Best way to handle events with multiple classes? - c#

So I have a class that is basically a manager for 20+ copies of another class. What is the best way of handling the same event fired from each one of them? And is this the best way of unregistering the events? Or should I be using a single EventHandler somehow?
I put together a simple example that basically does what I'm doing in my actual project.
class Manager
{
List<Child> children = new List<Child>();
public Manager()
{
for (int i = 0; i < 10; i++)
{
Childchild = new Child();
child.Done += child_Done;
items.Add(child);
child.DoStuff();
}
}
public void RemoveAll()
{
foreach (Child child in items)
{
child.Done -= child_Done;
}
items.Clear();
}
void child_Done(string sometext)
{
Console.WriteLine("child done: " + sometext);
}
}
class Child
{
public delegate void _Done(string sometext);
public event _Done Done;
public Child()
{
}
public void DoStuff()
{
if (Done != null) { Done("finally!"); }
}
}

The unregistration should be fine - as long as the target instance and method match it will work. I will, however, strongly advise you use a more regular event pattern, with a sender - then you will know which child is talking. For example:
public class MessageEventArgs : EventArgs {
public MessageEventArgs(string message) {
this.message = message;
}
private readonly string message;
public string Message { get { return message; } }
}
and an:
public event EventHandler<MessageEventArgs> Done;
protected virtual void OnDone(string message) {
var handler = Done;
if(handler != null) handler(this, new MessageEventArgs(message));
}

Assuming you want the It might be better to add the Manager object to respond to each child when the child object raises the event:
It might be better to register for the event when adding a child and unregister when removing a child.
A quick way to do that would be to switch from List to ObservableCollection. This collection will raise an event as soon as the collection changes.
So in the constructor of the Manager, instantiate the ObservableCollection and register for the CollectionChanged event. In the handler check the event argument to see what children have been added, and removed so the manager can register for (or unregister) their event(s).

This is more or less the way.
A few suggestions to make it work a little better:
Create a function that adds a Child, and at the same way registers the event.
The same can be done with removing child + unregistering the event.
Also, you can make the event get a "sender" parameter, and make the Child pass "this" to it.
This way the event handler will be able to know which child is done, and remove it from the list, and/or whatever else needs to be done.

Related

Invoke event from unknown control [duplicate]

I have a class, EventContainer.cs, which contains an event, say:
public event EventHandler AfterSearch;
I have another class, EventRaiser.cs. How do I raise (and not handle) the above said event from this class?
The raised event will in turn call the handler of the event in the EventContainer class. Something like this (this is obviously not correct):
EventContainer obj = new EventContainer();
RaiseEvent(obj.AfterSearch);
This is not possible, Events can only be risen from inside the class. If you could do that, it would defeat the purpose of events (being able to rise status changes from inside the class). I think you are misunderstanding the function of events - an event is defined inside a class and others can subscribe to it by doing
obj.AfterSearch += handler; (where handler is a method according to the signature of AfterSearch). One is able to subscribe to the event from the outside just fine, but it can only be risen from inside the class defining it.
It is POSSIBLE, but using clever hack.
Inspired by http://netpl.blogspot.com/2010/10/is-net-type-safe.html
If you don't believe, try this code.
using System;
using System.Runtime.InteropServices;
namespace Overlapping
{
[StructLayout(LayoutKind.Explicit)]
public class OverlapEvents
{
[FieldOffset(0)]
public Foo Source;
[FieldOffset(0)]
public OtherFoo Target;
}
public class Foo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello Foo";
}
public void Click()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
}
public class OtherFoo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello OtherFoo";
}
public void Click2()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
public void Clean()
{
Clicked = null;
}
}
class Test
{
public static void Test3()
{
var a = new Foo();
a.Clicked += AClicked;
a.Click();
var o = new OverlapEvents { Source = a };
o.Target.Click2();
o.Target.Clean();
o.Target.Click2();
a.Click();
}
static void AClicked(object sender, EventArgs e)
{
Console.WriteLine(sender.ToString());
}
}
}
You can write a public method on the class you want the event to fire from and fire the event when it is called. You can then call this method from whatever user of your class.
Of course, this ruins encapsulation and is bad design.
It looks like you're using the Delegate pattern. In this case, the AfterSearch event should be defined on the EventRaiser class, and the EventContainer class should consume the event:
In EventRaiser.cs
public event EventHandler BeforeSearch;
public event EventHandler AfterSearch;
public void ExecuteSearch(...)
{
if (this.BeforeSearch != null)
this.BeforeSearch();
// Do search
if (this.AfterSearch != null)
this.AfterSearch();
}
In EventContainer.cs
public EventContainer(...)
{
EventRaiser er = new EventRaiser();
er.AfterSearch += this.OnAfterSearch;
}
public void OnAfterSearch()
{
// Handle AfterSearch event
}
I stumbled across this problem as well, because i was experimenting with calling PropertyChanged events from outside. So you dont have to implement everything in every class. The solution from halorty wouldn't work using interfaces.
I found a solution working using heavy reflection. It is surely slow and is breaking the principle that events should only be called from inside a class. But it is interesting to find a generic solution to this problem....
It works because every event is a list of invocation methods being called.
So we can get the invocation list and call every listener attached to that event by our own.
Here you go....
class Program
{
static void Main(string[] args)
{
var instance = new TestPropertyChanged();
instance.PropertyChanged += PropertyChanged;
instance.RaiseEvent(nameof(INotifyPropertyChanged.PropertyChanged), new PropertyChangedEventArgs("Hi There from anywhere"));
Console.ReadLine();
}
private static void PropertyChanged(object sender, PropertyChangedEventArgs e)
{
Console.WriteLine(e.PropertyName);
}
}
public static class PropertyRaiser
{
private static readonly BindingFlags staticFlags = BindingFlags.Instance | BindingFlags.NonPublic;
public static void RaiseEvent(this object instance, string eventName, EventArgs e)
{
var type = instance.GetType();
var eventField = type.GetField(eventName, staticFlags);
if (eventField == null)
throw new Exception($"Event with name {eventName} could not be found.");
var multicastDelegate = eventField.GetValue(instance) as MulticastDelegate;
if (multicastDelegate == null)
return;
var invocationList = multicastDelegate.GetInvocationList();
foreach (var invocationMethod in invocationList)
invocationMethod.DynamicInvoke(new[] {instance, e});
}
}
public class TestPropertyChanged : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
}
There is good way to do this. Every event in C# has a delegate that specifies the sign of methods for that event. Define a field in your external class with type of your event delegate. get the the reference of that field in the constructor of external class and save it. In main class of your event, send the reference of event for delegate of external class. Now you can easily call the delegate in your external class.
public delegate void MyEventHandler(object Sender, EventArgs Args);
public class MyMain
{
public event MyEventHandler MyEvent;
...
new MyExternal(this.MyEvent);
...
}
public MyExternal
{
private MyEventHandler MyEvent;
public MyExternal(MyEventHandler MyEvent)
{
this.MyEvent = MyEvent;
}
...
this.MyEvent(..., ...);
...
}
Agree with Femaref -- and note this is an important difference between delegates and events (see for example this blog entry for an good discussion of this and other differences).
Depending on what you want to achieve, you might be better off with a delegate.
Not a good programming but if you want to do that any way you can do something like this
class Program
{
static void Main(string[] args)
{
Extension ext = new Extension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
}
static void ext_MyEvent(int num)
{
Console.WriteLine(num);
}
}
public class Extension
{
public delegate void MyEventHandler(int num);
public event MyEventHandler MyEvent;
public void Dosomething()
{
int no = 0;
while(true){
if(MyEvent!=null){
MyEvent(++no);
}
}
}
}
I had a similar confusion and honestly find the answers here to be confusing. Although a couple hinted at solutions that I would later find would work.
My solution was to hit the books and become more familiar with delegates and event handlers.
Although I've used both for many years, I was never intimately familiar with them.
http://www.codeproject.com/Articles/20550/C-Event-Implementation-Fundamentals-Best-Practices
gives the best explanation of both delegates and event handlers that I've ever read and clearly explains that a class can be a publisher of events and have other classes consume them.
This article: http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single discusses how to single-cast events to only one handler since delegates are multicast by definition . A delegate inherits system.MulticastDelegate most including the system delegates are Multicast.
I found that multicast meant that any event handler with the same signature would receive the raised event. Multicast behavior has caused me some sleepless nights as I stepped through code and saw my event seemingly erroneously being sent to handlers that I had no intention of getting this event. Both articles explains this behavior.
The second article shows you one way, and the first article shows you another, by making the delegate and the signature tightly typed.
I personally believe strong typing prevents stupid bugs that can be a pain to find. So I'd vote for the first article, even though I got the second article code working. I was just curious. :-)
I also got curious if I could get #2 articles code to behave like how I interpreted the original question above. Regardless of your chosen approach or if I'm also misinterpreting the original question, my real message is that I still think you would benefit from reading the first article as I did, especially if the questions or answers on this page leave you confused. If you are having multicast nightmares and need a quick solution then article 2 may help you.
I started playing with the second article's eventRaiser class. I made a simple windows form project.
I added the second articles class EventRaiser.cs to my project.
In the Main form's code, I defined a reference to that EventRaiser class at the top as
private EventRaiser eventRaiser = new EventRaiser();
I added a method in the main form code that I wanted to be called when the event was fired
protected void MainResponse( object sender, EventArgs eArgs )
{
MessageBox.Show("got to MainResponse");
}
then in the main form's constructor I added the event assignment:
eventRaiser.OnRaiseEvent += new EventHandler(MainResponse);`
I then created a class that would be instantiated by my main form called "SimpleClass" for lack of creative ingenuity at the moment.
Then I added a button and in the button's click event
I instantiated the SimpleClass code I wanted to raise an event from:
private void button1_Click( object sender, EventArgs e )
{
SimpleClass sc = new SimpleClass(eventRaiser);
}
Note the instance of "eventRaiser" that I passed to SimpleClass.cs. That was defined and instantiated earlier in the Main form code.
In the SimpleClass:
using System.Windows.Forms;
using SinglecastEvent; // see SingleCastEvent Project for info or http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single
namespace GenericTest
{
public class SimpleClass
{
private EventRaiser eventRaiser = new EventRaiser();
public SimpleClass( EventRaiser ev )
{
eventRaiser = ev;
simpleMethod();
}
private void simpleMethod()
{
MessageBox.Show("in FileWatcher.simple() about to raise the event");
eventRaiser.RaiseEvent();
}
}
}
The only point to the private method I called SimpleMethod was to verify that a privately scoped method could still raise the event, not that I doubted it, but I like to be positive.
I ran the project and this resulted in raising the event from the "simpleMethod" of the "SimpleClass" up to the main form and going to the expected correct method called MainResponse proving that one class can indeed raise an event that is consumed by a different class.
Yes the event has to be raised from within the class that needs it's change broadcast to other classes that care. Receiving classes can be one class or many many classes depending on how strongly typed you defined them or by making them single cast as in 2nd article.
Hope this helps and not muddy the water. Personally I've got a lot of delegates and events to clean up! Multicast demons begone!
The raising class has to get a fresh copy of the EventHandler.
One possible solution below.
using System;
namespace ConsoleApplication1
{
class Program
{
class HasEvent
{
public event EventHandler OnEnvent;
EventInvoker myInvoker;
public HasEvent()
{
myInvoker = new EventInvoker(this, () => OnEnvent);
}
public void MyInvokerRaising() {
myInvoker.Raise();
}
}
class EventInvoker
{
private Func<EventHandler> GetEventHandler;
private object sender;
public EventInvoker(object sender, Func<EventHandler> GetEventHandler)
{
this.sender = sender;
this.GetEventHandler = GetEventHandler;
}
public void Raise()
{
if(null != GetEventHandler())
{
GetEventHandler()(sender, new EventArgs());
}
}
}
static void Main(string[] args)
{
HasEvent h = new HasEvent();
h.OnEnvent += H_OnEnvent;
h.MyInvokerRaising();
}
private static void H_OnEnvent(object sender, EventArgs e)
{
Console.WriteLine("FIRED");
}
}
}
Use public EventHandler AfterSearch;
not
public event EventHandler AfterSearch;
Use a Delegate (an Action or Func) instead of an event. An event is essentially a delegate that can only be triggered from within the class.
I took a slightly different approach in solving this problem. My solution consisted of a winform front end, a main Class Library (DLL) and within that dll, a secondary working class:
WinForm
|------> PickGen Library
|---------> Allocations class
What I decided to do is to create events in the main dll (PickGen) that the Allocations class could call, then those event methods would called the events within the UI.
So, allocations raises an event in PickGen which takes the parameter values and raises the event in the form. From a code standpoint, this is in the lowest class:
public delegate void AllocationService_RaiseAllocLog(string orderNumber, string message, bool logToDatabase);
public delegate void AllocationService_RaiseAllocErrorLog(string orderNumber, string message, bool logToDatabase);
public class AllocationService { ...
public event AllocationService_RaiseAllocLog RaiseAllocLog;
public event AllocationService_RaiseAllocErrorLog RaiseAllocErrorLog;
then later in the subclass code:
RaiseAllocErrorLog(SOHNUM_0, ShipmentGenerated + ": Allocated line QTY was: " + allocatedline.QTY_0 + ", Delivered was: " + QTY_0 + ". Problem batch.", false);
In the main DLL Class library I have these two event methods:
private void PickGenLibrary_RaiseAllocLog(string orderNumber, string message, bool updateDB)
{
RaiseLog(orderNumber, message, false);
}
private void PickGenLibrary_RaiseAllocErrorLog(string orderNumber, string message, bool updateDB)
{
RaiseErrorLog(orderNumber, message, false);
}
and I make the connection here when I create the allocation object:
AllocationService allsvc = new AllocationService(PickResult);
allsvc.RaiseAllocLog += new AllocationService_RaiseAllocLog(PickGenLibrary_RaiseAllocLog);
allsvc.RaiseAllocErrorLog += new AllocationService_RaiseAllocErrorLog(PickGenLibrary_RaiseAllocErrorLog);
and I also then have delegates that are set up to tie the main class with the winform code:
public delegate void JPPAPickGenLibrary_RaiseLog(string orderNumber, string message, bool logToDatabase);
public delegate void JPPAPickGenLibrary_RaiseErrorLog(string orderNumber, string message, bool logToDatabase);
It may not be the most elegant way to do it, but in the end, it does work and without being too obscure.
A nested class with an instance of the outer class provided in the constructor can access even private members of the outer class. As explained more here: stackoverflow question on inner classes.
This includes the ability to raise events in the outer class. This EventRaisers class could be internal, or otherwise controlled somehow, because it could technically otherwise be created by any script with a reference to the outer class instance.
Very simple example. i like to do it this way using EventHandler.
class Program
{
static void Main(string[] args)
{
MyExtension ext = new MyExtension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
Console.ReadLine();
}
static void ext_MyEvent(object sender, int num)
{
Console.WriteLine("Event fired.... "+num);
}
}
public class MyExtension
{
public event EventHandler<int> MyEvent;
public void Dosomething()
{
int no = 1;
if (MyEvent != null)
MyEvent(this, ++no);
}
}
}

EventHandler is null when trying to fire event in WPF

Issue
I have created an event in the class LoginVM which looks like the following:
public class LoginVM : INotifyPropertyChanged
{
public event EventHandler<string> PasswordSet;
}
Also in this class I have a piece of code which fires this event:
public class LoginVM : INotifyPropertyChanged
{
public event EventHandler<string> PasswordSet;
private void PopulateLatestServer()
{
try
{
string SERVER_ID = Registry.GetValue(#"HKEY_CURRENT_USER\SOFTWARE\PODIA", "LATESTSERVER", null).ToString();
BDO_SERVERS latestserver = SavedServers.Where(a => a.Server_ID == SERVER_ID).FirstOrDefault();
setServerURL(latestserver.ServerURL, false);
Username = latestserver.Username;
PasswordSet(this, latestserver.Password);
}
catch (Exception)
{
Global.WriteLog("Could not find last logged in server.", EventLogEntryType.Warning);
}
}
}
I have another class which is called LoginV and in there I create an instance of the class and subscribe to the event:
public partial class LoginV : MetroWindow
{
public LoginV()
{
InitializeComponent();
LoginVM _loginVM = new LoginVM();
this.DataContext = _loginVM;
_loginVM.PasswordSet += new EventHandler<string> (_loginVM_PasswordSet);
}
private void _loginVM_PasswordSet(object sender, string e)
{
passwordBox.Password = e;
}
As you can probably tell I am trying to trigger an event from the ViewModel to the View but every time I trigger the event from the ViewModel, PasswordSet is null and errors.
An event is null when there's no listener to the event.
private void RaisePasswordSet(String pass) {
YourEventArgs args = new YourEventArgs(pass);
if(PasswordSet != null) PasswordSet(this, args);
}
Your issue is that when you try to raise the event no one listen to it yet.
It's a good idea to initialize the password in the constructor for LoginVM as you did. That's when initialization ought to happen. Ordinarily, you'd set a property and the binding in the XAML would take care of updating the control. No need for an event on the VM. But this is a password box, so you can't bind it, and the event you wrote is The Right Thing.
But in your implementation, that leaves you with this sequence of events:
Create VM
VM raises PasswordSet in its constructor -- without checking to see if there are any handlers.
View assigns VM to DataContext
View adds handler to PasswordSet event
And you get an exception at step 2, because you didn't check for handlers.
Here's what you do.
In the VM or anywhere, always use this pattern for raising events:
C# <= 5:
protected void OnPasswordSet(String e)
{
var handler = PasswordSet;
if (handler != null)
{
handler(this, e);
}
}
C#6
protected void OnPasswordSet(String e) => PasswordSet?.Invoke(this, e);
Either:
private void PopulateLatestServer()
{
try
{
string SERVER_ID = Registry.GetValue(#"HKEY_CURRENT_USER\SOFTWARE\PODIA", "LATESTSERVER", null).ToString();
BDO_SERVERS latestserver = SavedServers.Where(a => a.Server_ID == SERVER_ID).FirstOrDefault();
setServerURL(latestserver.ServerURL, false);
Username = latestserver.Username;
OnPasswordSet(latestserver.Password);
}
catch (Exception)
{
Global.WriteLog("Could not find last logged in server.", EventLogEntryType.Warning);
}
}
Can't crash now. Or at least not the same way as last time.
Problem number two: How do you update the view initially?
Easy: Take whatever's in the view's PasswordSet handler, move it into a protected method, and call that in both places. This looks a little verbose since it's only a one-liner, but it's nice to have things rolled into neatly labeled units. If that code were more complicated, you'd absolutely want not to be copying and pasting it. If it gets more complicated a year from now, you won't have to waste any time re-parsing your the old code.
public partial class LoginV : MetroWindow
{
public LoginV()
{
InitializeComponent();
LoginVM _loginVM = new LoginVM();
this.DataContext = _loginVM;
_loginVM.PasswordSet += new EventHandler<string> (_loginVM_PasswordSet);
UpdatePassword();
}
protected void UpdatePassword()
{
passwordBox.Password = e;
}
private void _loginVM_PasswordSet(object sender, string e)
{
UpdatePassword();
}
Option number two: Keep OnPasswordSet() as shown above, but instead of having the view manually update the password in the constructor, have the LoginVM require a PasswordSet handler as a parameter. This isn't the way I would do it; constructor parameters like this get on my nerves. But that may just be an irrational prejudice on my part. This way makes more clear the fact that the owner needs to handle that event to use the class, and "provide a suitable event handler" becomes the only thing the consumer needs to do in order to use the thing. The less a consumer needs to know about your class's internals, the better, for obvious reasons. Platonically ideal design would be when programmers who don't think at all can make casual glib assumptions about your class, and not end up on Stack Overflow begging somebody to read the documentation to them out loud. We'll never get there, though.
public class LoginVM : INotifyPropertyChanged
{
public LoginVM(EventHandler<string> passwordSetHandler)
{
if (passwordSetHandler != null)
{
PasswordSet += passwordSetHandler;
}
PopulateLatestServer();
}
// If the consumer doesn't want to handle it right way, don't force the issue.
public LoginVM()
{
PopulateLatestServer();
}
A third option is to set up explicit add/removes for the event, and raise the event when the handler comes in:
public class LoginVM : INotifyPropertyChanged
{
private event EventHandler<string> _passwordSet;
public event EventHandler<string> PasswordSet
{
add
{
_passwordSet += value;
// ...or else save latestServer in a private field, so here you can call
// OnPasswordSet(_latestServer.Password) -- but since it's a password,
// best not to keep it hanging around.
PopulateLatestServer();
}
remove { _passwordSet -= value; }
}

What is the correct way to Unhook event Handlers in a ViewModel

So I have been doing some research on correctly unhooking event handlers from my view model to prevent Memory leaks.
Say I have a View Model like so:
class MyViewModel
{
private List<MyObject> _myObjects;
public List<MyObject> MyObjects
{
get { return _myObjects; }
set { _myObjects = value; }
}
public MyViewModel()
{
for (int i = 0; i < 10; i++)
{
var obj = new MyObject();
obj.MySampleEvent += Obj_MySampleEvent ;
}
}
private void Obj_MySampleEvent (object sender, EventArgs e)
{
//do something
}
}
Now Initially I found This link Which said Implement IDisposable and add a Dispose Method:
public void Dispose()
{
foreach (var obj in MyObjects)
{
obj.MySampleEvent -= Obj_MySampleEvent;
}
}
but this wasn't getting called when I would of thought. It seemed to be erratic, Sometimes never even called at all? So I decided to search "When does dispose get called" which lead me to this link explaining that Dispose gets called by the Finaliser / Destructor
Which lead me onto my final piece of research is that I remember people saying do not unhook event Handlers in the Destructor because it will never get called, from this link.
So I just wanted to clarify finally.. What is the correct way of unhooking event handlers in a ViewModel?
I usually unregister event handlers on my view-model during navigation.
For example, when the OnNavigatedFrom event is raised (on your view), you can unregister the event handlers on your current view-model. Then when the OnNavigatedTo event is raised, you can re-register the event handlers.
In regards to IDisposable, I am not sure.
I thought IDisposable was for managing resources and not business logic.
Might I suggest converting to an ObservableCollection the reason for the ViewModel is to have something to bind to. You can then subscribe to any events directly on the ViewModel Property which will allow you to subscribe to Window_Closing and cleanup inside that event.
class MyViewModel
{
private ObservableCollection<MyObject> _myObjects;
public ObservableCollection<MyObject> MyObjects
{
get { return _myObjects; }
set { _myObjects = value; }
}
public MyViewModel()
{
for (int i = 0; i < 10; i++)
{
var obj = new MyObject();
}
}
}

Raise an event of a class from a different class in C#

I have a class, EventContainer.cs, which contains an event, say:
public event EventHandler AfterSearch;
I have another class, EventRaiser.cs. How do I raise (and not handle) the above said event from this class?
The raised event will in turn call the handler of the event in the EventContainer class. Something like this (this is obviously not correct):
EventContainer obj = new EventContainer();
RaiseEvent(obj.AfterSearch);
This is not possible, Events can only be risen from inside the class. If you could do that, it would defeat the purpose of events (being able to rise status changes from inside the class). I think you are misunderstanding the function of events - an event is defined inside a class and others can subscribe to it by doing
obj.AfterSearch += handler; (where handler is a method according to the signature of AfterSearch). One is able to subscribe to the event from the outside just fine, but it can only be risen from inside the class defining it.
It is POSSIBLE, but using clever hack.
Inspired by http://netpl.blogspot.com/2010/10/is-net-type-safe.html
If you don't believe, try this code.
using System;
using System.Runtime.InteropServices;
namespace Overlapping
{
[StructLayout(LayoutKind.Explicit)]
public class OverlapEvents
{
[FieldOffset(0)]
public Foo Source;
[FieldOffset(0)]
public OtherFoo Target;
}
public class Foo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello Foo";
}
public void Click()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
}
public class OtherFoo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello OtherFoo";
}
public void Click2()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
public void Clean()
{
Clicked = null;
}
}
class Test
{
public static void Test3()
{
var a = new Foo();
a.Clicked += AClicked;
a.Click();
var o = new OverlapEvents { Source = a };
o.Target.Click2();
o.Target.Clean();
o.Target.Click2();
a.Click();
}
static void AClicked(object sender, EventArgs e)
{
Console.WriteLine(sender.ToString());
}
}
}
You can write a public method on the class you want the event to fire from and fire the event when it is called. You can then call this method from whatever user of your class.
Of course, this ruins encapsulation and is bad design.
It looks like you're using the Delegate pattern. In this case, the AfterSearch event should be defined on the EventRaiser class, and the EventContainer class should consume the event:
In EventRaiser.cs
public event EventHandler BeforeSearch;
public event EventHandler AfterSearch;
public void ExecuteSearch(...)
{
if (this.BeforeSearch != null)
this.BeforeSearch();
// Do search
if (this.AfterSearch != null)
this.AfterSearch();
}
In EventContainer.cs
public EventContainer(...)
{
EventRaiser er = new EventRaiser();
er.AfterSearch += this.OnAfterSearch;
}
public void OnAfterSearch()
{
// Handle AfterSearch event
}
I stumbled across this problem as well, because i was experimenting with calling PropertyChanged events from outside. So you dont have to implement everything in every class. The solution from halorty wouldn't work using interfaces.
I found a solution working using heavy reflection. It is surely slow and is breaking the principle that events should only be called from inside a class. But it is interesting to find a generic solution to this problem....
It works because every event is a list of invocation methods being called.
So we can get the invocation list and call every listener attached to that event by our own.
Here you go....
class Program
{
static void Main(string[] args)
{
var instance = new TestPropertyChanged();
instance.PropertyChanged += PropertyChanged;
instance.RaiseEvent(nameof(INotifyPropertyChanged.PropertyChanged), new PropertyChangedEventArgs("Hi There from anywhere"));
Console.ReadLine();
}
private static void PropertyChanged(object sender, PropertyChangedEventArgs e)
{
Console.WriteLine(e.PropertyName);
}
}
public static class PropertyRaiser
{
private static readonly BindingFlags staticFlags = BindingFlags.Instance | BindingFlags.NonPublic;
public static void RaiseEvent(this object instance, string eventName, EventArgs e)
{
var type = instance.GetType();
var eventField = type.GetField(eventName, staticFlags);
if (eventField == null)
throw new Exception($"Event with name {eventName} could not be found.");
var multicastDelegate = eventField.GetValue(instance) as MulticastDelegate;
if (multicastDelegate == null)
return;
var invocationList = multicastDelegate.GetInvocationList();
foreach (var invocationMethod in invocationList)
invocationMethod.DynamicInvoke(new[] {instance, e});
}
}
public class TestPropertyChanged : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
}
There is good way to do this. Every event in C# has a delegate that specifies the sign of methods for that event. Define a field in your external class with type of your event delegate. get the the reference of that field in the constructor of external class and save it. In main class of your event, send the reference of event for delegate of external class. Now you can easily call the delegate in your external class.
public delegate void MyEventHandler(object Sender, EventArgs Args);
public class MyMain
{
public event MyEventHandler MyEvent;
...
new MyExternal(this.MyEvent);
...
}
public MyExternal
{
private MyEventHandler MyEvent;
public MyExternal(MyEventHandler MyEvent)
{
this.MyEvent = MyEvent;
}
...
this.MyEvent(..., ...);
...
}
Agree with Femaref -- and note this is an important difference between delegates and events (see for example this blog entry for an good discussion of this and other differences).
Depending on what you want to achieve, you might be better off with a delegate.
Not a good programming but if you want to do that any way you can do something like this
class Program
{
static void Main(string[] args)
{
Extension ext = new Extension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
}
static void ext_MyEvent(int num)
{
Console.WriteLine(num);
}
}
public class Extension
{
public delegate void MyEventHandler(int num);
public event MyEventHandler MyEvent;
public void Dosomething()
{
int no = 0;
while(true){
if(MyEvent!=null){
MyEvent(++no);
}
}
}
}
I had a similar confusion and honestly find the answers here to be confusing. Although a couple hinted at solutions that I would later find would work.
My solution was to hit the books and become more familiar with delegates and event handlers.
Although I've used both for many years, I was never intimately familiar with them.
http://www.codeproject.com/Articles/20550/C-Event-Implementation-Fundamentals-Best-Practices
gives the best explanation of both delegates and event handlers that I've ever read and clearly explains that a class can be a publisher of events and have other classes consume them.
This article: http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single discusses how to single-cast events to only one handler since delegates are multicast by definition . A delegate inherits system.MulticastDelegate most including the system delegates are Multicast.
I found that multicast meant that any event handler with the same signature would receive the raised event. Multicast behavior has caused me some sleepless nights as I stepped through code and saw my event seemingly erroneously being sent to handlers that I had no intention of getting this event. Both articles explains this behavior.
The second article shows you one way, and the first article shows you another, by making the delegate and the signature tightly typed.
I personally believe strong typing prevents stupid bugs that can be a pain to find. So I'd vote for the first article, even though I got the second article code working. I was just curious. :-)
I also got curious if I could get #2 articles code to behave like how I interpreted the original question above. Regardless of your chosen approach or if I'm also misinterpreting the original question, my real message is that I still think you would benefit from reading the first article as I did, especially if the questions or answers on this page leave you confused. If you are having multicast nightmares and need a quick solution then article 2 may help you.
I started playing with the second article's eventRaiser class. I made a simple windows form project.
I added the second articles class EventRaiser.cs to my project.
In the Main form's code, I defined a reference to that EventRaiser class at the top as
private EventRaiser eventRaiser = new EventRaiser();
I added a method in the main form code that I wanted to be called when the event was fired
protected void MainResponse( object sender, EventArgs eArgs )
{
MessageBox.Show("got to MainResponse");
}
then in the main form's constructor I added the event assignment:
eventRaiser.OnRaiseEvent += new EventHandler(MainResponse);`
I then created a class that would be instantiated by my main form called "SimpleClass" for lack of creative ingenuity at the moment.
Then I added a button and in the button's click event
I instantiated the SimpleClass code I wanted to raise an event from:
private void button1_Click( object sender, EventArgs e )
{
SimpleClass sc = new SimpleClass(eventRaiser);
}
Note the instance of "eventRaiser" that I passed to SimpleClass.cs. That was defined and instantiated earlier in the Main form code.
In the SimpleClass:
using System.Windows.Forms;
using SinglecastEvent; // see SingleCastEvent Project for info or http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single
namespace GenericTest
{
public class SimpleClass
{
private EventRaiser eventRaiser = new EventRaiser();
public SimpleClass( EventRaiser ev )
{
eventRaiser = ev;
simpleMethod();
}
private void simpleMethod()
{
MessageBox.Show("in FileWatcher.simple() about to raise the event");
eventRaiser.RaiseEvent();
}
}
}
The only point to the private method I called SimpleMethod was to verify that a privately scoped method could still raise the event, not that I doubted it, but I like to be positive.
I ran the project and this resulted in raising the event from the "simpleMethod" of the "SimpleClass" up to the main form and going to the expected correct method called MainResponse proving that one class can indeed raise an event that is consumed by a different class.
Yes the event has to be raised from within the class that needs it's change broadcast to other classes that care. Receiving classes can be one class or many many classes depending on how strongly typed you defined them or by making them single cast as in 2nd article.
Hope this helps and not muddy the water. Personally I've got a lot of delegates and events to clean up! Multicast demons begone!
The raising class has to get a fresh copy of the EventHandler.
One possible solution below.
using System;
namespace ConsoleApplication1
{
class Program
{
class HasEvent
{
public event EventHandler OnEnvent;
EventInvoker myInvoker;
public HasEvent()
{
myInvoker = new EventInvoker(this, () => OnEnvent);
}
public void MyInvokerRaising() {
myInvoker.Raise();
}
}
class EventInvoker
{
private Func<EventHandler> GetEventHandler;
private object sender;
public EventInvoker(object sender, Func<EventHandler> GetEventHandler)
{
this.sender = sender;
this.GetEventHandler = GetEventHandler;
}
public void Raise()
{
if(null != GetEventHandler())
{
GetEventHandler()(sender, new EventArgs());
}
}
}
static void Main(string[] args)
{
HasEvent h = new HasEvent();
h.OnEnvent += H_OnEnvent;
h.MyInvokerRaising();
}
private static void H_OnEnvent(object sender, EventArgs e)
{
Console.WriteLine("FIRED");
}
}
}
Use public EventHandler AfterSearch;
not
public event EventHandler AfterSearch;
Use a Delegate (an Action or Func) instead of an event. An event is essentially a delegate that can only be triggered from within the class.
I took a slightly different approach in solving this problem. My solution consisted of a winform front end, a main Class Library (DLL) and within that dll, a secondary working class:
WinForm
|------> PickGen Library
|---------> Allocations class
What I decided to do is to create events in the main dll (PickGen) that the Allocations class could call, then those event methods would called the events within the UI.
So, allocations raises an event in PickGen which takes the parameter values and raises the event in the form. From a code standpoint, this is in the lowest class:
public delegate void AllocationService_RaiseAllocLog(string orderNumber, string message, bool logToDatabase);
public delegate void AllocationService_RaiseAllocErrorLog(string orderNumber, string message, bool logToDatabase);
public class AllocationService { ...
public event AllocationService_RaiseAllocLog RaiseAllocLog;
public event AllocationService_RaiseAllocErrorLog RaiseAllocErrorLog;
then later in the subclass code:
RaiseAllocErrorLog(SOHNUM_0, ShipmentGenerated + ": Allocated line QTY was: " + allocatedline.QTY_0 + ", Delivered was: " + QTY_0 + ". Problem batch.", false);
In the main DLL Class library I have these two event methods:
private void PickGenLibrary_RaiseAllocLog(string orderNumber, string message, bool updateDB)
{
RaiseLog(orderNumber, message, false);
}
private void PickGenLibrary_RaiseAllocErrorLog(string orderNumber, string message, bool updateDB)
{
RaiseErrorLog(orderNumber, message, false);
}
and I make the connection here when I create the allocation object:
AllocationService allsvc = new AllocationService(PickResult);
allsvc.RaiseAllocLog += new AllocationService_RaiseAllocLog(PickGenLibrary_RaiseAllocLog);
allsvc.RaiseAllocErrorLog += new AllocationService_RaiseAllocErrorLog(PickGenLibrary_RaiseAllocErrorLog);
and I also then have delegates that are set up to tie the main class with the winform code:
public delegate void JPPAPickGenLibrary_RaiseLog(string orderNumber, string message, bool logToDatabase);
public delegate void JPPAPickGenLibrary_RaiseErrorLog(string orderNumber, string message, bool logToDatabase);
It may not be the most elegant way to do it, but in the end, it does work and without being too obscure.
A nested class with an instance of the outer class provided in the constructor can access even private members of the outer class. As explained more here: stackoverflow question on inner classes.
This includes the ability to raise events in the outer class. This EventRaisers class could be internal, or otherwise controlled somehow, because it could technically otherwise be created by any script with a reference to the outer class instance.
Very simple example. i like to do it this way using EventHandler.
class Program
{
static void Main(string[] args)
{
MyExtension ext = new MyExtension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
Console.ReadLine();
}
static void ext_MyEvent(object sender, int num)
{
Console.WriteLine("Event fired.... "+num);
}
}
public class MyExtension
{
public event EventHandler<int> MyEvent;
public void Dosomething()
{
int no = 1;
if (MyEvent != null)
MyEvent(this, ++no);
}
}
}

How can I clear event subscriptions in C#?

Take the following C# class:
c1 {
event EventHandler someEvent;
}
If there are a lot of subscriptions to c1's someEvent event and I want to clear them all, what is the best way to achieve this? Also consider that subscriptions to this event could be/are lambdas/anonymous delegates.
Currently my solution is to add a ResetSubscriptions() method to c1 that sets someEvent to null. I don't know if this has any unseen consequences.
From within the class, you can set the (hidden) variable to null. A null reference is the canonical way of representing an empty invocation list, effectively.
From outside the class, you can't do this - events basically expose "subscribe" and "unsubscribe" and that's it.
It's worth being aware of what field-like events are actually doing - they're creating a variable and an event at the same time. Within the class, you end up referencing the variable. From outside, you reference the event.
See my article on events and delegates for more information.
Add a method to c1 that will set 'someEvent' to null.
public class c1
{
event EventHandler someEvent;
public ResetSubscriptions() => someEvent = null;
}
class c1
{
event EventHandler someEvent;
ResetSubscriptions() => someEvent = delegate { };
}
It is better to use delegate { } than null to avoid the null ref exception.
The best practice to clear all subscribers is to set the someEvent to null by adding another public method if you want to expose this functionality to outside. This has no unseen consequences. The precondition is to remember to declare SomeEvent with the keyword 'event'.
Please see the book - C# 4.0 in the nutshell, page 125.
Some one here proposed to use Delegate.RemoveAll method. If you use it, the sample code could follow the below form. But it is really stupid. Why not just SomeEvent=null inside the ClearSubscribers() function?
public void ClearSubscribers ()
{
SomeEvent = (EventHandler) Delegate.RemoveAll(SomeEvent, SomeEvent);
// Then you will find SomeEvent is set to null.
}
Setting the event to null inside the class works. When you dispose a class you should always set the event to null, the GC has problems with events and may not clean up the disposed class if it has dangling events.
You can achieve this by using the Delegate.Remove or Delegate.RemoveAll methods.
Conceptual extended boring comment.
I rather use the word "event handler" instead of "event" or "delegate". And used the word "event" for other stuff. In some programming languages (VB.NET, Object Pascal, Objective-C), "event" is called a "message" or "signal", and even have a "message" keyword, and specific sugar syntax.
const
WM_Paint = 998; // <-- "question" can be done by several talkers
WM_Clear = 546;
type
MyWindowClass = class(Window)
procedure NotEventHandlerMethod_1;
procedure NotEventHandlerMethod_17;
procedure DoPaintEventHandler; message WM_Paint; // <-- "answer" by this listener
procedure DoClearEventHandler; message WM_Clear;
end;
And, in order to respond to that "message", a "event handler" respond, whether is a single delegate or multiple delegates.
Summary:
"Event" is the "question", "event handler (s)" are the answer (s).
Remove all events, assume the event is an "Action" type:
Delegate[] dary = TermCheckScore.GetInvocationList();
if ( dary != null )
{
foreach ( Delegate del in dary )
{
TermCheckScore -= ( Action ) del;
}
}
This is my solution:
public class Foo : IDisposable
{
private event EventHandler _statusChanged;
public event EventHandler StatusChanged
{
add
{
_statusChanged += value;
}
remove
{
_statusChanged -= value;
}
}
public void Dispose()
{
_statusChanged = null;
}
}
You need to call Dispose() or use using(new Foo()){/*...*/} pattern to unsubscribe all members of invocation list.
Instead of adding and removing callbacks manually and having a bunch of delegate types declared everywhere:
// The hard way
public delegate void ObjectCallback(ObjectType broadcaster);
public class Object
{
public event ObjectCallback m_ObjectCallback;
void SetupListener()
{
ObjectCallback callback = null;
callback = (ObjectType broadcaster) =>
{
// one time logic here
broadcaster.m_ObjectCallback -= callback;
};
m_ObjectCallback += callback;
}
void BroadcastEvent()
{
m_ObjectCallback?.Invoke(this);
}
}
You could try this generic approach:
public class Object
{
public Broadcast<Object> m_EventToBroadcast = new Broadcast<Object>();
void SetupListener()
{
m_EventToBroadcast.SubscribeOnce((ObjectType broadcaster) => {
// one time logic here
});
}
~Object()
{
m_EventToBroadcast.Dispose();
m_EventToBroadcast = null;
}
void BroadcastEvent()
{
m_EventToBroadcast.Broadcast(this);
}
}
public delegate void ObjectDelegate<T>(T broadcaster);
public class Broadcast<T> : IDisposable
{
private event ObjectDelegate<T> m_Event;
private List<ObjectDelegate<T>> m_SingleSubscribers = new List<ObjectDelegate<T>>();
~Broadcast()
{
Dispose();
}
public void Dispose()
{
Clear();
System.GC.SuppressFinalize(this);
}
public void Clear()
{
m_SingleSubscribers.Clear();
m_Event = delegate { };
}
// add a one shot to this delegate that is removed after first broadcast
public void SubscribeOnce(ObjectDelegate<T> del)
{
m_Event += del;
m_SingleSubscribers.Add(del);
}
// add a recurring delegate that gets called each time
public void Subscribe(ObjectDelegate<T> del)
{
m_Event += del;
}
public void Unsubscribe(ObjectDelegate<T> del)
{
m_Event -= del;
}
public void Broadcast(T broadcaster)
{
m_Event?.Invoke(broadcaster);
for (int i = 0; i < m_SingleSubscribers.Count; ++i)
{
Unsubscribe(m_SingleSubscribers[i]);
}
m_SingleSubscribers.Clear();
}
}

Categories