I need to do some calculations with fractions which result have infinite decimals.
For example:
240/360=0.666666...
The output has infinite decimals and when I multiply this by an integer the result must be an integer. So I've coded this way:
result = someInteger * decimal.divide(240/360);
(Try with someInteger = 2,700)
But the result has decimal values and some calculators or even spreadsheets would output an integer result.
How do I get same results in c#?
Thanks
The output has infinite decimals and when I multiply this by an integer the result must be an integer.
That won't really happen.
What you can do is careful rounding (after the multiplication).
Or instead of
result = someInteger * decimal.divide(240/360);
you can use
result = someInteger * 240 / 360;
what's the problem with that?
When you're really serious about working with fractions and keeping the precision you'll need a special type:
struct Rational
{
public readonly int Numerator;
public readonly int Denominator;
// lots of members, including operators
}
There are libraries and examples for how to do this.
But note that you still won't be able to represent π exactly.
you could store the numerator and denominator separately as integers and multiply the numerator first before dividing, this wont fix every problem though as 1/3 * 2 will still give an infinite decimal. This also only works for rational numbers.
use Math.Round()
result = someInteger * decimal.divide(240/360);
result = Math.Round(result);
Returning a whole number is what you're asking to do right?
Many applications perform pseudo fractional mathematics by doing intermediary calculations to a higher degree of accuracy than what will eventually be needed/output to the user (Office does this). If this isn't what you want, and you want to perform true fractional mathematics then search around for a Fractions implementation. There seems to be a decent implementation here. The problem with such implementations is that the onus is on being functionally correct over being efficient. Thus, if your application needs to be performing millions of operations with fractions then its performance may suffer.
Related
When I do the following double multiplication in C# 100.0 * 1.005 I get 100,49999999999999 as a result. I believe this is because the exact number (or some intermedia result when evaluting the expression) cannot be represented. When I do the same computation in calc.exe I get 100.5 as expected.
Another example is the ninefold incrementation of 0.001 (that is the first time a deviation occurs) so basically 9d * 0.001d = 0,0090000000000000011. When I do the same computation in calc.exe I get 0.009 as expected.
Now one can argue, that I should choose decimal instead. But with decimal I get the problem with other computations for example with ((1M / 3M) * 3M) = 0,9999999999999999999999999999 while calc.exe says 1.
With calc.exe I can divide 1 by 3 several times until some real small number and then multiply with 3 again as many several times and then I reach exacty 1. I therefore suspect, that calc.exe computes internally with fractions, but obviously with real big ones, because it computes
(677605234775492641 / 116759166847407000) + (932737194383944703 / 2451942503795547000)
where the common denominator is -3422539506717149376 (an overflow occured) when doing a long computation, so it must be at least ulong. Does anybody know how computation in calc.exe is implemented? Is this implementation made somewhere public for reuse?
As described here, calc uses an arbitrary-precision engine for its calculations, while double is standard IEEE-754 arithmetic, and decimal is also floating-point arithmetic, just in decimal, which, as you point out, has the same problems, just in another base.
You can try finding such an arbitrary-precision arithmetic library for C# and use it, e.g. this one (no idea whether it's good; was the first result). The one inside calc is not available as an API, so you cannot use it.
Another point is that when you round the result to a certain number of places (less than 15), you'd also get the intuitively "correct" result in a lot of cases. C# already does some rounding to hide the exact value of a double from you (where 0.3 is definitely not exactly 0.3, but probably something like 0.30000000000000004). By reducing the number of digits you display you lessen the occurrence of such very small differences from the correct value.
Consider the following code snippet in Python:
m = int(math.sqrt(n))
For n = 25, it should give m = 5 (and it does in my shell). But from my C experience I know that using such expression is a bad idea, as sqrt function may return a slightly lower value than the real value, and then after rounding i may get m = 4 instead of m = 5. Is this limitation also involved in python? And if this is the case, what is be the best way to write such expressions in python? What will happen if I use Java or C#?
Besides, if there is any inaccuracy, what factors controls the amount of it?
For proper rounding, use round(); it rounds to the nearest whole number, but returns a float. Then you may construct an int from the result.
(Most probably your code is not performance-critical and you will never notice any slowdown associated with round(). If you do, you probably should be using numpy anyway.)
If you are very concerned with the accuracy of sqrt, you could use the decimal.Decimal class from the standard library, which provides its own sqrt function. The Decimal class can be set to greater precision than regular Python floats. That said, it may not matter if you are rounding anyways. The Decimal class results in exact numbers (from the docs):
The exactness [of Decimal] carries over into arithmetic. In decimal floating point,
0.1 + 0.1 + 0.1 - 0.3 is exactly equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near to zero, the
differences prevent reliable equality testing and differences can
accumulate. For this reason, decimal is preferred in accounting
applications which have strict equality invariants.
The solution is easy. If you're expecting an integer result, use int(math.sqrt(n)+.1). If the value is a little more or less than the integer result, it will round to the correct value.
I know this has been discussed time and time again, but I can't seem to get even the most simple example of a one-step division of doubles to result in the expected, unrounded outcome in C# - so I'm wondering if perhaps there's i.e. some compiler flag or something else strange I'm not thinking of. Consider this example:
double v1 = 0.7;
double v2 = 0.025;
double result = v1 / v2;
When I break after the last line and examine it in the VS debugger, the value of "result" is 27.999999999999996. I'm aware that I can resolve it by changing to "decimal," but that's not possible in the case of the surrounding program. Is it not strange that two low-precision doubles like this can't divide to the correct value of 28? Is the only solution really to Math.Round the result?
Is it not strange that two low-precision doubles like this can't divide to the correct value of 28?
No, not really. Neither 0.7 nor 0.025 can be exactly represented in the double type. The exact values involved are:
0.6999999999999999555910790149937383830547332763671875
0.025000000000000001387778780781445675529539585113525390625
Now are you surprised that the division doesn't give exactly 28? Garbage in, garbage out...
As you say, the right result to represent decimal numbers exactly is to use decimal. If the rest of your program is using the wrong type, that just means you need to work out which is higher: the cost of getting the wrong answer, or the cost of changing the whole program.
Precision is always a problem, in case you are dealing with float or double.
Its a known issue in Computer Science and every programming language is affected by it. To minimize these sort of errors, which are mostly related to rounding, a complete field of Numerical Analysis is dedicated to it.
For instance, let take the following code.
What would you expect?
You will expect the answer to be 1, but this is not the case, you will get 0.9999907.
float v = .001f;
float sum = 0;
for (int i = 0; i < 1000; i++ )
{
sum += v;
}
It has nothing to do with how 'simple' or 'small' the double numbers are. Strictly speaking, neither 0.7 or 0.025 may be stored as exactly those numbers in computer memory, so performing calculations on them may provide interesting results if you're after heavy precision.
So yes, use decimal or round.
To explain this by analogy:
Imagine that you are working in base 3. In base 3, 0.1 is (in decimal) 1/3, or 0.333333333'.
So you can EXACTLY represent 1/3 (decimal) in base 3, but you get rounding errors when trying to express it in decimal.
Well, you can get exactly the same thing with some decimal numbers: They can be exactly expressed in decimal, but they CAN'T be exactly expressed in binary; hence, you get rounding errors with them.
Short answer to your first question: No, it's not strange. Floating-point numbers are discrete approximations of the real numbers, which means that rounding errors will propagate and scale when you do arithmetic operations.
Theres' a whole field of mathematics called numerical analyis that basically deal with how to minimize the errors when working with such approximations.
It's the usual floating point imprecision. Not every number can be represented as a double, and those minor representation inaccuracies add up. It's also a reason why you should not compare doubles to exact numbers. I just tested it, and result.ToString() showed 28 (maybe some kind of rounding happens in double.ToString()?). result == 28 returned false though. And (int)result returned 27. So you'll just need to expect imprecisions like that.
I can name three advantages to using double (or float) instead of decimal:
Uses less memory.
Faster because floating point math operations are natively supported by processors.
Can represent a larger range of numbers.
But these advantages seem to apply only to calculation intensive operations, such as those found in modeling software. Of course, doubles should not be used when precision is required, such as financial calculations. So are there any practical reasons to ever choose double (or float) instead of decimal in "normal" applications?
Edited to add:
Thanks for all the great responses, I learned from them.
One further question: A few people made the point that doubles can more precisely represent real numbers. When declared I would think that they usually more accurately represent them as well. But is it a true statement that the accuracy may decrease (sometimes significantly) when floating point operations are performed?
I think you've summarised the advantages quite well. You are however missing one point. The decimal type is only more accurate at representing base 10 numbers (e.g. those used in currency/financial calculations). In general, the double type is going to offer at least as great precision (someone correct me if I'm wrong) and definitely greater speed for arbitrary real numbers. The simple conclusion is: when considering which to use, always use double unless you need the base 10 accuracy that decimal offers.
Edit:
Regarding your additional question about the decrease in accuracy of floating-point numbers after operations, this is a slightly more subtle issue. Indeed, precision (I use the term interchangeably for accuracy here) will steadily decrease after each operation is performed. This is due to two reasons:
the fact that certain numbers (most obviously decimals) can't be truly represented in floating point form
rounding errors occur, just as if you were doing the calculation by hand. It depends greatly on the context (how many operations you're performing) whether these errors are significant enough to warrant much thought however.
In all cases, if you want to compare two floating-point numbers that should in theory be equivalent (but were arrived at using different calculations), you need to allow a certain degree of tolerance (how much varies, but is typically very small).
For a more detailed overview of the particular cases where errors in accuracies can be introduced, see the Accuracy section of the Wikipedia article. Finally, if you want a seriously in-depth (and mathematical) discussion of floating-point numbers/operations at machine level, try reading the oft-quoted article What Every Computer Scientist Should Know About Floating-Point Arithmetic.
You seem spot on with the benefits of using a floating point type. I tend to design for decimals in all cases, and rely on a profiler to let me know if operations on decimal is causing bottlenecks or slow-downs. In those cases, I will "down cast" to double or float, but only do it internally, and carefully try to manage precision loss by limiting the number of significant digits in the mathematical operation being performed.
In general, if your value is transient (not reused), you're safe to use a floating point type. The real problem with floating point types is the following three scenarios.
You are aggregating floating point values (in which case the precision errors compound)
You build values based on the floating point value (for example in a recursive algorithm)
You are doing math with a very wide number of significant digits (for example, 123456789.1 * .000000000000000987654321)
EDIT
According to the reference documentation on C# decimals:
The decimal keyword denotes a
128-bit data type. Compared to
floating-point types, the decimal type
has a greater precision and a smaller
range, which makes it suitable for
financial and monetary calculations.
So to clarify my above statement:
I tend to design for decimals in all
cases, and rely on a profiler to let
me know if operations on decimal is
causing bottlenecks or slow-downs.
I have only ever worked in industries where decimals are favorable. If you're working on phsyics or graphics engines, it's probably much more beneficial to design for a floating point type (float or double).
Decimal is not infinitely precise (it is impossible to represent infinite precision for non-integral in a primitive data type), but it is far more precise than double:
decimal = 28-29 significant digits
double = 15-16 significant digits
float = 7 significant digits
EDIT 2
In response to Konrad Rudolph's comment, item # 1 (above) is definitely correct. Aggregation of imprecision does indeed compound. See the below code for an example:
private const float THREE_FIFTHS = 3f / 5f;
private const int ONE_MILLION = 1000000;
public static void Main(string[] args)
{
Console.WriteLine("Three Fifths: {0}", THREE_FIFTHS.ToString("F10"));
float asSingle = 0f;
double asDouble = 0d;
decimal asDecimal = 0M;
for (int i = 0; i < ONE_MILLION; i++)
{
asSingle += THREE_FIFTHS;
asDouble += THREE_FIFTHS;
asDecimal += (decimal) THREE_FIFTHS;
}
Console.WriteLine("Six Hundred Thousand: {0:F10}", THREE_FIFTHS * ONE_MILLION);
Console.WriteLine("Single: {0}", asSingle.ToString("F10"));
Console.WriteLine("Double: {0}", asDouble.ToString("F10"));
Console.WriteLine("Decimal: {0}", asDecimal.ToString("F10"));
Console.ReadLine();
}
This outputs the following:
Three Fifths: 0.6000000000
Six Hundred Thousand: 600000.0000000000
Single: 599093.4000000000
Double: 599999.9999886850
Decimal: 600000.0000000000
As you can see, even though we are adding from the same source constant, the results of the double is less precise (although probably will round correctly), and the float is far less precise, to the point where it has been reduced to only two significant digits.
Use decimal for base 10 values, e.g. financial calculations, as others have suggested.
But double is generally more accurate for arbitrary calculated values.
For example if you want to calculate the weight of each line in a portfolio, use double as the result will more nearly add up to 100%.
In the following example, doubleResult is closer to 1 than decimalResult:
// Add one third + one third + one third with decimal
decimal decimalValue = 1M / 3M;
decimal decimalResult = decimalValue + decimalValue + decimalValue;
// Add one third + one third + one third with double
double doubleValue = 1D / 3D;
double doubleResult = doubleValue + doubleValue + doubleValue;
So again taking the example of a portfolio:
The market value of each line in the portfolio is a monetary value and would probably be best represented as decimal.
The weight of each line in the portfolio (= Market Value / SUM(Market Value)) is usually better represented as double.
Use a double or a float when you don't need precision, for example, in a platformer game I wrote, I used a float to store the player velocities. Obviously I don't need super precision here because I eventually round to an Int for drawing on the screen.
In some Accounting, consider the possibility of using integral types instead or in conjunction. For example, let say that the rules you operate under require every calculation result carry forward with at least 6 decimal places and the final result will be rounded to the nearest penny.
A calculation of 1/6th of $100 yields $16.66666666666666..., so the value carried forth in a worksheet will be $16.666667. Both double and decimal should yield that result accurately to 6 decimal places. However, we can avoid any cumulative error by carrying the result forward as an integer 16666667. Each subsequent calculation can be made with the same precision and carried forward similarly. Continuing the example, I calculate Texas sales tax on that amount (16666667 * .0825 = 1375000). Adding the two (it's a short worksheet) 1666667 + 1375000 = 18041667. Moving the decimal point back in gives us 18.041667, or $18.04.
While this short example wouldn't yield a cumulative error using double or decimal, it's fairly easy to show cases where simply calculating the double or decimal and carrying forward would accumulate significant error. If the rules you operate under require a limited number of decimal places, storing each value as an integer by multiplying by 10^(required # of decimal place), and then dividing by 10^(required # of decimal places) to get the actual value will avoid any cumulative error.
In situations where fractions of pennies do not occur (for example, a vending machine), there is no reason to use non-integral types at all. Simply think of it as counting pennies, not dollars. I have seen code where every calculation involved only whole pennies, yet use of double led to errors! Integer only math removed the issue. So my unconventional answer is, when possible, forgo both double and decimal.
If you need to binary interrop with other languages or platforms, then you might need to use float or double, which are standardized.
Depends on what you need it for.
Because float and double are binary data types you have some diifculties and errrors in the way in rounds numbers, so for instance double would round 0.1 to 0.100000001490116, double would also round 1 / 3 to 0.33333334326441. Simply put not all real numbers have accurate representation in double types
Luckily C# also supports the so-called decimal floating-point arithmetic, where numbers are represented via the decimal numeric system rather than the binary system. Thus, the decimal floating point-arithmetic does not lose accuracy when storing and processing floating-point numbers. This makes it immensely suited to calculations where a high level of accuracy is needed.
Note: this post is based on information of the decimal type's capabilities from http://csharpindepth.com/Articles/General/Decimal.aspx and my own interpretation of what that means. I will assume Double is normal IEEE double precision.
Note2: smallest and largest in this post reffer to the magnitude of the number.
Pros of "decimal".
"decimal" can represent exactly numbers that can be written as (sufficiently short) decimal fractions, double cannot. This is important in financial ledgers and similar where it is important that the results exactly match what a human doing the calculations would give.
"decimal" has a much larger mantissa than "double". That means that for values within it's normalised range "decimal" will have a much higher precision than double.
Cons of decimal
It will be Much slower (I don't have benchmarks but I would guess at least an order of magnitude maybe more), decimal will not benefit from any hardware acceleration and arithmetic on it will require relatively expensive multiplication/division by powers of 10 (which is far more expensive than multiplication and dividion by powers of 2) to match the exponent before addition/subtraction and to bring the exponent back into range after multiplication/division.
decimal will overflow earlier tha double will. decimal can only represent numbers up to ±296-1 . By comparision double can represent numbers up to nearly ±21024
decimal will underflow earlier. The smallest numbers representable in decimal are ±10-28 . By comparision double can represent values down to 2-149 (approx 10-45) if subnromal numbers are supported and 2-126 (approx 10-38) if they are not.
decimal takes up twice as much memory as double.
My opinion is that you should default to using "decimal" for money work and other cases where matching human calculation exactly is important and that you should use use double as your default choice the rest of the time.
Use floating points if you value performance over correctness.
Choose the type in function of your application. If you need precision like in financial analysis, you have answered your question. But if your application can settle with an estimate your ok with double.
Is your application in need of a fast calculation or will he have all the time in the world to give you an answer? It really depends on the type of application.
Graphic hungry? float or double is enough. Financial data analysis, meteor striking a planet kind of precision ? Those would need a bit of precision :)
Decimal has wider bytes, double is natively supported by CPU. Decimal is base-10, so a decimal-to-double conversion is happening while a decimal is computed.
For accounting - decimal
For finance - double
For heavy computation - double
Keep in mind .NET CLR only supports Math.Pow(double,double). Decimal is not supported.
.NET Framework 4
[SecuritySafeCritical]
public static extern double Pow(double x, double y);
A double values will serialize to scientific notation by default if that notation is shorter than the decimal display. (e.g. .00000003 will be 3e-8) Decimal values will never serialize to scientific notation. When serializing for consumption by an external party, this may be a consideration.
I always tell in c# a variable of type double is not suitable for money. All weird things could happen. But I can't seem to create an example to demonstrate some of these issues. Can anyone provide such an example?
(edit; this post was originally tagged C#; some replies refer to specific details of decimal, which therefore means System.Decimal).
(edit 2: I was specific asking for some c# code, so I don't think this is language agnostic only)
Very, very unsuitable. Use decimal.
double x = 3.65, y = 0.05, z = 3.7;
Console.WriteLine((x + y) == z); // false
(example from Jon's page here - recommended reading ;-p)
You will get odd errors effectively caused by rounding. In addition, comparisons with exact values are extremely tricky - you usually need to apply some sort of epsilon to check for the actual value being "near" a particular one.
Here's a concrete example:
using System;
class Test
{
static void Main()
{
double x = 0.1;
double y = x + x + x;
Console.WriteLine(y == 0.3); // Prints False
}
}
Yes it's unsuitable.
If I remember correctly double has about 17 significant numbers, so normally rounding errors will take place far behind the decimal point. Most financial software uses 4 decimals behind the decimal point, that leaves 13 decimals to work with so the maximum number you can work with for single operations is still very much higher than the USA national debt. But rounding errors will add up over time. If your software runs for a long time you'll eventually start losing cents. Certain operations will make this worse. For example adding large amounts to small amounts will cause a significant loss of precision.
You need fixed point datatypes for money operations, most people don't mind if you lose a cent here and there but accountants aren't like most people..
edit
According to this site http://msdn.microsoft.com/en-us/library/678hzkk9.aspx Doubles actually have 15 to 16 significant digits instead of 17.
#Jon Skeet decimal is more suitable than double because of its higher precision, 28 or 29 significant decimals. That means less chance of accumulated rounding errors becoming significant. Fixed point datatypes (ie integers that represent cents or 100th of a cent like I've seen used) like Boojum mentions are actually better suited.
Since decimal uses a scaling factor of multiples of 10, numbers like 0.1 can be represented exactly. In essence, the decimal type represents this as 1 / 10 ^ 1, whereas a double would represent this as 104857 / 2 ^ 20 (in reality it would be more like really-big-number / 2 ^ 1023).
A decimal can exactly represent any base 10 value with up to 28/29 significant digits (like 0.1). A double can't.
My understanding is that most financial systems express currency using integers -- i.e., counting everything in cents.
IEEE double precision actually can represent all integers exactly in the range -2^53 through +2^53. (Hacker's Delight, pg. 262) If you use only addition, subtraction and multiplication, and keep everything to integers within this range then you should see no loss of precision. I'd be very wary of division or more complex operations, however.
Using double when you don't know what you are doing is unsuitable.
"double" can represent an amount of a trillion dollars with an error of 1/90th of a cent. So you will get highly precise results. Want to calculate how much it costs to put a man on Mars and get him back alive? double will do just fine.
But with money there are often very specific rules saying that a certain calculation must give a certain result and no other. If you calculate an amount that is very very very close to $98.135 then there will often be a rule that determines whether the result should be $98.14 or $98.13 and you must follow that rule and get the result that is required.
Depending on where you live, using 64 bit integers to represent cents or pennies or kopeks or whatever is the smallest unit in your country will usually work just fine. For example, 64 bit signed integers representing cents can represent values up to 92,223 trillion dollars. 32 bit integers are usually unsuitable.
No a double will always have rounding errors, use "decimal" if you're on .Net...
Actually floating-point double is perfectly well suited to representing amounts of money as long as you pick a suitable unit.
See http://www.idinews.com/moneyRep.html
So is fixed-point long. Either consumes 8 bytes, surely preferable to the 16 consumed by a decimal item.
Whether or not something works (i.e. yields the expected and correct result) is not a matter of either voting or individual preference. A technique either works or it doesn't.