Collection with Next() - c#

How can I get next element of element to which I have reference in some collection e.g. List<T> ?
I am not talking about any loops, etc. I want get just one next (or previous) element

A collection does not have the a concept of "current element". Iterators/Enumerators do. And they have a MoveNext() method. And then you can access the current element of that enumerator with Current.
You can call GetEnumerator() on almost all collections to get an enumerator.
One problem with enumerators is you usually can't copy them nor move them backwards. (Unlike C++ where most collections have more powerful iterators)

It's not the most performant, but it should work. You can even make it an extension method.
public static T GetNext<T>(IList<T> collection, T value )
{
int nextIndex = collection.IndexOf(value) + 1;
if (nextIndex < collection.Count)
{
return collection[nextIndex];
}
else
{
return value; //Or throw an exception
}
}
And you use it like this:
var list = new List<string> {"A", "B", "C", "D"};
string current = "B";
string next = GetNext(list, current);
Console.WriteLine(next); //Prints C

To get "next" you need a concept of "current". C# doesn't use iterators like C++ does, you can either get an enumerator:
var enumerator = x.GetEnumerator();
while (enumerator.MoveNext())
{
Console.WriteLine(enumerator.Current);
}
But it would be easier to just use an int indexer into the List<T>

Related

consuming sequence generated by IEnumerable

I would like to use an IEnumerable to generate a sequence of values -- specifically, a list of Excel-like column headers.
private IEnumerable<string> EnumerateSymbolNames()
{
foreach (var sym in _symbols)
{
yield return sym;
}
foreach (var sym1 in _symbols)
{
foreach (var sym2 in _symbols)
{
yield return sym1 + sym2;
}
}
yield break;
}
private readonly string[] _symbols = new string[] { "A", "B", "C", ...};
This works fine if I fetch the values from a foreach loop. But what I want is to use the iterator block as a state machine and fetch the next available column header in response to a user action. And this -- consuming the generated values -- is where I've run into trouble.
So far I've tried
return EnumerateSymbolNames().Take(1).FirstOrDefault();
return EnumerateSymbolNames().Take(1).SingleOrDefault();
return EnumerateSymbolNames().FirstOrDefault();
var enumerator = EnumerateSymbolNames().GetEnumerator();
enumerator.MoveNext();
return enumerator.Current;
... but none of these have worked. (All repeatedly return "A".)
Based on the responses to this question, I'm wondering what I want is even possible -- although several of the responses to that post suggest techniques similar to my last one.
And no, this is not a homework assignment :)
When you use GetEnumerator, you need to use the same enumerator for each iteration. If you call GetEnumerator a second time, it will start over at the beginning of the collection.
If you want to use Take, you must first Skip the number of records that have already been processed.
This code worked for me...
var states = EnumerateSymbolNames();
var stateMachine = states.GetEnumerator();
do
{
//something
} while (stateMachine.MoveNext());
When print the results within that loop, it successfully produced the following output:
A
B
C
...
AA
AB
AC
...
BA
BB
...
Which is what I think you intended...
As both #cadrell0's answer and #Mr Steak's comment point out, what I needed to do was retain a reference to the enumerator returned by EnumerateSymbolNames().GetEnumerator().
When you're in a foreach loop, this is done implicitly for you: the iterator variable wraps an enumerator, which (I'm assuming) is scoped locally to the loop. So -- and this is the key piece -- when the iterator block does (the equivalent of)
enumerator.MoveNext();
return enumerator.Current;
... you're always using the same enumerator. Whereas what I was doing was creating / obtaining a different (new) enumerator every time. And predictably, it always started out at the first position in the sequence. This was probably obvious to everyone but me; it seems obvious to me as well in hindsight. (I was thinking of the enumerator as sort of a singleton property of the sequence, assuming that I'd be getting the same enumerator back every time.)
The following does what I want:
public class SymbolGenerator
{
private readonly string[] _symbols = { "A", "B", "C", ... };
private readonly IEnumerator<string> _enumerator;
public SymbolGenerator()
{
_enumerator = EnumerateSymbols().GetEnumerator();
}
public string GetNextSymbol()
{
_enumerator.MoveNext();
return _enumerator.Current;
}
private IEnumerable<string> EnumerateSymbols()
{
// (unchanged)
}
}

Does IEnumerable always imply a collection?

Just a quick question regarding IEnumerable:
Does IEnumerable always imply a collection? Or is it legitimate/viable/okay/whatever to use on a single object?
The IEnumerable and IEnumerable<T> interfaces suggest a sequence of some kind, but that sequence doesn't need to be a concrete collection.
For example, where's the underlying concrete collection in this case?
foreach (int i in new EndlessRandomSequence().Take(5))
{
Console.WriteLine(i);
}
// ...
public class EndlessRandomSequence : IEnumerable<int>
{
public IEnumerator<int> GetEnumerator()
{
var rng = new Random();
while (true) yield return rng.Next();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
It is always and mandatory that IEnumerable is used on a single object - the single object is always the holder or producer of zero or more other objects that do not necessarily have any relation to IEnumerable.
It's usual, but not mandatory, that IEnumerable represents a collection.
Enumerables can be collections, as well as generators, queries, and even computations.
Generator:
IEnumerable<int> Generate(
int initial,
Func<int, bool> condition,
Func<int, int> iterator)
{
var i = initial;
while (true)
{
yield return i;
i = iterator(i);
if (!condition(i))
{
yield break;
}
}
}
Query:
IEnumerable<Process> GetProcessesWhereNameContains(string text)
{
// Could be web-service or database call too
var processes = System.Diagnostics.Process.GetProcesses();
foreach (var process in processes)
{
if (process.ProcessName.Contains(text))
{
yield return process;
}
}
}
Computation:
IEnumerable<double> Average(IEnumerable<double> values)
{
var sum = 0.0;
var count = 0;
foreach (var value in values)
{
sum += value;
yield return sum/++count;
}
}
LINQ is itself a series of operators that produce objects that implement IEnumerable<T> that don't have any underlying collections.
Good question, BTW!
NB: Any reference to IEnumerable also applies to IEnumerable<T> as the latter inherits the former.
Yes, IEnumerable implies a collection, or possible collection, of items.
The name is derived from enumerate, which means to:
Mention (a number of things) one by one.
Establish the number of.
According to the docs, it exposes the enumerator over a collection.
You can certainly use it on a single object, but this object will then just be exposed as an enumeration containing a single object, i.e. you could have an IEnumerable<int> with a single integer:
IEnumerable<int> items = new[] { 42 };
IEnumerable represents a collection that can be enumerated, not a single item. Look at MSDN; the interface exposes GetEnumerator(), which
...[r]eturns an enumerator that iterates through a collection.
Yes, IEnumerable always implies a collection, that is what enumerate means.
What is your use case for a single object?
I don't see a problem with using it on a single object, but why do want to do this?
I'm not sure whether you mean a "collection" or a .NET "ICollection" but since other people have only mentioned the former I will mention the latter.
http://msdn.microsoft.com/en-us/library/92t2ye13.aspx
By that definition, All ICollections are IEnumerable. But not the other way around.
But most data structure (Array even) just implement both interfaces.
Going on this train of thought: you could have a car depot (a single object) that does not expose an internal data structure, and put IEnumerable on it. I suppose.

What's the fastest way to convert List<string> to List<int> in C# assuming int.Parse will work for every item?

By fastest I mean what is the most performant means of converting each item in List to type int using C# assuming int.Parse will work for every item?
You won't get around iterating over all elements. Using LINQ:
var ints = strings.Select(s => int.Parse(s));
This has the added bonus it will only convert at the time you iterate over it, and only as much elements as you request.
If you really need a list, use the ToList method. However, you have to be aware that the performance bonus mentioned above won't be available then.
If you're really trying to eeke out the last bit of performance you could try doing someting with pointers like this, but personally I'd go with the simple linq implementation that others have mentioned.
unsafe static int ParseUnsafe(string value)
{
int result = 0;
fixed (char* v = value)
{
char* str = v;
while (*str != '\0')
{
result = 10 * result + (*str - 48);
str++;
}
}
return result;
}
var parsed = input.Select(i=>ParseUnsafe(i));//optionally .ToList() if you really need list
There is likely to be very little difference between any of the obvious ways to do this: therefore go for readability (one of the LINQ-style methods posted in other answers).
You may gain some performance for very large lists by initializing the output list to its required capacity, but it's unlikely you'd notice the difference, and readability will suffer:
List<string> input = ..
List<int> output = new List<int>(input.Count);
... Parse in a loop ...
The slight performance gain will come from the fact that the output list won't need to be repeatedly reallocated as it grows.
I don't know what the performance implications are, but there is a List<T>.ConvertAll<TOutput> method for converting the elements in the current List to another type, returning a list containing the converted elements.
List.ConvertAll Method
var myListOfInts = myListString.Select(x => int.Parse(x)).ToList()
Side note: If you call ToList() on ICollection .NET framework automatically preallocates an
List of needed size, so it doesn't have to allocate new space for each new item added to the list.
Unfortunately LINQ Select doesn't return an ICollection (as Joe pointed out in comments).
From ILSpy:
// System.Linq.Enumerable
public static List<TSource> ToList<TSource>(this IEnumerable<TSource> source)
{
if (source == null)
{
throw Error.ArgumentNull("source");
}
return new List<TSource>(source);
}
// System.Collections.Generic.List<T>
public List(IEnumerable<T> collection)
{
if (collection == null)
{
ThrowHelper.ThrowArgumentNullException(ExceptionArgument.collection);
}
ICollection<T> collection2 = collection as ICollection<T>;
if (collection2 != null)
{
int count = collection2.Count;
this._items = new T[count];
collection2.CopyTo(this._items, 0);
this._size = count;
return;
}
this._size = 0;
this._items = new T[4];
using (IEnumerator<T> enumerator = collection.GetEnumerator())
{
while (enumerator.MoveNext())
{
this.Add(enumerator.Current);
}
}
}
So, ToList() just calls List constructor and passes in an IEnumerable.
The List constructor is smart enough that if it is an ICollection it uses most efficient way of filling a new instance of List

C# IEnumerable Retrieve The First Record

I have an IEnumerable list of objects in C#. I can use a for each to loop through and examine each object fine, however in this case all I want to do is examine the first object is there a way to do this without using a foreach loop?
I've tried mylist[0] but that didnt work.
Thanks
(For the sake of convenience, this answer assumes myList implements IEnumerable<string>; replace string with the appropriate type where necessary.)
If you're using .NET 3.5, use the First() extension method:
string first = myList.First();
If you're not sure whether there are any values or not, you can use the FirstOrDefault() method which will return null (or more generally, the default value of the element type) for an empty sequence.
You can still do it "the long way" without a foreach loop:
using (IEnumerator<string> iterator = myList.GetEnumerator())
{
if (!iterator.MoveNext())
{
throw new WhateverException("Empty list!");
}
string first = iterator.Current;
}
It's pretty ugly though :)
In answer to your comment, no, the returned iterator is not positioned at the first element initially; it's positioned before the first element. You need to call MoveNext() to move it to the first element, and that's how you can tell the difference between an empty sequence and one with a single element in.
EDIT: Just thinking about it, I wonder whether this is a useful extension method:
public static bool TryFirst(this IEnumerable<T> source, out T value)
{
using (IEnumerator<T> iterator = source.GetEnumerator())
{
if (!iterator.MoveNext())
{
value = default(T);
return false;
}
value = iterator.Current;
return true;
}
}
Remember, there may be no "first element" if the sequence is empty.
IEnumerable<int> z = new List<int>();
int y = z.FirstOrDefault();
If you're not on 3.5:
using (IEnumerator<Type> ie = ((IEnumerable<Type>)myList).GetEnumerator()) {
if (ie.MoveNext())
value = ie.Current;
else
// doesn't exist...
}
or
Type value = null;
foreach(Type t in myList) {
value = t;
break;
}

How do you get the index of the current iteration of a foreach loop?

Is there some rare language construct I haven't encountered (like the few I've learned recently, some on Stack Overflow) in C# to get a value representing the current iteration of a foreach loop?
For instance, I currently do something like this depending on the circumstances:
int i = 0;
foreach (Object o in collection)
{
// ...
i++;
}
Ian Mercer posted a similar solution as this on Phil Haack's blog:
foreach (var item in Model.Select((value, i) => new { i, value }))
{
var value = item.value;
var index = item.i;
}
This gets you the item (item.value) and its index (item.i) by using this overload of LINQ's Select:
the second parameter of the function [inside Select] represents the index of the source element.
The new { i, value } is creating a new anonymous object.
Heap allocations can be avoided by using ValueTuple if you're using C# 7.0 or later:
foreach (var item in Model.Select((value, i) => ( value, i )))
{
var value = item.value;
var index = item.i;
}
You can also eliminate the item. by using automatic destructuring:
foreach (var (value, i) in Model.Select((value, i) => ( value, i )))
{
// Access `value` and `i` directly here.
}
The foreach is for iterating over collections that implement IEnumerable. It does this by calling GetEnumerator on the collection, which will return an Enumerator.
This Enumerator has a method and a property:
MoveNext()
Current
Current returns the object that Enumerator is currently on, MoveNext updates Current to the next object.
The concept of an index is foreign to the concept of enumeration, and cannot be done.
Because of that, most collections are able to be traversed using an indexer and the for loop construct.
I greatly prefer using a for loop in this situation compared to tracking the index with a local variable.
Finally C#7 has a decent syntax for getting an index inside of a foreach loop (i. e. tuples):
foreach (var (item, index) in collection.WithIndex())
{
Debug.WriteLine($"{index}: {item}");
}
A little extension method would be needed:
using System.Collections.Generic;
public static class EnumExtension {
public static IEnumerable<(T item, int index)> WithIndex<T>(this IEnumerable<T> self)
=> self.Select((item, index) => (item, index));
}
Could do something like this:
public static class ForEachExtensions
{
public static void ForEachWithIndex<T>(this IEnumerable<T> enumerable, Action<T, int> handler)
{
int idx = 0;
foreach (T item in enumerable)
handler(item, idx++);
}
}
public class Example
{
public static void Main()
{
string[] values = new[] { "foo", "bar", "baz" };
values.ForEachWithIndex((item, idx) => Console.WriteLine("{0}: {1}", idx, item));
}
}
I disagree with comments that a for loop is a better choice in most cases.
foreach is a useful construct, and not replaceble by a for loop in all circumstances.
For example, if you have a DataReader and loop through all records using a foreach it automatically calls the Dispose method and closes the reader (which can then close the connection automatically). This is therefore safer as it prevents connection leaks even if you forget to close the reader.
(Sure it is good practise to always close readers but the compiler is not going to catch it if you don't - you can't guarantee you have closed all readers but you can make it more likely you won't leak connections by getting in the habit of using foreach.)
There may be other examples of the implicit call of the Dispose method being useful.
Literal Answer -- warning, performance may not be as good as just using an int to track the index. At least it is better than using IndexOf.
You just need to use the indexing overload of Select to wrap each item in the collection with an anonymous object that knows the index. This can be done against anything that implements IEnumerable.
System.Collections.IEnumerable collection = Enumerable.Range(100, 10);
foreach (var o in collection.OfType<object>().Select((x, i) => new {x, i}))
{
Console.WriteLine("{0} {1}", o.i, o.x);
}
Using LINQ, C# 7, and the System.ValueTuple NuGet package, you can do this:
foreach (var (value, index) in collection.Select((v, i)=>(v, i))) {
Console.WriteLine(value + " is at index " + index);
}
You can use the regular foreach construct and be able to access the value and index directly, not as a member of an object, and keeps both fields only in the scope of the loop. For these reasons, I believe this is the best solution if you are able to use C# 7 and System.ValueTuple.
There's nothing wrong with using a counter variable. In fact, whether you use for, foreach while or do, a counter variable must somewhere be declared and incremented.
So use this idiom if you're not sure if you have a suitably-indexed collection:
var i = 0;
foreach (var e in collection) {
// Do stuff with 'e' and 'i'
i++;
}
Else use this one if you know that your indexable collection is O(1) for index access (which it will be for Array and probably for List<T> (the documentation doesn't say), but not necessarily for other types (such as LinkedList)):
// Hope the JIT compiler optimises read of the 'Count' property!
for (var i = 0; i < collection.Count; i++) {
var e = collection[i];
// Do stuff with 'e' and 'i'
}
It should never be necessary to 'manually' operate the IEnumerator by invoking MoveNext() and interrogating Current - foreach is saving you that particular bother ... if you need to skip items, just use a continue in the body of the loop.
And just for completeness, depending on what you were doing with your index (the above constructs offer plenty of flexibility), you might use Parallel LINQ:
// First, filter 'e' based on 'i',
// then apply an action to remaining 'e'
collection
.AsParallel()
.Where((e,i) => /* filter with e,i */)
.ForAll(e => { /* use e, but don't modify it */ });
// Using 'e' and 'i', produce a new collection,
// where each element incorporates 'i'
collection
.AsParallel()
.Select((e, i) => new MyWrapper(e, i));
We use AsParallel() above, because it's 2014 already, and we want to make good use of those multiple cores to speed things up. Further, for 'sequential' LINQ, you only get a ForEach() extension method on List<T> and Array ... and it's not clear that using it is any better than doing a simple foreach, since you are still running single-threaded for uglier syntax.
Using #FlySwat's answer, I came up with this solution:
//var list = new List<int> { 1, 2, 3, 4, 5, 6 }; // Your sample collection
var listEnumerator = list.GetEnumerator(); // Get enumerator
for (var i = 0; listEnumerator.MoveNext() == true; i++)
{
int currentItem = listEnumerator.Current; // Get current item.
//Console.WriteLine("At index {0}, item is {1}", i, currentItem); // Do as you wish with i and currentItem
}
You get the enumerator using GetEnumerator and then you loop using a for loop. However, the trick is to make the loop's condition listEnumerator.MoveNext() == true.
Since the MoveNext method of an enumerator returns true if there is a next element and it can be accessed, making that the loop condition makes the loop stop when we run out of elements to iterate over.
Just add your own index. Keep it simple.
int i = -1;
foreach (var item in Collection)
{
++i;
item.index = i;
}
You could wrap the original enumerator with another that does contain the index information.
foreach (var item in ForEachHelper.WithIndex(collection))
{
Console.Write("Index=" + item.Index);
Console.Write(";Value= " + item.Value);
Console.Write(";IsLast=" + item.IsLast);
Console.WriteLine();
}
Here is the code for the ForEachHelper class.
public static class ForEachHelper
{
public sealed class Item<T>
{
public int Index { get; set; }
public T Value { get; set; }
public bool IsLast { get; set; }
}
public static IEnumerable<Item<T>> WithIndex<T>(IEnumerable<T> enumerable)
{
Item<T> item = null;
foreach (T value in enumerable)
{
Item<T> next = new Item<T>();
next.Index = 0;
next.Value = value;
next.IsLast = false;
if (item != null)
{
next.Index = item.Index + 1;
yield return item;
}
item = next;
}
if (item != null)
{
item.IsLast = true;
yield return item;
}
}
}
Why foreach ?!
The simplest way is using for instead of foreach if you are using List:
for (int i = 0 ; i < myList.Count ; i++)
{
// Do something...
}
Or if you want use foreach:
foreach (string m in myList)
{
// Do something...
}
You can use this to know the index of each loop:
myList.indexOf(m)
Here's a solution I just came up with for this problem
Original code:
int index=0;
foreach (var item in enumerable)
{
blah(item, index); // some code that depends on the index
index++;
}
Updated code
enumerable.ForEach((item, index) => blah(item, index));
Extension Method:
public static IEnumerable<T> ForEach<T>(this IEnumerable<T> enumerable, Action<T, int> action)
{
var unit = new Unit(); // unit is a new type from the reactive framework (http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx) to represent a void, since in C# you can't return a void
enumerable.Select((item, i) =>
{
action(item, i);
return unit;
}).ToList();
return pSource;
}
C# 7 finally gives us an elegant way to do this:
static class Extensions
{
public static IEnumerable<(int, T)> Enumerate<T>(
this IEnumerable<T> input,
int start = 0
)
{
int i = start;
foreach (var t in input)
{
yield return (i++, t);
}
}
}
class Program
{
static void Main(string[] args)
{
var s = new string[]
{
"Alpha",
"Bravo",
"Charlie",
"Delta"
};
foreach (var (i, t) in s.Enumerate())
{
Console.WriteLine($"{i}: {t}");
}
}
}
This answer: lobby the C# language team for direct language support.
The leading answer states:
Obviously, the concept of an index is foreign to the concept of
enumeration, and cannot be done.
While this is true of the current C# language version (2020), this is not a conceptual CLR/Language limit, it can be done.
The Microsoft C# language development team could create a new C# language feature, by adding support for a new Interface IIndexedEnumerable
foreach (var item in collection with var index)
{
Console.WriteLine("Iteration {0} has value {1}", index, item);
}
//or, building on #user1414213562's answer
foreach (var (item, index) in collection)
{
Console.WriteLine("Iteration {0} has value {1}", index, item);
}
If foreach () is used and with var index is present, then the compiler expects the item collection to declare IIndexedEnumerable interface. If the interface is absent, the compiler can polyfill wrap the source with an IndexedEnumerable object, which adds in the code for tracking the index.
interface IIndexedEnumerable<T> : IEnumerable<T>
{
//Not index, because sometimes source IEnumerables are transient
public long IterationNumber { get; }
}
Later, the CLR can be updated to have internal index tracking, that is only used if with keyword is specified and the source doesn't directly implement IIndexedEnumerable
Why:
Foreach looks nicer, and in business applications, foreach loops are rarely a performance bottleneck
Foreach can be more efficient on memory. Having a pipeline of functions instead of converting to new collections at each step. Who cares if it uses a few more CPU cycles when there are fewer CPU cache faults and fewer garbage collections?
Requiring the coder to add index-tracking code, spoils the beauty
It's quite easy to implement (please Microsoft) and is backward compatible
While most people here are not Microsoft employees, this is a correct answer, you can lobby Microsoft to add such a feature. You could already build your own iterator with an extension function and use tuples, but Microsoft could sprinkle the syntactic sugar to avoid the extension function
It's only going to work for a List and not any IEnumerable, but in LINQ there's this:
IList<Object> collection = new List<Object> {
new Object(),
new Object(),
new Object(),
};
foreach (Object o in collection)
{
Console.WriteLine(collection.IndexOf(o));
}
Console.ReadLine();
#Jonathan I didn't say it was a great answer, I just said it was just showing it was possible to do what he asked :)
#Graphain I wouldn't expect it to be fast - I'm not entirely sure how it works, it could reiterate through the entire list each time to find a matching object, which would be a helluvalot of compares.
That said, List might keep an index of each object along with the count.
Jonathan seems to have a better idea, if he would elaborate?
It would be better to just keep a count of where you're up to in the foreach though, simpler, and more adaptable.
This is how I do it, which is nice for its simplicity/brevity, but if you're doing a lot in the loop body obj.Value, it is going to get old pretty fast.
foreach(var obj in collection.Select((item, index) => new { Index = index, Value = item }) {
string foo = string.Format("Something[{0}] = {1}", obj.Index, obj.Value);
...
}
int index;
foreach (Object o in collection)
{
index = collection.indexOf(o);
}
This would work for collections supporting IList.
// using foreach loop how to get index number:
foreach (var result in results.Select((value, index) => new { index, value }))
{
// do something
}
Better to use keyword continue safe construction like this
int i=-1;
foreach (Object o in collection)
{
++i;
//...
continue; //<--- safe to call, index will be increased
//...
}
You can write your loop like this:
var s = "ABCDEFG";
foreach (var item in s.GetEnumeratorWithIndex())
{
System.Console.WriteLine("Character: {0}, Position: {1}", item.Value, item.Index);
}
After adding the following struct and extension method.
The struct and extension method encapsulate Enumerable.Select functionality.
public struct ValueWithIndex<T>
{
public readonly T Value;
public readonly int Index;
public ValueWithIndex(T value, int index)
{
this.Value = value;
this.Index = index;
}
public static ValueWithIndex<T> Create(T value, int index)
{
return new ValueWithIndex<T>(value, index);
}
}
public static class ExtensionMethods
{
public static IEnumerable<ValueWithIndex<T>> GetEnumeratorWithIndex<T>(this IEnumerable<T> enumerable)
{
return enumerable.Select(ValueWithIndex<T>.Create);
}
}
If the collection is a list, you can use List.IndexOf, as in:
foreach (Object o in collection)
{
// ...
#collection.IndexOf(o)
}
This way you can use the index and value using LINQ:
ListValues.Select((x, i) => new { Value = x, Index = i }).ToList().ForEach(element =>
{
// element.Index
// element.Value
});
My solution for this problem is an extension method WithIndex(),
http://code.google.com/p/ub-dotnet-utilities/source/browse/trunk/Src/Utilities/Extensions/EnumerableExtensions.cs
Use it like
var list = new List<int> { 1, 2, 3, 4, 5, 6 };
var odd = list.WithIndex().Where(i => (i.Item & 1) == 1);
CollectionAssert.AreEqual(new[] { 0, 2, 4 }, odd.Select(i => i.Index));
CollectionAssert.AreEqual(new[] { 1, 3, 5 }, odd.Select(i => i.Item));
For interest, Phil Haack just wrote an example of this in the context of a Razor Templated Delegate (http://haacked.com/archive/2011/04/14/a-better-razor-foreach-loop.aspx)
Effectively he writes an extension method which wraps the iteration in an "IteratedItem" class (see below) allowing access to the index as well as the element during iteration.
public class IndexedItem<TModel> {
public IndexedItem(int index, TModel item) {
Index = index;
Item = item;
}
public int Index { get; private set; }
public TModel Item { get; private set; }
}
However, while this would be fine in a non-Razor environment if you are doing a single operation (i.e. one that could be provided as a lambda) it's not going to be a solid replacement of the for/foreach syntax in non-Razor contexts.
I don't think this should be quite efficient, but it works:
#foreach (var banner in Model.MainBanners) {
#Model.MainBanners.IndexOf(banner)
}
I built this in LINQPad:
var listOfNames = new List<string>(){"John","Steve","Anna","Chris"};
var listCount = listOfNames.Count;
var NamesWithCommas = string.Empty;
foreach (var element in listOfNames)
{
NamesWithCommas += element;
if(listOfNames.IndexOf(element) != listCount -1)
{
NamesWithCommas += ", ";
}
}
NamesWithCommas.Dump(); //LINQPad method to write to console.
You could also just use string.join:
var joinResult = string.Join(",", listOfNames);
I don't believe there is a way to get the value of the current iteration of a foreach loop. Counting yourself, seems to be the best way.
May I ask, why you would want to know?
It seems that you would most likley be doing one of three things:
1) Getting the object from the collection, but in this case you already have it.
2) Counting the objects for later post processing...the collections have a Count property that you could make use of.
3) Setting a property on the object based on its order in the loop...although you could easily be setting that when you added the object to the collection.
Unless your collection can return the index of the object via some method, the only way is to use a counter like in your example.
However, when working with indexes, the only reasonable answer to the problem is to use a for loop. Anything else introduces code complexity, not to mention time and space complexity.
I just had this problem, but thinking around the problem in my case gave the best solution, unrelated to the expected solution.
It could be quite a common case, basically, I'm reading from one source list and creating objects based on them in a destination list, however, I have to check whether the source items are valid first and want to return the row of any error. At first-glance, I want to get the index into the enumerator of the object at the Current property, however, as I am copying these elements, I implicitly know the current index anyway from the current destination. Obviously it depends on your destination object, but for me it was a List, and most likely it will implement ICollection.
i.e.
var destinationList = new List<someObject>();
foreach (var item in itemList)
{
var stringArray = item.Split(new char[] { ';', ',' }, StringSplitOptions.RemoveEmptyEntries);
if (stringArray.Length != 2)
{
//use the destinationList Count property to give us the index into the stringArray list
throw new Exception("Item at row " + (destinationList.Count + 1) + " has a problem.");
}
else
{
destinationList.Add(new someObject() { Prop1 = stringArray[0], Prop2 = stringArray[1]});
}
}
Not always applicable, but often enough to be worth mentioning, I think.
Anyway, the point being that sometimes there is a non-obvious solution already in the logic you have...

Categories