We have an ASP.NET 4.0 application that draws from a database a complex data structure that takes over 12 hours to push into an in memory data structure (that is later stored in HttpRuntime.Cache). The size of the data structure is quickly increasing and we can't continue waiting 12+ hours to get it into memory if the application restarts. This is a major issue if you want to change the web.config or any code in the web application that causes a restart - it means a long wait before the application can be used, and hinders development or updating the deployment.
The data structure MUST be in memory to work at a speed that makes the website usable. In memory databases such as memcache or Redis are slow in comparison to HttpRuntime.Cache, and would not work in our situation (in memory db's have to serialize put/get, plus they can't reference each other, they use keys which are lookups - degrading performance, plus with a large amount of keys the performance goes down quickly). Performance is a must here.
What we would like to do is quickly dump the HttpRuntime.Cache to disk before the application ends (on a restart), and be able to load it back immediately when the application starts again (hopefully within minutes instead of 12+ hours or days).
The in-memory structure is around 50GB.
Is there a solution to this?
In memory databases such as memcache or Redis are slow in comparison to HttpRuntime.Cache
Yes, but they are very fast compared to a 12+ hour spin-up. Personally, I think you're taking the wrong approach here in forcing load of a 50 GB structure. Just a suggestion, but we use HttpRuntime.Cache as part of a multi-tier caching strategy:
local cache is checked etc first
otherwise redis is used as the next tier of cache (which is faster than the underlying data, persistent, and supports a number of app servers) (then local cache is updated)
otherwise, the underlying database is hit (and then both redis and local cache are updated)
The point being, at load we don't require anything in memory - it is filled as it is needed, and from then on it is fast. We also use pub/sub (again courtesy of redis) to ensure cache invalidation is prompt. The net result: it is fast enough when cold, and very fast when warm.
Basically, I would look at anything that avoids needing the 50GB data before you can do anything.
If this data isn't really cache, but is your data, I would look at serialization on a proper object model. I would suggest protobuf-net (I'm biased as the author) as a strong candidate here - very fast and very small output.
Related
In my application I use a dictionary (supporting adding, removing, updating and lookup) where both keys and values are or can be made serializable (values can possibly be quite large object graphs). I came to a point when the dictionary became so large that holding it completely in memory started to occasionally trigger OutOfMemoryException (sometimes in the dictionary methods, and sometimes in other parts of code).
After an attempt to completely replace the dictionary with a database, performance dropped down to an unacceptable level.
Analysis of the dictionary usage patterns showed that usually a smaller part of values are "hot" (are accessed quite often), and the rest (a larger part) are "cold" (accessed rarely or never). It is difficult to say when a new value is added if it will be hot or cold, moreover, some values may migrate back and forth between hot and cold parts over time.
I think that I need an implementation of a dictionary that is able to flush its cold values to a disk on a low memory event, and then reload some of them on demand and keep them in memory until the next low memory event occurs when their hot/cold status will be re-assessed. Ideally, the implementation should neatly adjust the sizes of its hot and cold parts and the flush interval depending on the memory usage profile in the application to maximize overall performance. Because several instances of a dictionary exist in the application (with different key/value types), I think, they might need to coordinate their workflows.
Could you please suggest how to implement such a dictionary?
Compile for 64 bit, deploy on 64 bit, add memory. Keep it in memory.
Before you grown your own you may alternatively look at WeakReference http://msdn.microsoft.com/en-us/library/ms404247.aspx. It would of course require you to rebuild those objects that were reclaimed but one should hope that those which are reclaimed are not used much. It comes with the caveat that its own guidleines state to avoid using weak references as an automatic solution to memory management problems. Instead, develop an effective caching policy for handling your application's objects.
Of course you can ignore that guideline and effectively work your code to account for it.
You can implement the caching policy and upon expiry save to database, on fetch get and cache. Use a sliding expiry of course since you are concerned with keeping those most used.
Do remember however that most used vs heaviest is a trade off. Losing an object 10 times a day that takes 5 minutes to restore would annoy users much more than losing an object 10000 times which tool just 5ms to restore.
And someone above mentioned the web cache. It does automatic memory management with callbacks as noted, depends if you want to lug that one around in your apps.
And...last but not least, look at a distributed cache. With sharding you can split that big dictionary across a few machines.
Just an idea - never did that and never used System.Runtime.Caching:
Implement a wrapper around MemoryCache which will:
Add items with an eviction callback specified. The callback will place evicted items to the database.
Fetch item from database and put back into MemoryCache if the item is absent in MemoryCache during retrieval.
If you expect a lot of request for items missing both in database and memory, you'll probably need to implement either bloom filter or cache keys for present/missing items also.
I have a similar problem in the past.
The concept you are looking for is a read through cache with a LRU (Least Recently Used or Most Recently Used) queue.
Is it there any LRU implementation of IDictionary?
As you add things to your dictionary keep track of which ones where used least recently, remove them from memory and persist those to disk.
I have an application that monitors various systems in realtime. I got different reports with different fields depending on the monitored application. We are gathering data in 3 minute intervals. And these 3 minute intervals can be 120mb as raw json and 2-3mb as zipped or gzipped json. We are zipping then caching to the disk to avoid database requests by requesting those caches from disk, unzipping them and loading the json data to application. We are holding these caches for like 3 days to 30 days depending on the report type.
For years we have used disk caching. Zipping the 3 minute interval data and then saving it to disk. This led me to use a lot of locks and mutexes.
I know I'm not the only one with this kind of problem. My cache is big. My question is; Is there a better way to save this data and obtain it? Memory caching is not a solution for me because 30 days of data can't be on memory and I am not able to add memory to the server for this application. I need something else. Something better than disk and without the usage of locks.
P.S. : Application is also multi-threaded.
I would consider a NoSQL storage engine. I am thinking at Redis in particular. Redis is a in-memory, fast, key-value store with persistence, which should be a good fit for this kind of scenario. You can then defer most of the lock/consistency hassle to it.
A problem with Redis is if you are really bound to a Windows env. There is an "unofficial" port of redis; the port is done by Microsoft itself.. but I admit that I would not be extremely confident in using it in production.
As for a C# client/library, there is Booksleeve. This site (SO) uses it :) so I bet it is pretty stable!
Of course you will need to tailor Redis to your needs. Redis does offer persistence, and the persistence is configurable (see http://redis.io/topics/persistence). Also, it offers expiration of objects (http://redis.io/commands/expire), very handy for a cache-like mechanism, and the ability to build more complex, atomic commands starting from simpler ones.
I would use Redis to handle the in-memory cache, keeping all the (primary) keys in memory, with data both on disk and in-memory. The in-memory data associated with an volatile key. The primary key points to the in-memory key and to a file name; if the key it points at is invalid, you can re-load data and access it.
This is a complex solution, but it has two advantages:
it should be vary fast
it offloads some of the locks/etc burden to Redis
should be easy to migrate from your solution to this one
Alternatively, Redis also offers a VM solution
http://oldblog.antirez.com/post/redis-virtual-memory-story.html, but I do not know how stable it is, nor have I ever tried it.
Another alternative is to explore other NoSQL solutions; since you mentioned JSON data, I will look at MongoDB.
Finally, a crazy idea... are you on a 64-bit machine?
Have you considered "letting the OS handle it", with a really big page file and page-file-backed memory mapped files (or a standard file too)? Mind you, it might be a very BAD idea...! But it is something that maybe you could try out/research about?
I am trying to improve the performance of a Windows Service, developed in C# and .NET 2.0, that processes a great amount of files. I want to process more files per second.
In its process, for each file, the service does a database query to retrieve some parameters of the system.
Those parameters change annually, and I am thinking that I would gain some performance, if a loaded those parameters as a singleton and refreshed this singleton periodically. Instead of make a database query for each file being processed, I would get the parameters from memory.
To complete the scenario : I am using Windows Server 2008 R2 64 Bits, SQL Server 2008 is the database, C# and .NET 2.0 as already mentioned.
I am right in my approach? What would you do?
Thanks!
Those parameters change anually
Yes, do cache them in memory. Especially if they are large or complex.
You should take care to invalidate them at the right time once a year, depending how accurate that has to be.
Simply caching them for an hour or even for a few minutes might be a good compromise.
RAM memory data access is definitely faster that any other data access, except than cpu memories like registries and CPU cache
Chaching would be faster even if you change it every minute, so yes, caching that query is very faster
Crossing a network or going to disk is always orders of magnitude slower than in memory access.
Databases can cache data in memory so if you can achieve that and you're not crossing a network, the database might be faster since their data access patterns/indexes etc... may be faster than you're code. But, that's best case - if you need it faster, in memory caches help.
But, be aware that in memory caches can add complexity and bugs. You have to determine the lifetime of the cached data, how to refresh and the more complex it is, the more wierd edge case state bugs you will have. Even though they change annually, you have to handle that cusp.
I have some design issue,
Lets say you have an application that stores data into its cache during runtime, what do you think is the maximum amount of data (in mb) an application should cache before it must use DB.
Thanks.
How much memory do you have? How much can you afford to lose when the app or system crashes? How long can you afford the start up time to be when you restart and have to reload those caches? Typically, even with caches, you need to write through to the DB any way (or to something) to persist the data.
And if you eventually have "too much data" to fit in to memory, then you're now paging working sets from the DB to memory. You also have the cache synchronization issues if someone changes the DB behind your back.
All sorts of fun issues.
But, if you have the memory, go ahead and use it.
There's a reasonable chance that SQLServer is better at this than you are, and that you should cache approximately nothing.
Like Will says, though, if you're willing to pay in terms of lost data on a crash, you might increase responsiveness by not persisting until later. Anything you can do "for free", in the sense of giving up the guarantees you'd get by writing it to the DB immediately, the DB can in principle do for itself. SQL Server is quite aggressive about using almost all available free memory (and quite polite in reducing its memory usage when other apps need RAM). So any memory you use for caching, you're taking away from SQL Server's caches.
I am working on an application which has potential for a large memory load (>5gb) but has a requirement to run on 32bit and .NET 2 based desktops due to the customer deployment environment. My solution so far has been to use an app-wide data store for these large volume objects, when an object is assigned to the store, the store checks for the total memory usage by the app and if it is getting close to the limit it will start serialising some of the older objects in the store to the user's temp folder, retrieving them back into memory as and when they are needed. This is proving to be decidedly unreliable, as if other objects within the app start using memory, the store has no prompt to clear up and make space. I did look at using weak pointers to hold the in-memory data objects, with them being serialised to disk when they were released, however the objects seemed to be getting released almost immediately, especially in debug, causing a massive performance hit as the app was serialising everything.
Are there any useful patterns/paradigms I should be using to handle this? I have googled extensively but as yet haven't found anything useful.
I thought virtual memory was supposed to have you covered in this situation?
Anyways, it seems suspect that you really need all 5gb of data in memory at any given moment - you can't possibly be processing all that data at any given time - at least not on what sounds like a consumer PC. You didn't go into detail about your data, but something to me smells like the object itself is poorly designed in the sense that you need the entire set to be in memory to work with it. Have you thought about trying to fragment out your data into more sensible units - and then do some preemptive loading of the data from disk, just before it needs to be processed? You'd essentially be paying a more constant performance trade-off this way, but you'd reduce your current thrashing issue.
Maybe you go with Managing Memory-Mapped Files and look here. In .NET 2.0 you have to use PInvoke to that functions. Since .NET 4.0 you have efficient built-in functionality with MemoryMappedFile.
Also take a look at:
http://msdn.microsoft.com/en-us/library/dd997372.aspx
You can't store 5GB data in-memory efficiently. You have 2 GB limit per process in 32-bit OS and 4 GB limit per 32-bit process in 64-bit Windows-on-Windows
So you have choice:
Go in Google's Chrome way (and FireFox 4) and maintain potions of data between processes. It may be applicable if your application started under 64-bit OS and you have some reasons to keep your app 32-bit. But this is not so easy way. If you don't have 64-bit OS I wonder where you get >5GB RAM?
If you have 32-bit OS when any solution will be file-based. When you try to keep data in memory (thru I wonder how you address them in memory under 32-bit and 2 GB per process limit) OS just continuously swap portions of data (memory pages) to disk and restores them again and again when you access it. You incur great performance penalty and you already noticed it (I guessed from description of your problem). The main problem OS can't predict when you need one data and when you want another. So it just trying to do best by reading and writing memory pages on/from disk.
So you already use disk storage indirecltly in inefficient way, MMFs just give you same solution in efficient and controlled manner.
You can rearchitecture your application to use MMFs and OS will help you in efficient caching. Do the quick test by yourself MMF maybe good enough for your needs.
Anyway I don't see any other solution to work with dataset greater than available RAM other than file-based. And usually better to have direct control on data manipulation especially when such amount of data came and needs to be processed.
When you have to store huge loads of data and mantain accessibility, sometimes the most useful solution is to use data store and management system like database. Database (MySQL for example) can store a lots of typical data types and of course binary data too. Maybe you can store your object to database (directly or by programming business object model) and get it when you need to. This solution sometimes can solve many problems with data managing (moving, backup, searching, updating...), and storage (data layer) - and it's location independent - mayby this point of view can help you.