How does the Maybe monad act as a short circuit? - c#

I'm trying to get a deeper understanding of Monads. Therefore I started digging a little into the Maybe Monad.
There is one thing that I just don't seem to get right. Read this:
"So the Maybe Bind acts a short circuit. In any chain of operations, if any one of them returns Nothing, the evaluation will cease and Nothing will be returned from the entire chain."
From: http://mikehadlow.blogspot.com/2011/01/monads-in-c-5-maybe.html
And this:
"For the Maybe<T> type, binding is implemented according to as simple rule: if chain returns an empty value at some point, further steps in the chain are ignored and an empty value is returend instead"
From: "Functional Programming in C#" http://www.amazon.com/Functional-Programming-Techniques-Projects-Programmer/dp/0470744588/
Ok, let's look at the code. Here is my Maybe Monad:
public class Maybe<T>
{
public static readonly Maybe<T> Empty = new Maybe<T>();
public Maybe(T value)
{
Value = value;
}
private Maybe()
{
}
public bool HasValue()
{
return !EqualityComparer<T>.Default.Equals(Value, default(T));
}
public T Value { get; private set; }
public Maybe<R> Bind<R>(Func<T, Maybe<R>> apply)
{
return HasValue() ? apply(Value) : Maybe<R>.Empty;
}
}
public static class MaybeExtensions
{
public static Maybe<T> ToMaybe<T>(this T value)
{
return new Maybe<T>(value);
}
}
And here is my example code using the monad:
class Program
{
static void Main(string[] args)
{
var node = new Node("1", new Node("2", new Node("3", new Node("4", null))));
var childNode = node.ChildNode
.ToMaybe()
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x => x.ChildNode.ToMaybe());
Console.WriteLine(childNode.HasValue() ? childNode.Value.Value : "");
Console.ReadLine();
}
}
public class Node
{
public Node(string value, Node childNode)
{
Value = value;
ChildNode = childNode;
}
public string Value { get; set; }
public Node ChildNode { get; private set; }
}
It's clear to see that we are trying to dig deeper into the node tree than possible. However, I fail to see how it is acting according to the quotes I mentioned. I mean, of course I have factored out the null checks and the example works. However, it doesn't break the chain early. If you set breakpoints you will see that every Bind() operation will be used thus without a value for the last operations. But it means, if I dig 20 level deep and it actually only goes down 3 levels I still will check 20 levels or am I wrong?
Compare this to the non-monad approach:
if (node.ChildNode != null
&& node.ChildNode.ChildNode != null
&& node.ChildNode.ChildNode.ChildNode != null)
{
Console.WriteLine(node.ChildNode.ChildNode.ChildNode.Value);
}
Isn't this actually what should be called a short circuit? Because in this case the if really breaks at the level where the first value is null.
Can anybody help me to get this clear?
UPDATE
As Patrik pointed out, yes it is true each bind will be invoked even if we only have 3 levels and try to go 20 levels deep. However, the actual expression provided to the Bind() call won't be evaluated. We can edit the example to make the effect clear:
var childNode = node.ChildNode
.ToMaybe()
.Bind(x =>
{
Console.WriteLine("We will see this");
return x.ChildNode.ToMaybe();
})
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x => x.ChildNode.ToMaybe())
.Bind(x =>
{
Console.WriteLine("We won't see this");
return x.ChildNode.ToMaybe();
});

I have an implementation of the maybe monad in c# that differs a little from yours, first of all it's not tied to null checks, I believe my implementation more closesly resembles what happens in a standard maybe implementation in for example Haskel.
My implementation:
public abstract class Maybe<T>
{
public static readonly Maybe<T> Nothing = new NothingMaybe();
public static Maybe<T> Just(T value)
{
return new JustMaybe(value);
}
public abstract Maybe<T2> Bind<T2>(Func<T, Maybe<T2>> binder);
private class JustMaybe
: Maybe<T>
{
readonly T value;
public JustMaybe(T value)
{
this.value = value;
}
public override Maybe<T2> Bind<T2>(Func<T, Maybe<T2>> binder)
{
return binder(this.value);
}
}
private class NothingMaybe
: Maybe<T>
{
public override Maybe<T2> Bind<T2>(Func<T, Maybe<T2>> binder)
{
return Maybe<T2>.Nothing;
}
}
}
As you see here the bind function of the NothingMaybe just returns a new nothing so passed in binder expression is never evaluated. It's short circuiting in the sense that no more binder expressions will be evaluated once you got into the "nothing state", however the Bind-function itself will be invoked for each monad in the chain.
This implementation of maybe could be used for any type of "uncertain operation", for example a null check or checking for an empty string, this way all those different types of operations can be chained together:
public static class Maybe
{
public static Maybe<T> NotNull<T>(T value) where T : class
{
return value != null ? Maybe<T>.Just(value) : Maybe<T>.Nothing;
}
public static Maybe<string> NotEmpty(string value)
{
return value.Length != 0 ? Maybe<string>.Just(value) : Maybe<string>.Nothing;
}
}
string foo = "whatever";
Maybe.NotNull(foo).Bind(x => Maybe.NotEmpty(x)).Bind(x => { Console.WriteLine(x); return Maybe<string>.Just(x); });
This would print "whatever" to the console, however if the value was null or empty it would do nothing.

As I understand it, all Bind methods will be invoked, but the provided expressions will be evaluated only if the previous one returns a value. This means that Bind methods that are invoked after one that returns null (or more correctly: default(T)) will be very cheap.

We can do this more cunningly.
Write interface derived from IEnumerable
public interface IOptional<T>: IEnumerable<T> {}
This will save compatibility with LINQ methods
public class Maybe<T>: IOptional<T>
{
private readonly IEnumerable<T> _element;
public Maybe(T element)
: this(new T[1] { element })
{}
public Maybe()
: this(new T[0])
{}
private Maybe(T[] element)
{
_element = element;
}
public IEnumerator<T> GetEnumerator()
{
return _element.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
After this we can use full power of LINQ and do like this
var node = new Node("1", new Node("2", new Node("3", new Node("4", null))));
var childNode =
new Some<Node>(node.ChildNode)
.SelectMany(n => new Maybe<Node>(n.ChildNode))
.SelectMany(n => new Maybe<Node>(n.ChildNode))
.SelectMany(n => new Maybe<Node>(n.ChildNode))
.SelectMany(n => new Maybe<Node>(n.ChildNode))
.SelectMany(n => new Maybe<Node>(n.ChildNode));
Console.WriteLine(childNode.Any() ? childNode.First().Value : "");

Related

Any easy way to see which IF condition is false?

I'm posting this question to find a simpler way of achieving a result.
We have a big IF statement that checks for NULL or string.empty. Something like this:
if (string.IsNullOrEmpty(Empl.Name) || string.IsNullOrEmpty(Empl.last) ||
string.IsNullOrEmpty(Empl.init) || string.IsNullOrEmpty(Empl.cat1) ||
string.IsNullOrEmpty(Empl.history) || string.IsNullOrEmpty(Empl.cat2) ||
string.IsNullOrEmpty(Empl.year) || string.IsNullOrEmpty(Empl.month) ||
string.IsNullOrEmpty(Empl.retire) || string.IsNullOrEmpty(Empl.spouse) ||
string.IsNullOrEmpty(Empl.children) || string.IsNullOrEmpty(Empl.bday) ||
string.IsNullOrEmpty(Empl.hire)|| string.IsNullOrEmpty(Empl.death) ||
string.IsNullOrEmpty(Empl.JobName) || string.IsNullOrEmpty(Empl.More) ||
string.IsNullOrEmpty(Empl.AndMore))
{
//Display message. Something like "Error: Name and Month is missing"
return;
}
Any solution I've found so far to address this is time-consuming, and would require writing more code.
Is there any way to know which value is string.IsNullOrEmpty without having to change this IF statement too much? Worse-case, I can check every single statement separately, but I would prefer not doing this.
Thanks.
No, there's no "magic" function that will tell you which of a series of expression in an OR statement are true. Also, since you're using the short-circuiting version, the statement will return true after the first true condition, so the remaining expressions are not even evaluated.
However, you could do something like this:
bool[] checks = {
string.IsNullOrEmpty(Empl.Name) , string.IsNullOrEmpty(Empl.last) ,
string.IsNullOrEmpty(Empl.init) , string.IsNullOrEmpty(Empl.cat1) ,
string.IsNullOrEmpty(Empl.history) , string.IsNullOrEmpty(Empl.cat2) ,
string.IsNullOrEmpty(Empl.year) , string.IsNullOrEmpty(Empl.month) ,
string.IsNullOrEmpty(Empl.retire) , string.IsNullOrEmpty(Empl.spouse) ,
string.IsNullOrEmpty(Empl.children) , string.IsNullOrEmpty(Empl.bday) ,
string.IsNullOrEmpty(Empl.hire) , string.IsNullOrEmpty(Empl.death) ,
string.IsNullOrEmpty(Empl.JobName) , string.IsNullOrEmpty(Empl.More) ,
string.IsNullOrEmpty(Empl.AndMore)
};
if(checks.Any())
{
//Display message. Something like "Error: Name and Month is missing"
return;
}
now the checks variable holds the result of each expression.
I find this sort of an more elegant way to use ModelState.isValid.
Some reference: What is ModelState.IsValid valid for in ASP.NET MVC in NerdDinner?
For your model, you can add following annotation:
[Required(AllowEmptyStrings= false)]
public string Boo { get; set; }
When you do validation, try:
if (!ModelState.IsValid)
{
//Display message. Something like "Error: Name and Month is missing"
return;
}
Yes, write your own string extension method that does the same check, but also takes in a List and add the field name to the list. Declare the list of strings before the if and you will have a list of offending fields where your comment is.
This can be improved upon with a bit of reflection to automatically get the name and maybe make a few optimizations but it is on the right track.
Keep in mind that the first condition that violates the if statement will cause it to fail, so you will get an incomplete list (of one item) unless your if is constructed differently.
public static class StringExtensions
{
public static bool CheckIsNullOrEmptyAndListIt(this string field, string fieldName, List<string> naughties)
{
var result = String.IsNullOrEmpty(field);
if (result == true)
{
naughties.Add(fieldName);
}
return result;
}
}
}
using System.IO;
using System;
using System.Linq;
public class Program
{
public class Dog
{
public static string Name {get;set;}
public static string Race {get;set;}
}
public static bool validate(Dog dog)
{
bool val = true;
var y = dog.GetType()
.GetProperties()
.Select(p =>
{
object value =p.GetValue(dog,null);
if(string.IsNullOrEmpty(value.ToString())){ val=false; return false;}
else return true;
})
.ToArray();
return val;
}
public static void Main()
{
Dog dog= new Dog();
Dog.Name = "Peter";
Dog.Race = "";
if(validate(dog))
{
Console.WriteLine("Hello, World!");
}
}
}
You can use something like this :
public static class ValidationHelper
{
public static IEnumerable<string> FindEmptyProperties<T>(T target, params Expression<Func<T, string>>[] propertySelectors)
{
foreach (var propertySelector in propertySelectors)
{
if (string.IsNullOrEmpty(propertySelector.Compile()(target)))
{
var memberExpr = propertySelector.Body as MemberExpression;
yield return memberExpr.Member.Name;
}
}
}
}
Usage :
var failed = ValidationHelper.FindEmptyProperties(Empl, x => x.Name, x => x.last, x => x.init, x => x.cat1).ToList();
if (failed.Any())
{
throw new InvalidOperationException(
string.Format("Error: {0} is missing",
string.Join(", ", failed)));
}
If you use ASP.NET MVC maybe use DataAnnotations...
For the general c# context consider PostSharp aspect oriented library! Geat project!
Otherwise: Maybe a reflection solution using plain .NET ? (Created just for you! I think i keep for some own projects maybe)
Works with different types and you can control the targeted bindingflags.
Provides a common base class for your data transfer objects. (dto)
Reflection is performance optimized and working for generics as well!
public class Program
{
public void Main()
{
Empl test = new Empl()
{
TestProp = "blub",
TestInt = 1
};
if (test.ValidateProperties(Validations.CheckEmptyStringsAndZeroInts))
{
Console.WriteLine("validation passed");
}
else
{
Console.WriteLine("validation failed");
}
}
}
private static class Validations
{
//put this in a static class with standard checks
public static Func<object, bool> CheckEmptyStringsAndZeroInts = o =>
{
if (o is string && string.IsNullOrEmpty((string)o))
{
return false;
}
else if (o is int && ((int) o) == 0)
{
return false;
}
// ignore other property types
return true;
};
}
// Derive all your models like this. deriving from an Empl class is still valid and working!
//[IncludeBindingFlagsForPropertyReflctionAttribute(/*your custom binding flags*/)] //can also override the binding flags in derived classes!
public class Empl : DtoBase<Empl>
{
public string TestProp { get; set; }
public int TestInt { get; set; }
// Your properties here
}
// Helps you to control the targeted properties. you can filter for public or protected members for example
public class IncludeBindingFlagsForPropertyReflctionAttribute : Attribute
{
public BindingFlags BindingFlags { get; }
public IncludeBindingFlagsForPropertyReflctionAttribute(BindingFlags propertySearchBindingFlags)
{
BindingFlags = propertySearchBindingFlags;
}
}
//Looks much. But used once as base class can do those validations for you
[IncludeBindingFlagsForPropertyReflction(BindingFlags.Public | BindingFlags.Instance)]
public abstract class DtoBase<TDto> where TDto : DtoBase<TDto>
{
private static Dictionary<Type, List<PropertyInfo>> DtoPropertyInfosStorage { get; }
private List<PropertyInfo> DtoPropertyInfos => DtoPropertyInfosStorage[typeof (TDto)];
static DtoBase()
{
DtoPropertyInfosStorage = new Dictionary<Type, List<PropertyInfo>>();
Type tDto = typeof (TDto);
var includeBindingFlagsForProperty = GetAttribute(tDto);
BindingFlags defaultTargetFlags = BindingFlags.Instance | BindingFlags.Public;
DtoPropertyInfosStorage.Add(typeof(TDto), new List<PropertyInfo>(typeof(TDto).GetProperties(includeBindingFlagsForProperty?.BindingFlags ?? defaultTargetFlags)));
}
private static IncludeBindingFlagsForPropertyReflctionAttribute GetAttribute(Type dtoType)
{
bool stopRecursion = !dtoType.IsSubclassOf(typeof(DtoBase<TDto>));
var includeBindingFlagsForProperty = dtoType.GetCustomAttributes(typeof(IncludeBindingFlagsForPropertyReflctionAttribute)).FirstOrDefault();
if (includeBindingFlagsForProperty == null && !stopRecursion)
{
return GetAttribute(dtoType.BaseType);
}
return null;
}
/// <summary>
/// You can handle your validation type in you validation function yourself.
/// </summary>
public bool ValidateProperties(Func<object, bool> validationFunction)
{
foreach (KeyValuePair<Type, List<PropertyInfo>> dtoPropertyInfo in DtoPropertyInfosStorage)
{
foreach (PropertyInfo propertyInfo in DtoPropertyInfos)
{
if (!validationFunction(propertyInfo.))
{
return false;
}
}
}
return true;
}
/// <summary>
/// You can pass your targeted property type like string to TPropertyType
/// <![CDATA[ Example:
/// if(ValidateProperties<string>(validate => !string.IsNullOrEmpty(validate)))
/// {
/// properties not empty?
/// }
/// ]]]]>
/// </summary>
public bool ValidateProperties<TPropertyType>(Func<TPropertyType, bool> validationFunction)
{
List<PropertyInfo> targetPropertyInfos =
DtoPropertyInfos.Where(prop => prop.PropertyType == typeof (TPropertyType))
.ToList();
foreach (PropertyInfo dtoPropertyInfo in targetPropertyInfos)
{
if (validationFunction((TPropertyType) dtoPropertyInfo.GetValue(this)))
{
return false;
}
}
return true;
}
}

Instantiating Immutable Objects With Reflection

I created a base class to help me reduce boilerplate code of the initialization of the immutable Objects in C#,
I'm using lazy initialization in order to try not to impact performance a lot ,
I was wondering how much am I affecting the performance by doing this?
This is my base class:
public class ImmutableObject<T>
{
private readonly Func<IEnumerable<KeyValuePair<string, object>>> initContainer;
protected ImmutableObject() {}
protected ImmutableObject(IEnumerable<KeyValuePair<string,object>> properties)
{
var fields = GetType().GetFields().Where(f=> f.IsPublic);
var fieldsAndValues =
from fieldInfo in fields
join keyValuePair in properties on fieldInfo.Name.ToLower() equals keyValuePair.Key.ToLower()
select new {fieldInfo, keyValuePair.Value};
fieldsAndValues.ToList().ForEach(fv=> fv.fieldInfo.SetValue(this,fv.Value));
}
protected ImmutableObject(Func<IEnumerable<KeyValuePair<string,object>>> init)
{
initContainer = init;
}
protected T setProperty(string propertyName, object propertyValue, bool lazy = true)
{
Func<IEnumerable<KeyValuePair<string, object>>> mergeFunc = delegate
{
var propertyDict = initContainer == null ? ObjectToDictonary () : initContainer();
return propertyDict.Select(p => p.Key == propertyName? new KeyValuePair<string, object>(propertyName, propertyValue) : p).ToList();
};
var containerConstructor = typeof(T).GetConstructors()
.First( ce => ce.GetParameters().Count() == 1 && ce.GetParameters()[0].ParameterType.Name == "Func`1");
return (T) (lazy ? containerConstructor.Invoke(new[] {mergeFunc}) : DictonaryToObject<T>(mergeFunc()));
}
private IEnumerable<KeyValuePair<string,object>> ObjectToDictonary()
{
var fields = GetType().GetFields().Where(f=> f.IsPublic);
return fields.Select(f=> new KeyValuePair<string,object>(f.Name, f.GetValue(this))).ToList();
}
private static object DictonaryToObject<T>(IEnumerable<KeyValuePair<string,object>> objectProperties)
{
var mainConstructor = typeof (T).GetConstructors()
.First(c => c.GetParameters().Count()== 1 && c.GetParameters().Any(p => p.ParameterType.Name == "IEnumerable`1") );
return mainConstructor.Invoke(new[]{objectProperties});
}
public T ToObject()
{
var properties = initContainer == null ? ObjectToDictonary() : initContainer();
return (T) DictonaryToObject<T>(properties);
}
}
Can be implemented like so:
public class State:ImmutableObject<State>
{
public State(){}
public State(IEnumerable<KeyValuePair<string,object>> properties):base(properties) {}
public State(Func<IEnumerable<KeyValuePair<string, object>>> func):base(func) {}
public readonly int SomeInt;
public State someInt(int someInt)
{
return setProperty("SomeInt", someInt);
}
public readonly string SomeString;
public State someString(string someString)
{
return setProperty("SomeString", someString);
}
}
and can be used like this:
//creating new empty object
var state = new State();
// Set fields, will return an empty object with the "chained methods".
var s2 = state.someInt(3).someString("a string");
// Resolves all the "chained methods" and initialize the object setting all the fields by reflection.
var s3 = s2.ToObject();
As was already mentioned in the comments, it would make more sense, not to "conflate" the immutable instance implementation or interface with the behavior of what is essentially a builder for new instances.
You could make a much cleaner and quite type safe solution that way. So we could define some marker interfaces and type safe versions thereof:
public interface IImmutable : ICloneable { }
public interface IImmutableBuilder { }
public interface IImmutableOf<T> : IImmutable where T : class, IImmutable
{
IImmutableBuilderFor<T> Mutate();
}
public interface IImmutableBuilderFor<T> : IImmutableBuilder where T : class, IImmutable
{
T Source { get; }
IImmutableBuilderFor<T> Set<TFieldType>(string fieldName, TFieldType value);
IImmutableBuilderFor<T> Set<TFieldType>(string fieldName, Func<T, TFieldType> valueProvider);
IImmutableBuilderFor<T> Set<TFieldType>(Expression<Func<T, TFieldType>> fieldExpression, TFieldType value);
IImmutableBuilderFor<T> Set<TFieldType>(Expression<Func<T, TFieldType>> fieldExpression, Func<TFieldType, TFieldType> valueProvider);
T Build();
}
And provide all the required basic builder behavior in a class like below. Note that most error checking/compiled delegate creation is omitted for the sake of brevity/simplicity. A cleaner, performance optimized version with a reasonable level of error checking can be found in this gist.
public class DefaultBuilderFor<T> : IImmutableBuilderFor<T> where T : class, IImmutableOf<T>
{
private static readonly IDictionary<string, Tuple<Type, Action<T, object>>> _setters;
private List<Action<T>> _mutations = new List<Action<T>>();
static DefaultBuilderFor()
{
_setters = GetFieldSetters();
}
public DefaultBuilderFor(T instance)
{
Source = instance;
}
public T Source { get; private set; }
public IImmutableBuilderFor<T> Set<TFieldType>(string fieldName, TFieldType value)
{
// Notes: error checking omitted & add what to do if `TFieldType` is not "correct".
_mutations.Add(inst => _setters[fieldName].Item2(inst, value));
return this;
}
public IImmutableBuilderFor<T> Set<TFieldType>(string fieldName, Func<T, TFieldType> valueProvider)
{
// Notes: error checking omitted & add what to do if `TFieldType` is not "correct".
_mutations.Add(inst => _setters[fieldName].Item2(inst, valueProvider(inst)));
return this;
}
public IImmutableBuilderFor<T> Set<TFieldType>(Expression<Func<T, TFieldType>> fieldExpression, TFieldType value)
{
// Error checking omitted.
var memberExpression = fieldExpression.Body as MemberExpression;
return Set<TFieldType>(memberExpression.Member.Name, value);
}
public IImmutableBuilderFor<T> Set<TFieldType>(Expression<Func<T, TFieldType>> fieldExpression, Func<TFieldType, TFieldType> valueProvider)
{
// Error checking omitted.
var memberExpression = fieldExpression.Body as MemberExpression;
var getter = fieldExpression.Compile();
return Set<TFieldType>(memberExpression.Member.Name, inst => valueProvider(getter(inst)));
}
public T Build()
{
var result = (T)Source.Clone();
_mutations.ForEach(x => x(result));
return result;
}
private static IDictionary<string, Tuple<Type, Action<T, object>>> GetFieldSetters()
{
// Note: can be optimized using delegate setter creation (IL).
return typeof(T).GetFields(BindingFlags.Public | BindingFlags.Instance)
.Where(x => !x.IsLiteral)
.ToDictionary(
x => x.Name,
x => SetterEntry(x.FieldType, (inst, val) => x.SetValue(inst, val)));
}
private static Tuple<Type, Action<T, object>> SetterEntry(Type type, Action<T, object> setter)
{
return Tuple.Create(type, setter);
}
}
Example usage
This could then be used like this, using your example class of State:
public static class Example
{
public class State : IImmutableOf<State>
{
public State(int someInt, string someString)
{
SomeInt = someInt;
SomeString = someString;
}
public readonly int SomeInt;
public readonly string SomeString;
public IImmutableBuilderFor<State> Mutate()
{
return new DefaultBuilderFor<State>(this);
}
public object Clone()
{
return base.MemberwiseClone();
}
public override string ToString()
{
return string.Format("{0}, {1}", SomeInt, SomeString);
}
}
public static void Run()
{
var original = new State(10, "initial");
var mutatedInstance = original.Mutate()
.Set("SomeInt", 45)
.Set(x => x.SomeString, "Hello SO")
.Build();
Console.WriteLine(mutatedInstance);
mutatedInstance = original.Mutate()
.Set(x => x.SomeInt, val => val + 10)
.Build();
Console.WriteLine(mutatedInstance);
}
}
With the following output:
45, Hello SO
20, initial
Well to answer your question about performance, reflection is very expensive (relatively speaking). I would not use your design if it's in performance critical code.
When it comes to generics and reflection the performance hit can often be surprisingly large. Consider even something as simple as this:
public class Builder<T> where T : new()
{
public T Build()
{
return new T();
}
}
What this is actually doing is calling Activator.CreateInstance which uses reflection and it's extremely expensive.
If I wanted to optimize code like the above case I would use dynamic methods. And the performance difference between the two would be drastic.
Of course, keep in mind we're entering the zone of advanced code that's more complex and harder to read for the sake of performance. You could consider this overly optimized and overkill in code that isn't performance critical.
But in code that I write I avoid reflection like the plague.
My favourite way to things like that is to use expression trees. You can manually construct your expression tree to just create a new instance of your type and compile this expression tree into a delegate. The beauty of this approach is that you only need reflection and dynamic code generation for once and afterwards you work with the generated delegate. Also, the expression compiler does its best to work even on partial trusted environments, where dynamic methods are problematic. On the other hand, you have an abstraction layer much higher than writing pure IL code in an ILGenerator, which would be the way to go in a dynamic method.

Checking if a typed object array is not empty

I have a Item[] _items array of items, where some of the items may be null. I wish to check if the array contains at least one non-null item.
My current implementations seems a little complicated:
internal bool IsEmtpy { get { return (!(this.NotEmpty)); } }
private bool IsNotEmpty { get { return ( this.Items.Any(t => t != null));} }
So my question is: Is there a simpler way to check if a typed array of reference objects contains at least one non null object?
There is no complexity in your implementation. Basically, the only way to check whether there are non-null values in the array is to look through all values until you will reach non-null value or the end of the array.
The following code is easier to understand though:
internal bool IsEmtpy { get { return this.Items.All(t => t == null); } }
private bool IsNotEmpty { get { return this.Items.Any(t => t != null); } }
And it is probably better to extend IEnumerable as follows:
public static class Extensions {
public static bool ContainsOnlyEmpty<TSource>(this IEnumerable<TSource> source) {
return source.All(t => t == null);
}
public static bool ContainsNonEmpty<TSource>(this IEnumerable<TSource> source) {
return source.Any(t => t != null);
}
}
and use it like this: bool nonEmpty = this.Items.ContainsNonEmpty();

Simulate variadic templates in C#

Is there a well-known way for simulating the variadic template feature in C#?
For instance, I'd like to write a method that takes a lambda with an arbitrary set of parameters. Here is in pseudo code what I'd like to have:
void MyMethod<T1,T2,...,TReturn>(Fun<T1,T2, ..., TReturn> f)
{
}
C# generics are not the same as C++ templates. C++ templates are expanded compiletime and can be used recursively with variadic template arguments. The C++ template expansion is actually Turing Complete, so there is no theoretically limit to what can be done in templates.
C# generics are compiled directly, with an empty "placeholder" for the type that will be used at runtime.
To accept a lambda taking any number of arguments you would either have to generate a lot of overloads (through a code generator) or accept a LambdaExpression.
There is no varadic support for generic type arguments (on either methods or types). You will have to add lots of overloads.
varadic support is only available for arrays, via params, i.e.
void Foo(string key, params int[] values) {...}
Improtantly - how would you even refer to those various T* to write a generic method? Perhaps your best option is to take a Type[] or similar (depending on the context).
I know this is an old question, but if all you want to do is something simple like print those types out, you can do this very easily without Tuple or anything extra using 'dynamic':
private static void PrintTypes(params dynamic[] args)
{
foreach (var arg in args)
{
Console.WriteLine(arg.GetType());
}
}
static void Main(string[] args)
{
PrintTypes(1,1.0,"hello");
Console.ReadKey();
}
Will print "System.Int32" , "System.Double", "System.String"
If you want to perform some action on these things, as far as I know you have two choices. One is to trust the programmer that these types can do a compatible action, for example if you wanted to make a method to Sum any number of parameters. You could write a method like the following saying how you want to receive the result and the only prerequisite I guess would be that the + operation works between these types:
private static void AddToFirst<T>(ref T first, params dynamic[] args)
{
foreach (var arg in args)
{
first += arg;
}
}
static void Main(string[] args)
{
int x = 0;
AddToFirst(ref x,1,1.5,2.0,3.5,2);
Console.WriteLine(x);
double y = 0;
AddToFirst(ref y, 1, 1.5, 2.0, 3.5, 2);
Console.WriteLine(y);
Console.ReadKey();
}
With this, the output for the first line would be "9" because adding to an int, and the second line would be "10" because the .5s didn't get rounded, adding as a double. The problem with this code is if you pass some incompatible type in the list, it will have an error because the types can't get added together, and you won't see that error at compile time, only at runtime.
So, depending on your use case there might be another option which is why I said there were two choices at first. Assuming you know the choices for the possible types, you could make an interface or abstract class and make all of those types implement the interface. For example, the following. Sorry this is a bit crazy. And it can probably be simplfied.
public interface Applyable<T>
{
void Apply(T input);
T GetValue();
}
public abstract class Convertable<T>
{
public dynamic value { get; set; }
public Convertable(dynamic value)
{
this.value = value;
}
public abstract T GetConvertedValue();
}
public class IntableInt : Convertable<int>, Applyable<int>
{
public IntableInt(int value) : base(value) {}
public override int GetConvertedValue()
{
return value;
}
public void Apply(int input)
{
value += input;
}
public int GetValue()
{
return value;
}
}
public class IntableDouble : Convertable<int>
{
public IntableDouble(double value) : base(value) {}
public override int GetConvertedValue()
{
return (int) value;
}
}
public class IntableString : Convertable<int>
{
public IntableString(string value) : base(value) {}
public override int GetConvertedValue()
{
// If it can't be parsed return zero
int result;
return int.TryParse(value, out result) ? result : 0;
}
}
private static void ApplyToFirst<TResult>(ref Applyable<TResult> first, params Convertable<TResult>[] args)
{
foreach (var arg in args)
{
first.Apply(arg.GetConvertedValue());
}
}
static void Main(string[] args)
{
Applyable<int> result = new IntableInt(0);
IntableInt myInt = new IntableInt(1);
IntableDouble myDouble1 = new IntableDouble(1.5);
IntableDouble myDouble2 = new IntableDouble(2.0);
IntableDouble myDouble3 = new IntableDouble(3.5);
IntableString myString = new IntableString("2");
ApplyToFirst(ref result, myInt, myDouble1, myDouble2, myDouble3, myString);
Console.WriteLine(result.GetValue());
Console.ReadKey();
}
Will output "9" the same as the original Int code, except the only values you can actually pass in as parameters are things that you actually have defined and you know will work and not cause any errors. Of course, you would have to make new classes i.e. DoubleableInt , DoubleableString, etc.. in order to re-create the 2nd result of 10. But this is just an example, so you wouldn't even be trying to add things at all depending on what code you are writing and you would just start out with the implementation that served you the best.
Hopefully someone can improve on what I wrote here or use it to see how this can be done in C#.
Another alternative besides those mentioned above is to use Tuple<,> and reflection, for example:
class PrintVariadic<T>
{
public T Value { get; set; }
public void Print()
{
InnerPrint(Value);
}
static void InnerPrint<Tn>(Tn t)
{
var type = t.GetType();
if (type.IsGenericType && type.GetGenericTypeDefinition() == typeof(Tuple<,>))
{
var i1 = type.GetProperty("Item1").GetValue(t, new object[]{});
var i2 = type.GetProperty("Item2").GetValue(t, new object[]{ });
InnerPrint(i1);
InnerPrint(i2);
return;
}
Console.WriteLine(t.GetType());
}
}
class Program
{
static void Main(string[] args)
{
var v = new PrintVariadic<Tuple<
int, Tuple<
string, Tuple<
double,
long>>>>();
v.Value = Tuple.Create(
1, Tuple.Create(
"s", Tuple.Create(
4.0,
4L)));
v.Print();
Console.ReadKey();
}
}
I don't necessarily know if there's a name for this pattern, but I arrived at the following formulation for a recursive generic interface that allows an unlimited amount of values to be passed in, with the returned type retaining type information for all passed values.
public interface ITraversalRoot<TRoot>
{
ITraversalSpecification<TRoot> Specify();
}
public interface ITraverser<TRoot, TCurrent>: ITraversalRoot<TRoot>
{
IDerivedTraverser<TRoot, TInclude, TCurrent, ITraverser<TRoot, TCurrent>> AndInclude<TInclude>(Expression<Func<TCurrent, TInclude>> path);
}
public interface IDerivedTraverser<TRoot, TDerived, TParent, out TParentTraverser> : ITraverser<TRoot, TParent>
{
IDerivedTraverser<TRoot, TInclude, TDerived, IDerivedTraverser<TRoot, TDerived, TParent, TParentTraverser>> FromWhichInclude<TInclude>(Expression<Func<TDerived, TInclude>> path);
TParentTraverser ThenBackToParent();
}
There's no casting or "cheating" of the type system involved here: you can keep stacking on more values and the inferred return type keeps storing more and more information. Here is what the usage looks like:
var spec = Traversal
.StartFrom<VirtualMachine>() // ITraverser<VirtualMachine, VirtualMachine>
.AndInclude(vm => vm.EnvironmentBrowser) // IDerivedTraverser<VirtualMachine, EnvironmentBrowser, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>
.AndInclude(vm => vm.Datastore) // IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>
.FromWhichInclude(ds => ds.Browser) // IDerivedTraverser<VirtualMachine, HostDatastoreBrowser, Datastore, IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>>
.FromWhichInclude(br => br.Mountpoints) // IDerivedTraverser<VirtualMachine, Mountpoint, HostDatastoreBrowser, IDerivedTraverser<VirtualMachine, HostDatastoreBrowser, Datastore, IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>>>
.Specify(); // ITraversalSpecification<VirtualMachine>
As you can see the type signature becomes basically unreadable near after a few chained calls, but this is fine so long as type inference works and suggests the right type to the user.
In my example I am dealing with Funcs arguments, but you could presumably adapt this code to deal with arguments of arbitrary type.
For a simulation you can say:
void MyMethod<TSource, TResult>(Func<TSource, TResult> f) where TSource : Tparams {
where Tparams to be a variadic arguments implementation class. However, the framework does not provide an out-of-box stuff to do that, Action, Func, Tuple, etc., are all have limited length of their signatures. The only thing I can think of is to apply the CRTP .. in a way I've not find somebody blogged. Here's my implementation:
*: Thank #SLaks for mentioning Tuple<T1, ..., T7, TRest> also works in a recursive way. I noticed it's recursive on the constructor and the factory method instead of its class definition; and do a runtime type checking of the last argument of type TRest is required to be a ITupleInternal; and this works a bit differently.
Code
using System;
namespace VariadicGenerics {
public interface INode {
INode Next {
get;
}
}
public interface INode<R>:INode {
R Value {
get; set;
}
}
public abstract class Tparams {
public static C<TValue> V<TValue>(TValue x) {
return new T<TValue>(x);
}
}
public class T<P>:C<P> {
public T(P x) : base(x) {
}
}
public abstract class C<R>:Tparams, INode<R> {
public class T<P>:C<T<P>>, INode<P> {
public T(C<R> node, P x) {
if(node is R) {
Next=(R)(node as object);
}
else {
Next=(node as INode<R>).Value;
}
Value=x;
}
public T() {
if(Extensions.TypeIs(typeof(R), typeof(C<>.T<>))) {
Next=(R)Activator.CreateInstance(typeof(R));
}
}
public R Next {
private set;
get;
}
public P Value {
get; set;
}
INode INode.Next {
get {
return this.Next as INode;
}
}
}
public new T<TValue> V<TValue>(TValue x) {
return new T<TValue>(this, x);
}
public int GetLength() {
return m_expandedArguments.Length;
}
public C(R x) {
(this as INode<R>).Value=x;
}
C() {
}
static C() {
m_expandedArguments=Extensions.GetExpandedGenericArguments(typeof(R));
}
// demonstration of non-recursive traversal
public INode this[int index] {
get {
var count = m_expandedArguments.Length;
for(INode node = this; null!=node; node=node.Next) {
if(--count==index) {
return node;
}
}
throw new ArgumentOutOfRangeException("index");
}
}
R INode<R>.Value {
get; set;
}
INode INode.Next {
get {
return null;
}
}
static readonly Type[] m_expandedArguments;
}
}
Note the type parameter for the inherited class C<> in the declaration of
public class T<P>:C<T<P>>, INode<P> {
is T<P>, and the class T<P> is nested so that you can do some crazy things such as:
Test
[Microsoft.VisualStudio.TestTools.UnitTesting.TestClass]
public class TestClass {
void MyMethod<TSource, TResult>(Func<TSource, TResult> f) where TSource : Tparams {
T<byte>.T<char>.T<uint>.T<long>.
T<byte>.T<char>.T<long>.T<uint>.
T<byte>.T<long>.T<char>.T<uint>.
T<long>.T<byte>.T<char>.T<uint>.
T<long>.T<byte>.T<uint>.T<char>.
T<byte>.T<long>.T<uint>.T<char>.
T<byte>.T<uint>.T<long>.T<char>.
T<byte>.T<uint>.T<char>.T<long>.
T<uint>.T<byte>.T<char>.T<long>.
T<uint>.T<byte>.T<long>.T<char>.
T<uint>.T<long>.T<byte>.T<char>.
T<long>.T<uint>.T<byte>.T<char>.
T<long>.T<uint>.T<char>.T<byte>.
T<uint>.T<long>.T<char>.T<byte>.
T<uint>.T<char>.T<long>.T<byte>.
T<uint>.T<char>.T<byte>.T<long>.
T<char>.T<uint>.T<byte>.T<long>.
T<char>.T<uint>.T<long>.T<byte>.
T<char>.T<long>.T<uint>.T<byte>.
T<long>.T<char>.T<uint>.T<byte>.
T<long>.T<char>.T<byte>.T<uint>.
T<char>.T<long>.T<byte>.T<uint>.
T<char>.T<byte>.T<long>.T<uint>.
T<char>.T<byte>.T<uint>.T<long>
crazy = Tparams
// trying to change any value to not match the
// declaring type makes the compilation fail
.V((byte)1).V('2').V(4u).V(8L)
.V((byte)1).V('2').V(8L).V(4u)
.V((byte)1).V(8L).V('2').V(4u)
.V(8L).V((byte)1).V('2').V(4u)
.V(8L).V((byte)1).V(4u).V('2')
.V((byte)1).V(8L).V(4u).V('2')
.V((byte)1).V(4u).V(8L).V('2')
.V((byte)1).V(4u).V('2').V(8L)
.V(4u).V((byte)1).V('2').V(8L)
.V(4u).V((byte)1).V(8L).V('2')
.V(4u).V(8L).V((byte)1).V('2')
.V(8L).V(4u).V((byte)1).V('2')
.V(8L).V(4u).V('9').V((byte)1)
.V(4u).V(8L).V('2').V((byte)1)
.V(4u).V('2').V(8L).V((byte)1)
.V(4u).V('2').V((byte)1).V(8L)
.V('2').V(4u).V((byte)1).V(8L)
.V('2').V(4u).V(8L).V((byte)1)
.V('2').V(8L).V(4u).V((byte)1)
.V(8L).V('2').V(4u).V((byte)1)
.V(8L).V('2').V((byte)1).V(4u)
.V('2').V(8L).V((byte)1).V(4u)
.V('2').V((byte)1).V(8L).V(4u)
.V('7').V((byte)1).V(4u).V(8L);
var args = crazy as TSource;
if(null!=args) {
f(args);
}
}
[TestMethod]
public void TestMethod() {
Func<
T<byte>.T<char>.T<uint>.T<long>.
T<byte>.T<char>.T<long>.T<uint>.
T<byte>.T<long>.T<char>.T<uint>.
T<long>.T<byte>.T<char>.T<uint>.
T<long>.T<byte>.T<uint>.T<char>.
T<byte>.T<long>.T<uint>.T<char>.
T<byte>.T<uint>.T<long>.T<char>.
T<byte>.T<uint>.T<char>.T<long>.
T<uint>.T<byte>.T<char>.T<long>.
T<uint>.T<byte>.T<long>.T<char>.
T<uint>.T<long>.T<byte>.T<char>.
T<long>.T<uint>.T<byte>.T<char>.
T<long>.T<uint>.T<char>.T<byte>.
T<uint>.T<long>.T<char>.T<byte>.
T<uint>.T<char>.T<long>.T<byte>.
T<uint>.T<char>.T<byte>.T<long>.
T<char>.T<uint>.T<byte>.T<long>.
T<char>.T<uint>.T<long>.T<byte>.
T<char>.T<long>.T<uint>.T<byte>.
T<long>.T<char>.T<uint>.T<byte>.
T<long>.T<char>.T<byte>.T<uint>.
T<char>.T<long>.T<byte>.T<uint>.
T<char>.T<byte>.T<long>.T<uint>.
T<char>.T<byte>.T<uint>.T<long>, String>
f = args => {
Debug.WriteLine(String.Format("Length={0}", args.GetLength()));
// print fourth value from the last
Debug.WriteLine(String.Format("value={0}", args.Next.Next.Next.Value));
args.Next.Next.Next.Value='x';
Debug.WriteLine(String.Format("value={0}", args.Next.Next.Next.Value));
return "test";
};
MyMethod(f);
}
}
Another thing to note is we have two classes named T, the non-nested T:
public class T<P>:C<P> {
is just for the consistency of usage, and I made class C abstract to not directly being newed.
The Code part above needs to expand ther generic argument to calculate about their length, here are two extension methods it used:
Code(extensions)
using System.Diagnostics;
using System;
namespace VariadicGenerics {
[DebuggerStepThrough]
public static class Extensions {
public static readonly Type VariadicType = typeof(C<>.T<>);
public static bool TypeIs(this Type x, Type d) {
if(null==d) {
return false;
}
for(var c = x; null!=c; c=c.BaseType) {
var a = c.GetInterfaces();
for(var i = a.Length; i-->=0;) {
var t = i<0 ? c : a[i];
if(t==d||t.IsGenericType&&t.GetGenericTypeDefinition()==d) {
return true;
}
}
}
return false;
}
public static Type[] GetExpandedGenericArguments(this Type t) {
var expanded = new Type[] { };
for(var skip = 1; t.TypeIs(VariadicType) ? true : skip-->0;) {
var args = skip>0 ? t.GetGenericArguments() : new[] { t };
if(args.Length>0) {
var length = args.Length-skip;
var temp = new Type[length+expanded.Length];
Array.Copy(args, skip, temp, 0, length);
Array.Copy(expanded, 0, temp, length, expanded.Length);
expanded=temp;
t=args[0];
}
}
return expanded;
}
}
}
For this implementation, I choosed not to break the compile-time type checking, so we do not have a constructor or a factory with the signature like params object[] to provide values; instead, use a fluent pattern of method V for mass object instantiation to keep type can be statically type checked as much as possible.

C# Thread-safe Extension Method

I may be waaaay off, or else really close. Either way, I'm currently SOL. :)
I want to be able to use an extension method to set properties on a class, but that class may (or may not) be updated on a non-UI thread, and derives from a class the enforces updates to be on the UI thread (which implements INotifyPropertyChanged, etc).
I have a class defined something like this:
public class ClassToUpdate : UIObservableItem
{
private readonly Dispatcher mDispatcher = Dispatcher.CurrentDispatcher;
private Boolean mPropertyToUpdate = false;
public ClassToUpdate() : base()
{
}
public Dispatcher Dispatcher
{
get { return mDispatcher; }
}
public Boolean PropertyToUpdate
{
get { return mPropertyToUpdate; }
set { SetValue("PropertyToUpdate", ref mPropertyToUpdate, value; }
}
}
I have an extension method class defined something like this:
static class ExtensionMethods
{
public static IEnumerable<T> SetMyProperty<T>(this IEnumerable<T> sourceList,
Boolean newValue)
{
ClassToUpdate firstClass = sourceList.FirstOrDefault() as ClassToUpdate;
if (firstClass.Dispatcher.Thread.ManagedThreadId !=
System.Threading.Thread.CurrentThread.ManagedThreadId)
{
// WHAT GOES HERE?
}
else
{
foreach (var classToUpdate in sourceList)
{
(classToUpdate as ClassToUpdate ).PropertyToUpdate = newValue;
yield return classToUpdate;
}
}
}
}
Obviously, I'm looking for the "WHAT GOES HERE" in the extension method.
Thanks,
wTs
// WHAT GOES HERE?
mDispatcher.Invoke(new Action(() => sourceList.SetMyProperty(newValue)));
As a side note, if you need to check whether the current thread has access to the UI, you don't need to compare thread ids. You just need to call the CheckAccess method :
if (firstClass.Dispatcher.CheckAccess())
{
...
}
For some reason, this methods is hidden in Intellisense... no idea why
UPDATE
OK, my answer wasn't totally accurate... you still need to yield return each item of the collection, and Invoke doesn't do it. Here's another version of your method :
public static IEnumerable<T> SetMyProperty<T>(this IEnumerable<T> sourceList, bool newValue)
where T : ClassToUpdate
{
Action<T> setProperty = t => t.PropertyToUpdate = newValue;
foreach(var t in sourceList)
{
if (t.Dispatcher.CheckAccess())
{
action(t);
}
else
{
t.Dispatcher.Invoke(action, new object[] { t });
}
}
}
Note that I added a constaint on the generic type parameter, and I removed the casts (the way you were doing it, generics didn't bring any benefit)
Just to clean up a couple of small typos (and hopefully not add my own) in the above example, here is a final solution to the example.
public static IEnumerable<T> SetMyProperty<T>(this IEnumerable<T> sourceList,
bool newValue) where T : ClassToUpdate
{
Action<T> setProperty = t => t.PropertyToUpdate = newValue;
foreach(var t in sourceList)
{
if (t.Dispatcher.CheckAccess())
{
setProperty(t);
}
else
{
t.Dispatcher.Invoke(setProperty, new object[] { t });
}
yield return t;
}
}

Categories