: The check for Object.ReferenceEquals(delBefore.Target, delAfter.Target) above is not necessary
// here since we defined FindRegisteredDelegates to only return those for which .Taget == a)
inBefore = true;
break;
}
}
if (!inBefore) delsAdded.Add(delAfter);
}
Debug.WriteLine("Handlers added to b.TheEvent in a.RegisterEventHandlers:");
foreach (Delegate del in delsAdded)
{
Debug.WriteLine(del.Method.Name);
}
}
}
When mocking B, declare the EventHandler like this:
public class B : IB
{
public int EventsRegistered;
public event EventHandler Junk
{
add
{
this.EventsRegistered++;
}
remove
{
this.EventsRegistered--;
}
}
}
I'm not certain that moq allows this, but I'm sure you can create your own mock class.
You are correct that you cannot access the event delegates from outside the class, this is a limitation within the C# language.
The most straight-forward approach to test this, would be to mock class B and then raise it's event and then observe the side-effects of the event being raised. This is slightly different than what you're looking for but it demonstrates class's A behavior rather than its implementation (this is what your tests should strive to do).
In order for this to work, class B must be mockable and the event that it exposes must also be virtual. Moq can't intercept events if they're not declared as virtual. Alternatively, if B is an interface be sure that the event is declared there.
public interface IEventProvider
{
event EventHandler OnEvent;
}
public class Example
{
public Example(IEventProvider e)
{
e.OnEvent += PerformWork;
}
private void PerformWork(object sender, EventArgs e)
{
// perform work
// event has an impact on this class that can be observed
// from the outside. this is just an example...
VisibleSideEffect = true;
}
public bool VisibleSideEffect
{
get; set;
}
}
[TestClass]
public class ExampleFixture
{
[TestMethod]
public void DemonstrateThatTheClassRespondsToEvents()
{
var eventProvider = new Mock<IEventProvider>().Object;
var subject = new Example(eventProvider.Object);
Mock.Get(eventProvider)
.Raise( e => e.OnEvent += null, EventArgs.Empty);
Assert.IsTrue( subject.VisibleSideEffect,
"the visible side effect of the event was not raised.");
}
}
If you really need to test the implementation, there are other mechanisms available, such as a hand-rolled Test Spy / Test Double, or reflection-based strategy to get the delegate list. My hope is that you should be more concerned with class A's event handling logic than its event handler assignment. After all, if class A doesn't respond to the event and do something with it, the assignment shouldn't matter.
I don't know much about unit testing, but perhaps this link can give you some ideas. Note that the virtual keyword also works there.
I don't think moq has that capability - if you're prepared to purchase a tool I suggest you use Typemock Isolator that can verify that any method on an object was called - including event handler - have a look at link.
I have a class, EventContainer.cs, which contains an event, say:
public event EventHandler AfterSearch;
I have another class, EventRaiser.cs. How do I raise (and not handle) the above said event from this class?
The raised event will in turn call the handler of the event in the EventContainer class. Something like this (this is obviously not correct):
EventContainer obj = new EventContainer();
RaiseEvent(obj.AfterSearch);
This is not possible, Events can only be risen from inside the class. If you could do that, it would defeat the purpose of events (being able to rise status changes from inside the class). I think you are misunderstanding the function of events - an event is defined inside a class and others can subscribe to it by doing
obj.AfterSearch += handler; (where handler is a method according to the signature of AfterSearch). One is able to subscribe to the event from the outside just fine, but it can only be risen from inside the class defining it.
It is POSSIBLE, but using clever hack.
Inspired by http://netpl.blogspot.com/2010/10/is-net-type-safe.html
If you don't believe, try this code.
using System;
using System.Runtime.InteropServices;
namespace Overlapping
{
[StructLayout(LayoutKind.Explicit)]
public class OverlapEvents
{
[FieldOffset(0)]
public Foo Source;
[FieldOffset(0)]
public OtherFoo Target;
}
public class Foo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello Foo";
}
public void Click()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
}
public class OtherFoo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello OtherFoo";
}
public void Click2()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
public void Clean()
{
Clicked = null;
}
}
class Test
{
public static void Test3()
{
var a = new Foo();
a.Clicked += AClicked;
a.Click();
var o = new OverlapEvents { Source = a };
o.Target.Click2();
o.Target.Clean();
o.Target.Click2();
a.Click();
}
static void AClicked(object sender, EventArgs e)
{
Console.WriteLine(sender.ToString());
}
}
}
You can write a public method on the class you want the event to fire from and fire the event when it is called. You can then call this method from whatever user of your class.
Of course, this ruins encapsulation and is bad design.
It looks like you're using the Delegate pattern. In this case, the AfterSearch event should be defined on the EventRaiser class, and the EventContainer class should consume the event:
In EventRaiser.cs
public event EventHandler BeforeSearch;
public event EventHandler AfterSearch;
public void ExecuteSearch(...)
{
if (this.BeforeSearch != null)
this.BeforeSearch();
// Do search
if (this.AfterSearch != null)
this.AfterSearch();
}
In EventContainer.cs
public EventContainer(...)
{
EventRaiser er = new EventRaiser();
er.AfterSearch += this.OnAfterSearch;
}
public void OnAfterSearch()
{
// Handle AfterSearch event
}
I stumbled across this problem as well, because i was experimenting with calling PropertyChanged events from outside. So you dont have to implement everything in every class. The solution from halorty wouldn't work using interfaces.
I found a solution working using heavy reflection. It is surely slow and is breaking the principle that events should only be called from inside a class. But it is interesting to find a generic solution to this problem....
It works because every event is a list of invocation methods being called.
So we can get the invocation list and call every listener attached to that event by our own.
Here you go....
class Program
{
static void Main(string[] args)
{
var instance = new TestPropertyChanged();
instance.PropertyChanged += PropertyChanged;
instance.RaiseEvent(nameof(INotifyPropertyChanged.PropertyChanged), new PropertyChangedEventArgs("Hi There from anywhere"));
Console.ReadLine();
}
private static void PropertyChanged(object sender, PropertyChangedEventArgs e)
{
Console.WriteLine(e.PropertyName);
}
}
public static class PropertyRaiser
{
private static readonly BindingFlags staticFlags = BindingFlags.Instance | BindingFlags.NonPublic;
public static void RaiseEvent(this object instance, string eventName, EventArgs e)
{
var type = instance.GetType();
var eventField = type.GetField(eventName, staticFlags);
if (eventField == null)
throw new Exception($"Event with name {eventName} could not be found.");
var multicastDelegate = eventField.GetValue(instance) as MulticastDelegate;
if (multicastDelegate == null)
return;
var invocationList = multicastDelegate.GetInvocationList();
foreach (var invocationMethod in invocationList)
invocationMethod.DynamicInvoke(new[] {instance, e});
}
}
public class TestPropertyChanged : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
}
There is good way to do this. Every event in C# has a delegate that specifies the sign of methods for that event. Define a field in your external class with type of your event delegate. get the the reference of that field in the constructor of external class and save it. In main class of your event, send the reference of event for delegate of external class. Now you can easily call the delegate in your external class.
public delegate void MyEventHandler(object Sender, EventArgs Args);
public class MyMain
{
public event MyEventHandler MyEvent;
...
new MyExternal(this.MyEvent);
...
}
public MyExternal
{
private MyEventHandler MyEvent;
public MyExternal(MyEventHandler MyEvent)
{
this.MyEvent = MyEvent;
}
...
this.MyEvent(..., ...);
...
}
Agree with Femaref -- and note this is an important difference between delegates and events (see for example this blog entry for an good discussion of this and other differences).
Depending on what you want to achieve, you might be better off with a delegate.
Not a good programming but if you want to do that any way you can do something like this
class Program
{
static void Main(string[] args)
{
Extension ext = new Extension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
}
static void ext_MyEvent(int num)
{
Console.WriteLine(num);
}
}
public class Extension
{
public delegate void MyEventHandler(int num);
public event MyEventHandler MyEvent;
public void Dosomething()
{
int no = 0;
while(true){
if(MyEvent!=null){
MyEvent(++no);
}
}
}
}
I had a similar confusion and honestly find the answers here to be confusing. Although a couple hinted at solutions that I would later find would work.
My solution was to hit the books and become more familiar with delegates and event handlers.
Although I've used both for many years, I was never intimately familiar with them.
http://www.codeproject.com/Articles/20550/C-Event-Implementation-Fundamentals-Best-Practices
gives the best explanation of both delegates and event handlers that I've ever read and clearly explains that a class can be a publisher of events and have other classes consume them.
This article: http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single discusses how to single-cast events to only one handler since delegates are multicast by definition . A delegate inherits system.MulticastDelegate most including the system delegates are Multicast.
I found that multicast meant that any event handler with the same signature would receive the raised event. Multicast behavior has caused me some sleepless nights as I stepped through code and saw my event seemingly erroneously being sent to handlers that I had no intention of getting this event. Both articles explains this behavior.
The second article shows you one way, and the first article shows you another, by making the delegate and the signature tightly typed.
I personally believe strong typing prevents stupid bugs that can be a pain to find. So I'd vote for the first article, even though I got the second article code working. I was just curious. :-)
I also got curious if I could get #2 articles code to behave like how I interpreted the original question above. Regardless of your chosen approach or if I'm also misinterpreting the original question, my real message is that I still think you would benefit from reading the first article as I did, especially if the questions or answers on this page leave you confused. If you are having multicast nightmares and need a quick solution then article 2 may help you.
I started playing with the second article's eventRaiser class. I made a simple windows form project.
I added the second articles class EventRaiser.cs to my project.
In the Main form's code, I defined a reference to that EventRaiser class at the top as
private EventRaiser eventRaiser = new EventRaiser();
I added a method in the main form code that I wanted to be called when the event was fired
protected void MainResponse( object sender, EventArgs eArgs )
{
MessageBox.Show("got to MainResponse");
}
then in the main form's constructor I added the event assignment:
eventRaiser.OnRaiseEvent += new EventHandler(MainResponse);`
I then created a class that would be instantiated by my main form called "SimpleClass" for lack of creative ingenuity at the moment.
Then I added a button and in the button's click event
I instantiated the SimpleClass code I wanted to raise an event from:
private void button1_Click( object sender, EventArgs e )
{
SimpleClass sc = new SimpleClass(eventRaiser);
}
Note the instance of "eventRaiser" that I passed to SimpleClass.cs. That was defined and instantiated earlier in the Main form code.
In the SimpleClass:
using System.Windows.Forms;
using SinglecastEvent; // see SingleCastEvent Project for info or http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single
namespace GenericTest
{
public class SimpleClass
{
private EventRaiser eventRaiser = new EventRaiser();
public SimpleClass( EventRaiser ev )
{
eventRaiser = ev;
simpleMethod();
}
private void simpleMethod()
{
MessageBox.Show("in FileWatcher.simple() about to raise the event");
eventRaiser.RaiseEvent();
}
}
}
The only point to the private method I called SimpleMethod was to verify that a privately scoped method could still raise the event, not that I doubted it, but I like to be positive.
I ran the project and this resulted in raising the event from the "simpleMethod" of the "SimpleClass" up to the main form and going to the expected correct method called MainResponse proving that one class can indeed raise an event that is consumed by a different class.
Yes the event has to be raised from within the class that needs it's change broadcast to other classes that care. Receiving classes can be one class or many many classes depending on how strongly typed you defined them or by making them single cast as in 2nd article.
Hope this helps and not muddy the water. Personally I've got a lot of delegates and events to clean up! Multicast demons begone!
The raising class has to get a fresh copy of the EventHandler.
One possible solution below.
using System;
namespace ConsoleApplication1
{
class Program
{
class HasEvent
{
public event EventHandler OnEnvent;
EventInvoker myInvoker;
public HasEvent()
{
myInvoker = new EventInvoker(this, () => OnEnvent);
}
public void MyInvokerRaising() {
myInvoker.Raise();
}
}
class EventInvoker
{
private Func<EventHandler> GetEventHandler;
private object sender;
public EventInvoker(object sender, Func<EventHandler> GetEventHandler)
{
this.sender = sender;
this.GetEventHandler = GetEventHandler;
}
public void Raise()
{
if(null != GetEventHandler())
{
GetEventHandler()(sender, new EventArgs());
}
}
}
static void Main(string[] args)
{
HasEvent h = new HasEvent();
h.OnEnvent += H_OnEnvent;
h.MyInvokerRaising();
}
private static void H_OnEnvent(object sender, EventArgs e)
{
Console.WriteLine("FIRED");
}
}
}
Use public EventHandler AfterSearch;
not
public event EventHandler AfterSearch;
Use a Delegate (an Action or Func) instead of an event. An event is essentially a delegate that can only be triggered from within the class.
I took a slightly different approach in solving this problem. My solution consisted of a winform front end, a main Class Library (DLL) and within that dll, a secondary working class:
WinForm
|------> PickGen Library
|---------> Allocations class
What I decided to do is to create events in the main dll (PickGen) that the Allocations class could call, then those event methods would called the events within the UI.
So, allocations raises an event in PickGen which takes the parameter values and raises the event in the form. From a code standpoint, this is in the lowest class:
public delegate void AllocationService_RaiseAllocLog(string orderNumber, string message, bool logToDatabase);
public delegate void AllocationService_RaiseAllocErrorLog(string orderNumber, string message, bool logToDatabase);
public class AllocationService { ...
public event AllocationService_RaiseAllocLog RaiseAllocLog;
public event AllocationService_RaiseAllocErrorLog RaiseAllocErrorLog;
then later in the subclass code:
RaiseAllocErrorLog(SOHNUM_0, ShipmentGenerated + ": Allocated line QTY was: " + allocatedline.QTY_0 + ", Delivered was: " + QTY_0 + ". Problem batch.", false);
In the main DLL Class library I have these two event methods:
private void PickGenLibrary_RaiseAllocLog(string orderNumber, string message, bool updateDB)
{
RaiseLog(orderNumber, message, false);
}
private void PickGenLibrary_RaiseAllocErrorLog(string orderNumber, string message, bool updateDB)
{
RaiseErrorLog(orderNumber, message, false);
}
and I make the connection here when I create the allocation object:
AllocationService allsvc = new AllocationService(PickResult);
allsvc.RaiseAllocLog += new AllocationService_RaiseAllocLog(PickGenLibrary_RaiseAllocLog);
allsvc.RaiseAllocErrorLog += new AllocationService_RaiseAllocErrorLog(PickGenLibrary_RaiseAllocErrorLog);
and I also then have delegates that are set up to tie the main class with the winform code:
public delegate void JPPAPickGenLibrary_RaiseLog(string orderNumber, string message, bool logToDatabase);
public delegate void JPPAPickGenLibrary_RaiseErrorLog(string orderNumber, string message, bool logToDatabase);
It may not be the most elegant way to do it, but in the end, it does work and without being too obscure.
A nested class with an instance of the outer class provided in the constructor can access even private members of the outer class. As explained more here: stackoverflow question on inner classes.
This includes the ability to raise events in the outer class. This EventRaisers class could be internal, or otherwise controlled somehow, because it could technically otherwise be created by any script with a reference to the outer class instance.
Very simple example. i like to do it this way using EventHandler.
class Program
{
static void Main(string[] args)
{
MyExtension ext = new MyExtension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
Console.ReadLine();
}
static void ext_MyEvent(object sender, int num)
{
Console.WriteLine("Event fired.... "+num);
}
}
public class MyExtension
{
public event EventHandler<int> MyEvent;
public void Dosomething()
{
int no = 1;
if (MyEvent != null)
MyEvent(this, ++no);
}
}
}