Problem with the code while calling Invoke() on form? - c#

I have a method which is called on a different thread than UI thread.
When this method is called the control is gone , I mean nothing happens.
The code is like below:
private void MainForm_NewMeasurementState(Measurement measurement)
{
try
{
if (InvokeRequired)
{
// we were called on a worker thread
// marshall the call to the user interface thread
this.Invoke(new Action<Measurement>(MainForm_NewMeasurementState), new object[] { measurement });
return;
}
// some other code
}
The control comes in the if statement but then I don't know what happens, the other code is never called.
Any help will be appreciated.

It could be that your main thread is blocked, perhaps because it is waiting for your code to complete (i.e. your code is deadlocked because two threads are waiting for each other).
Try to find out why the main UI thread is blocked, or else use BeginInvoke instead of Invoke.

Related

Dispatcher and RaiseCanExecuteChanged() blocking [duplicate]

I'm building a chat client and am not 100% sure on how to use the dispatcher. So the question is I have a method as such:
public void LostConnection()
{
myGUI.chatBox.AppendText("Lost connection to room: "+ myGUI.UsernameText.ToString() + "\r\n");
}
Do i need to surrond the statement within (myGUI.chatBox... ) with a Dispatcher.Invoke? I appreciate any help.
Your app has a main UI thread (usually ManagedThreadId==1). Typically in a chat app your events will come in on other threads (either dedicated socket listen threads or thread pool threads from listening code). If you want to update the UI from an event that gets pull on some other thread you must use the dispatcher. A useful test here is the Dispatcher.CheckAccess() method that returns true if code is on UI thread and false if on some other thread. A typical call looks something like:
using System.Windows.Threading; // For Dispatcher.
if (Application.Current.Dispatcher.CheckAccess()) {
network_links.Add(new NetworkLinkVM(link, start_node, end_node));
}
else {
Application.Current.Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action(()=>{
network_links.Add(new NetworkLinkVM(link, start_node, end_node));
}));
}
If you're in the main window you can use:
Dispatcher.BeginInvoke(...
If you're in someother context eg a view model then use:
Application.Current.Dispatcher.BeginInvoke(
Invoke vs BeginInvoke
Use Invoke if you want the current thread to wait until the UI thread has processed the dispatch code or BeginInvoke if you want current thread to continue without waiting for operation to complete on UI thread.
MessageBox, Dispatchers and Invoke/BeginInvoke:
Dispatcher.Invoke will block your thread until the MessageBox is dismissed.
Dispatcher.BeginInvoke will allow your thread code to continue to execute while the UI thread will block on the MessageBox call until its dismissed.
CurrentDispatcher vs Current.Dispatcher!
Be ware of Dispatcher.CurrentDispatcher as my understanding of this is that is will return a Dispatcher for the current thread not the UI thread. Generally are you interested in the dispatcher on the UI thread - Application.Current.Dispatcher always returns this.
Additional note:
If you are finding you are having to check dispatcher CheckAccess often then a useful helper method is:
public void DispatchIfNecessary(Action action) {
if (!Dispatcher.CheckAccess())
Dispatcher.Invoke(action);
else
action.Invoke();
}
Which can be called as:
DispatchIfNecessary(() => {
network_links.Add(new NetworkLinkVM(link, start_node, end_node));
});
I had problems with Application.Current.Dispatcher.BeginInvoke and the object.Invoke() methods.
This worked for me:
Dispatcher.CurrentDispatcher.BeginInvoke(new Action(() =>
{
// code...
}));
Something like this (off the top of my head) should work:
public void LostConnection()
{
myGUI.Invoke
((MethodInvoker)delegate
{
myGUI.chatBox.AppendText("Lost connection to room: "+ myGUI.UsernameText.ToString() + "\r\n");
});
}

DataGridView.Invoke freezes

I have an Action delegate:
public static Action SubscribeForTable;
I loaded it with my Objects method
public void SubscribeMe()
{
Parallel.For(0, ACCESS.GetAppCount(), AppCheck);
CheckTable(true);
}
So I have a delegate, which contains the same function but for different objects.
Then I do this:
Parallel.Invoke(SubscribeForTable);
So it launched to run, and I wait...I wait...and nothing happens! The application is stuck! Then I started my debugger.
return to SubscribeMe() function
Parallel.For(0, ACCESS.GetAppCount(), AppCheck); //OK
CheckTable(true); // lets see what is in
Then I looked to this function..
delegate void CheckTableCallback(bool check);
private void CheckTable(bool Subscribed)
{
if (DataGridView1.InvokeRequired) // OK
{
CheckTableCallback Safe = new CheckTableCallback(CheckTable); // OK
DataGridView1.Invoke(Safe, new Object[] {Subscribed}); //HANGS HERE!
}
else
{
....
So it hangs on DataGridView.Invoke. Why so? Hope I have explained my problem correctly.
Control.Invoke, by design, blocks the current thread until the UI thread can process messages.
If you're calling your Parallel.For loop from the UI thread, that will block the UI thread until it completes.
The two cause a condition where one operation (the Invoke call) can't finish until the other completes and free's up the UI thread (Parallel.For), but the second can't complete until the individual work items finish.
You may be able to use BeginInvoke instead of Invoke to avoid the dead lock here, if you're just updating the UI. This will cause the actual method (CheckTable) to run and set the values after the entire operation completes.

Invoke(Delegate)

Can anybody please explain this statement written on this link
Invoke(Delegate):
Executes the specified delegate on the thread that owns the control's underlying window handle.
Can anybody explain what this means (especially the bold one) I am not able to get it clearly
The answer to this question lies in how C# Controls work
Controls in Windows Forms are bound to a specific thread and are not
thread safe. Therefore, if you are calling a control's method from a
different thread, you must use one of the control's invoke methods to
marshal the call to the proper thread. This property can be used to
determine if you must call an invoke method, which can be useful if
you do not know what thread owns a control.
From Control.InvokeRequired
Effectively, what Invoke does is ensure that the code you are calling occurs on the thread that the control "lives on" effectively preventing cross threaded exceptions.
From a historical perspective, in .Net 1.1, this was actually allowed. What it meant is that you could try and execute code on the "GUI" thread from any background thread and this would mostly work. Sometimes it would just cause your app to exit because you were effectively interrupting the GUI thread while it was doing something else. This is the Cross Threaded Exception - imagine trying to update a TextBox while the GUI is painting something else.
Which action takes priority?
Is it even possible for both to happen at once?
What happens to all of the other commands the GUI needs to run?
Effectively, you are interrupting a queue, which can have lots of unforeseen consequences. Invoke is effectively the "polite" way of getting what you want to do into that queue, and this rule was enforced from .Net 2.0 onward via a thrown InvalidOperationException.
To understand what is actually going on behind the scenes, and what is meant by "GUI Thread", it's useful to understand what a Message Pump or Message Loop is.
This is actually already answered in the question "What is a Message Pump" and is recommended reading for understanding the actual mechanism that you are tying into when interacting with controls.
Other reading you may find useful includes:
What's up with Begin Invoke
One of the cardinal rules of Windows GUI programming is that only the
thread that created a control can access and/or modify its contents
(except for a few documented exceptions). Try doing it from any other
thread and you'll get unpredictable behavior ranging from deadlock, to
exceptions to a half updated UI. The right way then to update a
control from another thread is to post an appropriate message to the
application message queue. When the message pump gets around to
executing that message, the control will get updated, on the same
thread that created it (remember, the message pump runs on the main
thread).
and, for a more code heavy overview with a representative sample:
Invalid Cross-thread Operations
// the canonical form (C# consumer)
public delegate void ControlStringConsumer(Control control, string text); // defines a delegate type
public void SetText(Control control, string text) {
if (control.InvokeRequired) {
control.Invoke(new ControlStringConsumer(SetText), new object[]{control, text}); // invoking itself
} else {
control.Text=text; // the "functional part", executing only on the main thread
}
}
Once you have an appreciation for InvokeRequired, you may wish to consider using an extension method for wrapping these calls up. This is ably covered in the Stack Overflow question Cleaning Up Code Littered with Invoke Required.
There is also a further write up of what happened historically that may be of interest.
A control or window object in Windows Forms is just a wrapper around a Win32 window identified by a handle (sometimes called HWND). Most things you do with the control will eventually result in a Win32 API call that uses this handle. The handle is owned by the thread that created it (typically the main thread), and shouldn't be manipulated by another thread. If for some reason you need to do something with the control from another thread, you can use Invoke to ask the main thread to do it on your behalf.
For instance, if you want to change the text of a label from a worker thread, you can do something like this:
theLabel.Invoke(new Action(() => theLabel.Text = "hello world from worker thread!"));
If you want to modify a control it must be done in the thread in which the control was created. This Invoke method allows you to execute methods in the associated thread (the thread that owns the control's underlying window handle).
In below sample thread1 throws an exception because SetText1 is trying to modify textBox1.Text from another thread. But in thread2, Action in SetText2 is executed in the thread in which the TextBox was created
private void btn_Click(object sender, EvenetArgs e)
{
var thread1 = new Thread(SetText1);
var thread2 = new Thread(SetText2);
thread1.Start();
thread2.Start();
}
private void SetText1()
{
textBox1.Text = "Test";
}
private void SetText2()
{
textBox1.Invoke(new Action(() => textBox1.Text = "Test"));
}
Invoke((MethodInvoker)delegate{ textBox1.Text = "Test"; });
In practical terms it means that the delegate is guaranteed to be invoked on the main thread. This is important because in the case of windows controls if you don't update their properties on the main thread then you either don't see the change, or the control raises an exception.
The pattern is:
void OnEvent(object sender, EventArgs e)
{
if (this.InvokeRequired)
{
this.Invoke(() => this.OnEvent(sender, e);
return;
}
// do stuff (now you know you are on the main thread)
}
this.Invoke(delegate) make sure that you are calling the delegate the argument to this.Invoke() on main thread/created thread.
I can say a Thumb rule don't access your form controls except from main thread.
May be the following lines make sense for using Invoke()
private void SetText(string text)
{
// InvokeRequired required compares the thread ID of the
// calling thread to the thread ID of the creating thread.
// If these threads are different, it returns true.
if (this.textBox1.InvokeRequired)
{
SetTextCallback d = new SetTextCallback(SetText);
this.Invoke(d, new object[] { text });
}
else
{
this.textBox1.Text = text;
}
}
There are situations though you create a Threadpool thread(i.e worker thread) it will run on main thread. It won't create a new thread coz main thread is available for processing further instructions. So First investigate whether the current running thread is main thread using this.InvokeRequired if returns true the current code is running on worker thread so call
this.Invoke(d, new object[] { text });
else directly update the UI control(Here you are guaranteed that you are running the code on main thread.)
It means that the delegate will run on the UI thread, even if you call that method from a background worker or thread-pool thread. UI elements have thread affinity - they only like talking directly to one thread: the UI thread. The UI thread is defined as the thread that created the control instance, and is therefore associated with the window handle. But all of that is an implementation detail.
The key point is: you would call this method from a worker thread so that you can access the UI (to change the value in a label, etc) - since you are not allowed to do that from any other thread than the UI thread.
Delegate are essentially inline Action's or Func<T>. You can declare a delegate outside the scope of a method which you are running or using a lambda expression(=>); because you run the delegate within a method, you run it on the thread which is being run for the current window/application which is the bit in bold.
Lambda example
int AddFiveToNumber(int number)
{
var d = (int i => i + 5);
d.Invoke(number);
}
It means that the delegate you pass is executed on the thread that created the Control object (which is the UI thread).
You need to call this method when your application is multi-threaded and you want do some UI operation from a thread other than the UI thread, because if you just try to call a method on a Control from a different thread you'll get a System.InvalidOperationException.

C#.NET Threading Question

I am facing an issue with communication between threads in a C#.NET application.
Hope someone will guide me in the right direction about the possible solutions.
I have an application in C#.NET.It is a windows form application.
My application has two threads - One thread is the main thread (UI thread) and the other one is the child thread. Lets call the child thread the "workerThread"
There is only one form used in the application.Lets call this form the "MainForm"
The child thread is started when the MainForm loads (used the form's "Load" event handler to start the thread)
In the MainForm class, I have a variable named "stopWork" which is a public boolean variable and it serves as a flag to indicate whether the child thread should continue working or should it stop
I have another class (besides the MainForm class) which contains the method that I execute in the the child thread. Lets call this second class the "WorkerClass".
I pass a reference to the current form (the MainForm) into the constructor of the "WorkerClass"
I have a button "stop" in the main form which sets "stopWork" to "true" if its clicked and then calls "workerThread.Join()" to wait for the child thread to finish excecution.
In the child thread, the method "doWork" keeps checking the status of "parentForm.stopWork" inside a for loop. If "stopWork" is set to "true" then the loop breaks and subsequently the method ends.
Now, the issue is, once I am clicking the "stop" button ,the application hangs.
I am pasting parts of the code below so that it is easier to understand :
public partial class MainForm : Form
{
Thread workerThread = null;
ThreadStart workerThreadStart = null;
WorkerClass workerClass = null;
public bool stopWork = true;
/*.......... some code ............*/
private void MainForm_Load(object sender, EventArgs e)
{
workerThreadStart = new ThreadStart(startWork);
workerThread = new Thread(workerThreadStart);
stopWork = false;
workerThread.Start();
}
private void startWork()
{
workerClass = new WorkerClass(this);
}
private void buttonStop_Click(object sender, EventArgs e) //"stop" button
{
if (workerThread != null)
{
if (workerThread.IsAlive == true)
{
stopWork = true;
workerThread.Join();
}
}
}
/*.......... some more code ............*/
}
public class WorkerClass
{
MainForm parentForm=null;
/*......... some variables and code ........*/
public WorkerClass(MainForm parentForm)
{
this.parentForm=parentForm;
}
/* .............. some more code ...........*/
public void doWork()
{
/*.......... some variables and code ...........*/
for(int i=0;i<100000;i++)
{
// ** Here is the check to see if parentForm has set stopWork to true **
if(parentForm.stopWork==true)
break;
/*......... do some work in the loop ..........*/
}
}
/********* and more code .........*/
}
I think I may know where the problem lies.
The problem is in the "doWork" method in the child thread trying to access "stopWork" variable in the parent form when already the parent form is blocked by calling the "workerThread.Join()" method. So ,I think this is a "deadlock" problem.
Am I right in identifying the problem ? Or am I wrong and the problem lies somewhere else ?
In case this is indeed a deadlock, what are the possible solutions to solve this ?
I did a bit of googling and found lots of resources on thread synchronisation and how to avoid deadlocks. But I could not understand how to apply them specifically to my problem.
I would really appreciate any help or guidance on resolving this issue.
Yes, the code you wrote is highly vulnerable to deadlock. The BackgroundWorker class is especially prone to cause this kind of deadlock.
The problem is located in code we can't see in your snippet, the WorkerClass. You are surely doing something there that affects the UI in one way or another, always the primary reason to consider creating a thread in the first place. You probably use Control.Invoke() to have some code run on the UI thread and update a control. Perhaps also to signal that the worker thread is completed and, say, set the Enable property of a button back to true.
That's deadlock city, such code cannot run until the UI thread goes idle, back to pumping its message loop. It will never be idle in your case, it is stuck in Thread.Join(). The worker thread can't complete because the UI thread won't go idle, the UI thread can't go idle because the worker thread isn't finishing. Deadlock.
BackgroundWorker has this problem too, the RunWorkerCompleted event cannot run unless the UI thread is idle. What you need to do is not block the UI thread. Easier said than done, BGW can help you get this right because it runs an event when it completes. You can have this event do whatever you now do in the code past the Thread.Join() call. You'll need a boolean flag in your class to indicate that you are in the 'waiting for completion' state. This answer has relevant code.
Use a BackgroundWorker for this task instead. When you want to stop the task's execution, call the background worker's CancelAsync method.
Generally speaking, rolling your own threading code (on any platform) is a recipe for disaster if you don't have an expert-level understanding of multithreading (and even then it's still dangerous).

Performance implications of BeginInvoke

I've inherited code where BeginInvoke is called from the main thread (not a background thread, which is usually the pattern). I am trying to understand what it actually does in this scenario.
Does the method being called in the BeginInvoke get in line of messages that come down to the window? The docs say asynchronously, so that is my assumption.
How does the framework prioritize when to kick off the method called by BeginInvoke?
Edit: The code looks like this:
System.Action<bool> finalizeUI = delegate(bool open)
{
try
{
// do somewhat time consuming stuff
}
finally
{
Cursor.Current = Cursors.Default;
}
};
Cursor.Current = Cursors.WaitCursor;
BeginInvoke(finalizeUI, true);
This is happening in the Form_Load event.
edit
Now that we see the code, it's clear that this is just a way to move some initialization out of Form_Load but still have it happen before the user can interact with the form.
The call to BeginInvoke is inside Form_load, and is not called on another object, so this is a call to Form.BeginInvoke. So what's happening is this.
Form_Load passes a delegate to Form.BeginInvoke, this puts a message in the form's message queue that is ahead of all user input messages. It sets the cursor to a wait cursor.
Form_Load returns, and the rest of form initialization is allowed to complete, the form most likely becomes visible at this point.
Once the code falls into the message pump, the first thing is sees in the queue is the delegate, so it runs that.
as the delegate completes, it changes the cursor back to the normal cursor, and returns
profit!
original post below
I depends on the object that you call BeginInvoke on. If the object is derived from Control then Control.BeginInvoke will run on the thread that created the control. See JaredPar's answer.
But there is another pattern for the use of BeginInvoke. if the object is a delegate, then BeginInvoke runs the callback on a separate thread, one that may be created specifically for that purpose.
public class Foo
{
...
public Object Bar(object arg)
{
// this function will run on a separate thread.
}
}
...
// this delegate is used to Invoke Bar on Foo in separate thread, this must
// take the same arguments and return the same value as the Bar method of Foo
public delegate object FooBarCaller (object arg);
...
// call this on the main thread to invoke Foo.Bar on a background thread
//
public IAsyncResult BeginFooBar(AsyncCallback callback, object arg)
{
Foo foo = new Foo();
FooBarCaller caller = new FooBarCaller (foo.Bar);
return caller.BeginInvoke (arg);
}
This pattern is one reason that BeginInvoke is called from the main thread rather than from a background thread.
In the case BeginInvoke is called on a UI thread it will still go through the process of posting a Windows Message to the message queue where the message will wait to be processed. The delegate will run when the message is processed. This message is not prioritized in any way that's different than it being called from the background thread.
In this scenario I suspect the call looks like:
private void Button1_Click(object sender, ButtonClickEventArgs e)
{
Control.BeginInvoke(new MethodInvoker(()=> /* code etc. */));
}
What's happening is that some code will run on on a threadpool thread, and update the control on the thread that created the control whereas if Control.Invoke was used, some code would run on the thread that created the control, and update the control on that thread as well.
Prior to widespread BackgroundWorker use, you had to synchronize back to the UI thread before doing any operations on Controls created on the UI thread (i.e. pretty much every Control).
There's a pretty good reference example here down in the "Thread-Safe Calls to a Windows Forms Control" section.

Categories