Producer-Consumer waiting when queue is empty? - c#

I have a list of work items that need to be processed in order. Sometimes the list will be empty, sometimes it will have a thousand items. Only one can be processed at a time and in order. Currently I am doing the following which to me looks stupid because i am using Thread.Sleep in the consumer task to wait for 100ms before checking if the list is empty or not. Is this the standard way to do it or am I completely wrong.
public class WorkItem
{
}
public class WorkerClass
{
CancellationTokenSource cts = new CancellationTokenSource();
CancellationToken ct = new CancellationToken();
List<WorkItem> listOfWorkItems = new List<WorkItem>();
public void start()
{
Task producerTask = new Task(() => producerMethod(ct), ct);
Task consumerTask = new Task(() => consumerMethod(ct), ct);
producerTask.Start();
consumerTask.Start();
}
public void producerMethod(CancellationToken _ct)
{
while (!_ct.IsCancellationRequested)
{
//Sleep random amount of time
Random r = new Random();
Thread.Sleep(r.Next(100, 1000));
WorkItem w = new WorkItem();
listOfWorkItems.Add(w);
}
}
public void consumerMethod(CancellationToken _ct)
{
while (!_ct.IsCancellationRequested)
{
if (listOfWorkItems.Count == 0)
{
//Sleep small small amount of time to avoid continuously polling this if statement
Thread.Sleep(100);
continue;
}
//Process first item
doWorkOnWorkItem(listOfWorkItems[0]);
//Remove from list
listOfWorkItems.RemoveAt(0);
}
}
public void doWorkOnWorkItem(WorkItem w)
{
// Do work here - synchronous to execute in order (10ms to 5min execution time)
}
}
Advise greatly appreciated.
Thanks

Use BlockingCollection. It does non-busy waits.
See https://stackoverflow.com/a/5108487/56778 for a simple example. Or http://www.informit.com/guides/content.aspx?g=dotnet&seqNum=821 for a bit more detail.

You can use the BlockingCollection<T> Class.

Related

Creating a class that runs tasks sequentially [duplicate]

I know that asynchronous programming has seen a lot of changes over the years. I'm somewhat embarrassed that I let myself get this rusty at just 34 years old, but I'm counting on StackOverflow to bring me up to speed.
What I am trying to do is manage a queue of "work" on a separate thread, but in such a way that only one item is processed at a time. I want to post work on this thread and it doesn't need to pass anything back to the caller. Of course I could simply spin up a new Thread object and have it loop over a shared Queue object, using sleeps, interrupts, wait handles, etc. But I know things have gotten better since then. We have BlockingCollection, Task, async/await, not to mention NuGet packages that probably abstract a lot of that.
I know that "What's the best..." questions are generally frowned upon so I'll rephrase it by saying "What is the currently recommended..." way to accomplish something like this using built-in .NET mechanisms preferably. But if a third party NuGet package simplifies things a bunch, it's just as well.
I considered a TaskScheduler instance with a fixed maximum concurrency of 1, but seems there is probably a much less clunky way to do that by now.
Background
Specifically, what I am trying to do in this case is queue an IP geolocation task during a web request. The same IP might wind up getting queued for geolocation multiple times, but the task will know how to detect that and skip out early if it's already been resolved. But the request handler is just going to throw these () => LocateAddress(context.Request.UserHostAddress) calls into a queue and let the LocateAddress method handle duplicate work detection. The geolocation API I am using doesn't like to be bombarded with requests which is why I want to limit it to a single concurrent task at a time. However, it would be nice if the approach was allowed to easily scale to more concurrent tasks with a simple parameter change.
To create an asynchronous single degree of parallelism queue of work you can simply create a SemaphoreSlim, initialized to one, and then have the enqueing method await on the acquisition of that semaphore before starting the requested work.
public class TaskQueue
{
private SemaphoreSlim semaphore;
public TaskQueue()
{
semaphore = new SemaphoreSlim(1);
}
public async Task<T> Enqueue<T>(Func<Task<T>> taskGenerator)
{
await semaphore.WaitAsync();
try
{
return await taskGenerator();
}
finally
{
semaphore.Release();
}
}
public async Task Enqueue(Func<Task> taskGenerator)
{
await semaphore.WaitAsync();
try
{
await taskGenerator();
}
finally
{
semaphore.Release();
}
}
}
Of course, to have a fixed degree of parallelism other than one simply initialize the semaphore to some other number.
Your best option as I see it is using TPL Dataflow's ActionBlock:
var actionBlock = new ActionBlock<string>(address =>
{
if (!IsDuplicate(address))
{
LocateAddress(address);
}
});
actionBlock.Post(context.Request.UserHostAddress);
TPL Dataflow is robust, thread-safe, async-ready and very configurable actor-based framework (available as a nuget)
Here's a simple example for a more complicated case. Let's assume you want to:
Enable concurrency (limited to the available cores).
Limit the queue size (so you won't run out of memory).
Have both LocateAddress and the queue insertion be async.
Cancel everything after an hour.
var actionBlock = new ActionBlock<string>(async address =>
{
if (!IsDuplicate(address))
{
await LocateAddressAsync(address);
}
}, new ExecutionDataflowBlockOptions
{
BoundedCapacity = 10000,
MaxDegreeOfParallelism = Environment.ProcessorCount,
CancellationToken = new CancellationTokenSource(TimeSpan.FromHours(1)).Token
});
await actionBlock.SendAsync(context.Request.UserHostAddress);
Actually you don't need to run tasks in one thread, you need them to run serially (one after another), and FIFO. TPL doesn't have class for that, but here is my very lightweight, non-blocking implementation with tests. https://github.com/Gentlee/SerialQueue
Also have #Servy implementation there, tests show it is twice slower than mine and it doesn't guarantee FIFO.
Example:
private readonly SerialQueue queue = new SerialQueue();
async Task SomeAsyncMethod()
{
var result = await queue.Enqueue(DoSomething);
}
Use BlockingCollection<Action> to create a producer/consumer pattern with one consumer (only one thing running at a time like you want) and one or many producers.
First define a shared queue somewhere:
BlockingCollection<Action> queue = new BlockingCollection<Action>();
In your consumer Thread or Task you take from it:
//This will block until there's an item available
Action itemToRun = queue.Take()
Then from any number of producers on other threads, simply add to the queue:
queue.Add(() => LocateAddress(context.Request.UserHostAddress));
I'm posting a different solution here. To be honest I'm not sure whether this is a good solution.
I'm used to use BlockingCollection to implement a producer/consumer pattern, with a dedicated thread consuming those items. It's fine if there are always data coming in and consumer thread won't sit there and do nothing.
I encountered a scenario that one of the application would like to send emails on a different thread, but total number of emails is not that big.
My initial solution was to have a dedicated consumer thread (created by Task.Run()), but a lot of time it just sits there and does nothing.
Old solution:
private readonly BlockingCollection<EmailData> _Emails =
new BlockingCollection<EmailData>(new ConcurrentQueue<EmailData>());
// producer can add data here
public void Add(EmailData emailData)
{
_Emails.Add(emailData);
}
public void Run()
{
// create a consumer thread
Task.Run(() =>
{
foreach (var emailData in _Emails.GetConsumingEnumerable())
{
SendEmail(emailData);
}
});
}
// sending email implementation
private void SendEmail(EmailData emailData)
{
throw new NotImplementedException();
}
As you can see, if there are not enough emails to be sent (and it is my case), the consumer thread will spend most of them sitting there and do nothing at all.
I changed my implementation to:
// create an empty task
private Task _SendEmailTask = Task.Run(() => {});
// caller will dispatch the email to here
// continuewith will use a thread pool thread (different to
// _SendEmailTask thread) to send this email
private void Add(EmailData emailData)
{
_SendEmailTask = _SendEmailTask.ContinueWith((t) =>
{
SendEmail(emailData);
});
}
// actual implementation
private void SendEmail(EmailData emailData)
{
throw new NotImplementedException();
}
It's no longer a producer/consumer pattern, but it won't have a thread sitting there and does nothing, instead, every time it is to send an email, it will use thread pool thread to do it.
My lib, It can:
Run random in queue list
Multi queue
Run prioritize first
Re-queue
Event all queue completed
Cancel running or cancel wait for running
Dispatch event to UI thread
public interface IQueue
{
bool IsPrioritize { get; }
bool ReQueue { get; }
/// <summary>
/// Dont use async
/// </summary>
/// <returns></returns>
Task DoWork();
bool CheckEquals(IQueue queue);
void Cancel();
}
public delegate void QueueComplete<T>(T queue) where T : IQueue;
public delegate void RunComplete();
public class TaskQueue<T> where T : IQueue
{
readonly List<T> Queues = new List<T>();
readonly List<T> Runnings = new List<T>();
[Browsable(false), DefaultValue((string)null)]
public Dispatcher Dispatcher { get; set; }
public event RunComplete OnRunComplete;
public event QueueComplete<T> OnQueueComplete;
int _MaxRun = 1;
public int MaxRun
{
get { return _MaxRun; }
set
{
bool flag = value > _MaxRun;
_MaxRun = value;
if (flag && Queues.Count != 0) RunNewQueue();
}
}
public int RunningCount
{
get { return Runnings.Count; }
}
public int QueueCount
{
get { return Queues.Count; }
}
public bool RunRandom { get; set; } = false;
//need lock Queues first
void StartQueue(T queue)
{
if (null != queue)
{
Queues.Remove(queue);
lock (Runnings) Runnings.Add(queue);
queue.DoWork().ContinueWith(ContinueTaskResult, queue);
}
}
void RunNewQueue()
{
lock (Queues)//Prioritize
{
foreach (var q in Queues.Where(x => x.IsPrioritize)) StartQueue(q);
}
if (Runnings.Count >= MaxRun) return;//other
else if (Queues.Count == 0)
{
if (Runnings.Count == 0 && OnRunComplete != null)
{
if (Dispatcher != null && !Dispatcher.CheckAccess()) Dispatcher.Invoke(OnRunComplete);
else OnRunComplete.Invoke();//on completed
}
else return;
}
else
{
lock (Queues)
{
T queue;
if (RunRandom) queue = Queues.OrderBy(x => Guid.NewGuid()).FirstOrDefault();
else queue = Queues.FirstOrDefault();
StartQueue(queue);
}
if (Queues.Count > 0 && Runnings.Count < MaxRun) RunNewQueue();
}
}
void ContinueTaskResult(Task Result, object queue_obj) => QueueCompleted((T)queue_obj);
void QueueCompleted(T queue)
{
lock (Runnings) Runnings.Remove(queue);
if (queue.ReQueue) lock (Queues) Queues.Add(queue);
if (OnQueueComplete != null)
{
if (Dispatcher != null && !Dispatcher.CheckAccess()) Dispatcher.Invoke(OnQueueComplete, queue);
else OnQueueComplete.Invoke(queue);
}
RunNewQueue();
}
public void Add(T queue)
{
if (null == queue) throw new ArgumentNullException(nameof(queue));
lock (Queues) Queues.Add(queue);
RunNewQueue();
}
public void Cancel(T queue)
{
if (null == queue) throw new ArgumentNullException(nameof(queue));
lock (Queues) Queues.RemoveAll(o => o.CheckEquals(queue));
lock (Runnings) Runnings.ForEach(o => { if (o.CheckEquals(queue)) o.Cancel(); });
}
public void Reset(T queue)
{
if (null == queue) throw new ArgumentNullException(nameof(queue));
Cancel(queue);
Add(queue);
}
public void ShutDown()
{
MaxRun = 0;
lock (Queues) Queues.Clear();
lock (Runnings) Runnings.ForEach(o => o.Cancel());
}
}
I know this thread is old, but it seems all the present solutions are extremely onerous. The simplest way I could find uses the Linq Aggregate function to create a daisy-chained list of tasks.
var arr = new int[] { 1, 2, 3, 4, 5};
var queue = arr.Aggregate(Task.CompletedTask,
(prev, item) => prev.ContinueWith(antecedent => PerformWorkHere(item)));
The idea is to get your data into an IEnumerable (I'm using an int array), and then reduce that enumerable to a chain of tasks, starting with a default, completed, task.

Parallel processing using TPL in windows service

I have a windows service which is consuming a messaging system to fetch messages. I have also created a callback mechanism with the help of Timer class which helps me to check the message after some fixed time to fetch and process. Previously, the service is processing the message one by one. But I want after the message arrives the processing mechanism to execute in parallel. So if the first message arrived it should go for processing on one task and even if the processing is not finished for the first message still after the interval time configured using the callback method (callback is working now) next message should be picked and processed on a different task.
Below is my code:
Task.Factory.StartNew(() =>
{
Subsriber<Message> subsriber = new Subsriber<Message>()
{
Interval = 1000
};
subsriber.Callback(Process, m => m != null);
});
public static void Process(Message message)
{
if (message != null)
{
// Processing logic
}
else
{
}
}
But using the Task Factory I am not able to control the number of tasks in parallel so in my case I want to configure the number of tasks on which messages will run on the availability of the tasks?
Update:
Updated my above code to add multiple tasks
Below is the code:
private static void Main()
{
try
{
int taskCount = 5;
Task.Factory.StartNewAsync(() =>
{
Subscriber<Message> consumer = new
Subcriber<Message>()
{
Interval = 1000
};
consumer.CallBack(Process, msg => msg!=
null);
}, taskCount);
Console.ReadLine();
}
catch (Exception e)
{
Console.WriteLine(e.Message);
}
public static void StartNewAsync(this TaskFactory
target, Action action, int taskCount)
{
var tasks = new Task[taskCount];
for (int i = 0; i < taskCount; i++)
{
tasks[i] = target.StartNew(action);
}
}
public static void Process(Message message)
{
if (message != null)
{
}
else
{ }
}
}
I think what your looking for will result in quite a large sample. I'm trying just to demonstrate how you would do this with ActionBlock<T>. There's still a lot of unknowns so I left the sample as skeleton you can build off. In the sample the ActionBlock will handle and process in parallel all your messages as they're received from your messaging system
public class Processor
{
private readonly IMessagingSystem _messagingSystem;
private readonly ActionBlock<Message> _handler;
private bool _pollForMessages;
public Processor(IMessagingSystem messagingSystem)
{
_messagingSystem = messagingSystem;
_handler = new ActionBlock<Message>(msg => Process(msg), new ExecutionDataflowBlockOptions()
{
MaxDegreeOfParallelism = 5 //or any configured value
});
}
public async Task Start()
{
_pollForMessages = true;
while (_pollForMessages)
{
var msg = await _messagingSystem.ReceiveMessageAsync();
await _handler.SendAsync(msg);
}
}
public void Stop()
{
_pollForMessages = false;
}
private void Process(Message message)
{
//handle message
}
}
More Examples
And Ideas
Ok, sorry I'm short on time but here's the general idea/skeleton of what I was thinking as an alternative.
If I'm honest though I think the ActionBlock<T> is the better option as there's just so much done for you, with the only limit being that you can't dynamically scale the amount of work it will do it once, although I think the limit can be quite high. If you get into doing it this way you could have more control or just have a kind of dynamic amount of tasks running but you'll have to do a lot of things manually, e.g if you want to limit the amount of tasks running at a time, you'd have to implement a queueing system (something ActionBlock handles for you) and then maintain it. I guess it depends on how many messages you're receiving and how fast your process handles them.
You'll have to check it out and think of how it could apply to your direct use case as I think some of the details area a little sketchily implemented on my side around the concurrentbag idea.
So the idea behind what I've thrown together here is that you can start any number of tasks, or add to the tasks running or cancel tasks individually by using the collection.
The main thing I think is just making the method that the Callback runs fire off a thread that does the work, instead of subscribing within a separate thread.
I used Task.Factory.StartNew as you did, but stored the returned Task object in an object (TaskInfo) which also had it's CancellationTokenSource, it's Id (assigned externally) as properties, and then added that to a collection of TaskInfo which is a property on the class this is all a part of:
Updated - to avoid this being too confusing i've just updated the code that was here previously.
You'll have to update bits of it and fill in the blanks in places like with whatever you have for my HeartbeatController, and the few events that get called because they're beyond the scope of the question but the idea would be the same.
public class TaskContainer
{
private ConcurrentBag<TaskInfo> Tasks;
public TaskContainer(){
Tasks = new ConcurrentBag<TaskInfo>();
}
//entry point
//UPDATED
public void StartAndMonitor(int processorCount)
{
for (int i = 0; i <= processorCount; i++)
{
Processor task = new Processor(ProcessorId = i);
CreateProcessorTask(task);
}
this.IsRunning = true;
MonitorTasks();
}
private void CreateProcessorTask(Processor processor)
{
CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();
Task taskInstance = Task.Factory.StartNew(
() => processor.Start(cancellationTokenSource.Token)
);
//bind status update event
processor.ProcessorStatusUpdated += ReportProcessorProcess;
Tasks.Add(new ProcessorInfo()
{
ProcessorId = processor.ProcessorId,
Task = taskInstance,
CancellationTokenSource = cancellationTokenSource
});
}
//this method gets called once but the HeartbeatController gets an action as a param that it then
//executes on a timer. I haven't included that but you get the idea
//This method also checks for tasks that have stopped and restarts them if the manifest call says they should be running.
//Will also start any new tasks included in the manifest and stop any that aren't included in the manifest.
internal void MonitorTasks()
{
HeartbeatController.Beat(() =>
{
HeartBeatHappened?.Invoke(this, null);
List<int> tasksToStart = new List<int>();
//this is an api call or whatever drives your config that says what tasks must be running.
var newManifest = this.GetManifest(Properties.Settings.Default.ResourceId);
//task Removed Check - If a Processor is removed from the task pool, cancel it if running and remove it from the Tasks List.
List<int> instanceIds = new List<int>();
newManifest.Processors.ForEach(x => instanceIds.Add(x.ProcessorId));
var removed = Tasks.Select(x => x.ProcessorId).ToList().Except(instanceIds).ToList();
if (removed.Count() > 0)
{
foreach (var extaskId in removed)
{
var task = Tasks.FirstOrDefault(x => x.ProcessorId == extaskId);
task.CancellationTokenSource?.Cancel();
}
}
foreach (var newtask in newManifest.Processors)
{
var oldtask = Tasks.FirstOrDefault(x => x.ProcessorId == newtask.ProcessorId);
//Existing task check
if (oldtask != null && oldtask.Task != null)
{
if (!oldtask.Task.IsCanceled && (oldtask.Task.IsCompleted || oldtask.Task.IsFaulted))
{
var ex = oldtask.Task.Exception;
tasksToStart.Add(oldtask.ProcessorId);
continue;
}
}
else //New task Check
tasksToStart.Add(newtask.ProcessorId);
}
foreach (var item in tasksToStart)
{
var taskToRemove = Tasks.FirstOrDefault(x => x.ProcessorId == item);
if (taskToRemove != null)
Tasks.Remove(taskToRemove);
var task = newManifest.Processors.FirstOrDefault(x => x.ProcessorId == item);
if (task != null)
{
CreateProcessorTask(task);
}
}
});
}
}
//UPDATED
public class Processor{
private int ProcessorId;
private Subsriber<Message> subsriber;
public Processor(int processorId) => ProcessorId = processorId;
public void Start(CancellationToken token)
{
Subsriber<Message> subsriber = new Subsriber<Message>()
{
Interval = 1000
};
subsriber.Callback(Process, m => m != null);
}
private void Process()
{
//do work
}
}
Hope this gives you an idea of how else you can approach your problem and that I didn't miss the point :).
Update
To use events to update progress or which tasks are processing, I'd extract them into their own class, which then has subscribe methods on it, and when creating a new instance of that class, assign the event to a handler in the parent class which can then update your UI or whatever you want it to do with that info.
So the content of Process() would look more like this:
Processor processor = new Processor();
Task task = Task.Factory.StartNew(() => processor.ProcessMessage(cancellationTokenSource.CancellationToken));
processor.StatusUpdated += ReportProcess;

C# Running many async tasks the same time

I'm kinda new to async tasks.
I've a function that takes student ID and scrapes data from specific university website with the required ID.
private static HttpClient client = new HttpClient();
public static async Task<Student> ParseAsync(string departmentLink, int id, CancellationToken ct)
{
string website = string.Format(departmentLink, id);
try
{
string data;
var stream = await client.GetAsync(website, ct);
using (var reader = new StreamReader(await stream.Content.ReadAsStreamAsync(), Encoding.GetEncoding("windows-1256")))
data = reader.ReadToEnd();
//Parse data here and return Student.
} catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
And it works correctly. Sometimes though I need to run this function for a lot of students so I use the following
for(int i = ids.first; i <= ids.last; i++)
{
tasks[i - ids.first] = ParseStudentData.ParseAsync(entity.Link, i, cts.Token).ContinueWith(t =>
{
Dispatcher.Invoke(() =>
{
listview_students.Items.Add(t.Result);
//Students.Add(t.Result);
//lbl_count.Content = $"{listview_students.Items.Count}/{testerino.Length}";
});
});
}
I'm storing tasks in an array to wait for them later.
This also works finely as long as the students count is between (0, ~600?) it's kinda random.
And then for every other student that still hasn't been parsed throws A task was cancelled.
Keep in mind that, I never use the cancellation token at all.
I need to run this function on so many students it can reach ~9000 async task altogether. So what's happening?
You are basically creating a denial of service attack on the website when you are queuing up 9000 requests in such a short time frame. Not only is this causing you errors, but it could take down the website. It would be best to limit the number of concurrent requests to a more reasonable value (say 30). While there are probably several ways to do this, one that comes to mind is the following:
private async Task Test()
{
var tasks = new List<Task>();
for (int i = ids.first; i <= ids.last; i++)
{
tasks.Add(/* Do stuff */);
await WaitList(tasks, 30);
}
}
private async Task WaitList(IList<Task> tasks, int maxSize)
{
while (tasks.Count > maxSize)
{
var completed = await Task.WhenAny(tasks).ConfigureAwait(false);
tasks.Remove(completed);
}
}
Other approaches might leverage the producer/consumer pattern using .Net classes such as a BlockingCollection
This is what I ended up with based on #erdomke code:
public static async Task ForEachParallel<T>(
this IEnumerable<T> list,
Func<T, Task> action,
int dop)
{
var tasks = new List<Task>(dop);
foreach (var item in list)
{
tasks.Add(action(item));
while (tasks.Count >= dop)
{
var completed = await Task.WhenAny(tasks).ConfigureAwait(false);
tasks.Remove(completed);
}
}
// Wait for all remaining tasks.
await Task.WhenAll(tasks).ConfigureAwait(false);
}
// usage
await Enumerable
.Range(1, 500)
.ForEachParallel(i => ProcessItem(i), Environment.ProcessorCount);

How to limit the Maximum number of parallel tasks in c#

I have a collection of 1000 input message to process. I'm looping the input collection and starting the new task for each message to get processed.
//Assume this messages collection contains 1000 items
var messages = new List<string>();
foreach (var msg in messages)
{
Task.Factory.StartNew(() =>
{
Process(msg);
});
}
Can we guess how many maximum messages simultaneously get processed at the time (assuming normal Quad core processor), or can we limit the maximum number of messages to be processed at the time?
How to ensure this message get processed in the same sequence/order of the Collection?
You could use Parallel.Foreach and rely on MaxDegreeOfParallelism instead.
Parallel.ForEach(messages, new ParallelOptions {MaxDegreeOfParallelism = 10},
msg =>
{
// logic
Process(msg);
});
SemaphoreSlim is a very good solution in this case and I higly recommend OP to try this, but #Manoj's answer has flaw as mentioned in comments.semaphore should be waited before spawning the task like this.
Updated Answer: As #Vasyl pointed out Semaphore may be disposed before completion of tasks and will raise exception when Release() method is called so before exiting the using block must wait for the completion of all created Tasks.
int maxConcurrency=10;
var messages = new List<string>();
using(SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
List<Task> tasks = new List<Task>();
foreach(var msg in messages)
{
concurrencySemaphore.Wait();
var t = Task.Factory.StartNew(() =>
{
try
{
Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
tasks.Add(t);
}
Task.WaitAll(tasks.ToArray());
}
Answer to Comments
for those who want to see how semaphore can be disposed without Task.WaitAll
Run below code in console app and this exception will be raised.
System.ObjectDisposedException: 'The semaphore has been disposed.'
static void Main(string[] args)
{
int maxConcurrency = 5;
List<string> messages = Enumerable.Range(1, 15).Select(e => e.ToString()).ToList();
using (SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
List<Task> tasks = new List<Task>();
foreach (var msg in messages)
{
concurrencySemaphore.Wait();
var t = Task.Factory.StartNew(() =>
{
try
{
Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
tasks.Add(t);
}
// Task.WaitAll(tasks.ToArray());
}
Console.WriteLine("Exited using block");
Console.ReadKey();
}
private static void Process(string msg)
{
Thread.Sleep(2000);
Console.WriteLine(msg);
}
I think it would be better to use Parallel LINQ
Parallel.ForEach(messages ,
new ParallelOptions{MaxDegreeOfParallelism = 4},
x => Process(x);
);
where x is the MaxDegreeOfParallelism
With .NET 5.0 and Core 3.0 channels were introduced.
The main benefit of this producer/consumer concurrency pattern is that you can also limit the input data processing to reduce resource impact.
This is especially helpful when processing millions of data records.
Instead of reading the whole dataset at once into memory, you can now consecutively query only chunks of the data and wait for the workers to process it before querying more.
Code sample with a queue capacity of 50 messages and 5 consumer threads:
/// <exception cref="System.AggregateException">Thrown on Consumer Task exceptions.</exception>
public static async Task ProcessMessages(List<string> messages)
{
const int producerCapacity = 10, consumerTaskLimit = 3;
var channel = Channel.CreateBounded<string>(producerCapacity);
_ = Task.Run(async () =>
{
foreach (var msg in messages)
{
await channel.Writer.WriteAsync(msg);
// blocking when channel is full
// waiting for the consumer tasks to pop messages from the queue
}
channel.Writer.Complete();
// signaling the end of queue so that
// WaitToReadAsync will return false to stop the consumer tasks
});
var tokenSource = new CancellationTokenSource();
CancellationToken ct = tokenSource.Token;
var consumerTasks = Enumerable
.Range(1, consumerTaskLimit)
.Select(_ => Task.Run(async () =>
{
try
{
while (await channel.Reader.WaitToReadAsync(ct))
{
ct.ThrowIfCancellationRequested();
while (channel.Reader.TryRead(out var message))
{
await Task.Delay(500);
Console.WriteLine(message);
}
}
}
catch (OperationCanceledException) { }
catch
{
tokenSource.Cancel();
throw;
}
}))
.ToArray();
Task waitForConsumers = Task.WhenAll(consumerTasks);
try { await waitForConsumers; }
catch
{
foreach (var e in waitForConsumers.Exception.Flatten().InnerExceptions)
Console.WriteLine(e.ToString());
throw waitForConsumers.Exception.Flatten();
}
}
As pointed out by Theodor Zoulias:
On multiple consumer exceptions, the remaining tasks will continue to run and have to take the load of the killed tasks. To avoid this, I implemented a CancellationToken to stop all the remaining tasks and handle the exceptions combined in the AggregateException of waitForConsumers.Exception.
Side note:
The Task Parallel Library (TPL) might be good at automatically limiting the tasks based on your local resources. But when you are processing data remotely via RPC, it's necessary to manually limit your RPC calls to avoid filling the network/processing stack!
If your Process method is async you can't use Task.Factory.StartNew as it doesn't play well with an async delegate. Also there are some other nuances when using it (see this for example).
The proper way to do it in this case is to use Task.Run. Here's #ClearLogic answer modified for an async Process method.
static void Main(string[] args)
{
int maxConcurrency = 5;
List<string> messages = Enumerable.Range(1, 15).Select(e => e.ToString()).ToList();
using (SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
List<Task> tasks = new List<Task>();
foreach (var msg in messages)
{
concurrencySemaphore.Wait();
var t = Task.Run(async () =>
{
try
{
await Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
tasks.Add(t);
}
Task.WaitAll(tasks.ToArray());
}
Console.WriteLine("Exited using block");
Console.ReadKey();
}
private static async Task Process(string msg)
{
await Task.Delay(2000);
Console.WriteLine(msg);
}
You can create your own TaskScheduler and override QueueTask there.
protected virtual void QueueTask(Task task)
Then you can do anything you like.
One example here:
Limited concurrency level task scheduler (with task priority) handling wrapped tasks
You can simply set the max concurrency degree like this way:
int maxConcurrency=10;
var messages = new List<1000>();
using(SemaphoreSlim concurrencySemaphore = new SemaphoreSlim(maxConcurrency))
{
foreach(var msg in messages)
{
Task.Factory.StartNew(() =>
{
concurrencySemaphore.Wait();
try
{
Process(msg);
}
finally
{
concurrencySemaphore.Release();
}
});
}
}
If you need in-order queuing (processing might finish in any order), there is no need for a semaphore. Old fashioned if statements work fine:
const int maxConcurrency = 5;
List<Task> tasks = new List<Task>();
foreach (var arg in args)
{
var t = Task.Run(() => { Process(arg); } );
tasks.Add(t);
if(tasks.Count >= maxConcurrency)
Task.WaitAny(tasks.ToArray());
}
Task.WaitAll(tasks.ToArray());
I ran into a similar problem where I wanted to produce 5000 results while calling apis, etc. So, I ran some speed tests.
Parallel.ForEach(products.Select(x => x.KeyValue).Distinct().Take(100), id =>
{
new ParallelOptions { MaxDegreeOfParallelism = 100 };
GetProductMetaData(productsMetaData, client, id).GetAwaiter().GetResult();
});
produced 100 results in 30 seconds.
Parallel.ForEach(products.Select(x => x.KeyValue).Distinct().Take(100), id =>
{
new ParallelOptions { MaxDegreeOfParallelism = 100 };
GetProductMetaData(productsMetaData, client, id);
});
Moving the GetAwaiter().GetResult() to the individual async api calls inside GetProductMetaData resulted in 14.09 seconds to produce 100 results.
foreach (var id in ids.Take(100))
{
GetProductMetaData(productsMetaData, client, id);
}
Complete non-async programming with the GetAwaiter().GetResult() in api calls resulted in 13.417 seconds.
var tasks = new List<Task>();
while (y < ids.Count())
{
foreach (var id in ids.Skip(y).Take(100))
{
tasks.Add(GetProductMetaData(productsMetaData, client, id));
}
y += 100;
Task.WhenAll(tasks).GetAwaiter().GetResult();
Console.WriteLine($"Finished {y}, {sw.Elapsed}");
}
Forming a task list and working through 100 at a time resulted in a speed of 7.36 seconds.
using (SemaphoreSlim cons = new SemaphoreSlim(10))
{
var tasks = new List<Task>();
foreach (var id in ids.Take(100))
{
cons.Wait();
var t = Task.Factory.StartNew(() =>
{
try
{
GetProductMetaData(productsMetaData, client, id);
}
finally
{
cons.Release();
}
});
tasks.Add(t);
}
Task.WaitAll(tasks.ToArray());
}
Using SemaphoreSlim resulted in 13.369 seconds, but also took a moment to boot to start using it.
var throttler = new SemaphoreSlim(initialCount: take);
foreach (var id in ids)
{
throttler.WaitAsync().GetAwaiter().GetResult();
tasks.Add(Task.Run(async () =>
{
try
{
skip += 1;
await GetProductMetaData(productsMetaData, client, id);
if (skip % 100 == 0)
{
Console.WriteLine($"started {skip}/{count}, {sw.Elapsed}");
}
}
finally
{
throttler.Release();
}
}));
}
Using Semaphore Slim with a throttler for my async task took 6.12 seconds.
The answer for me in this specific project was use a throttler with Semaphore Slim. Although the while foreach tasklist did sometimes beat the throttler, 4/6 times the throttler won for 1000 records.
I realize I'm not using the OPs code, but I think this is important and adds to this discussion because how is sometimes not the only question that should be asked, and the answer is sometimes "It depends on what you are trying to do."
Now to answer the specific questions:
How to limit the maximum number of parallel tasks in c#: I showed how to limit the number of tasks that are completed at a time.
Can we guess how many maximum messages simultaneously get processed at the time (assuming normal Quad core processor), or can we limit the maximum number of messages to be processed at the time? I cannot guess how many will be processed at a time unless I set an upper limit but I can set an upper limit. Obviously different computers function at different speeds due to CPU, RAM etc. and how many threads and cores the program itself has access to as well as other programs running in tandem on the same computer.
How to ensure this message get processed in the same sequence/order of the Collection? If you want to process everything in a specific order, it is synchronous programming. The point of being able to run things asynchronously is ensuring that they can do everything without an order. As you can see from my code, the time difference is minimal in 100 records unless you use async code. In the event that you need an order to what you are doing, use asynchronous programming up until that point, then await and do things synchronously from there. For example, task1a.start, task2a.start, then later task1a.await, task2a.await... then later task1b.start task1b.await and task2b.start task 2b.await.
public static void RunTasks(List<NamedTask> importTaskList)
{
List<NamedTask> runningTasks = new List<NamedTask>();
try
{
foreach (NamedTask currentTask in importTaskList)
{
currentTask.Start();
runningTasks.Add(currentTask);
if (runningTasks.Where(x => x.Status == TaskStatus.Running).Count() >= MaxCountImportThread)
{
Task.WaitAny(runningTasks.ToArray());
}
}
Task.WaitAll(runningTasks.ToArray());
}
catch (Exception ex)
{
Log.Fatal("ERROR!", ex);
}
}
you can use the BlockingCollection, If the consume collection limit has reached, the produce will stop producing until a consume process will finish. I find this pattern more easy to understand and implement than the SemaphoreSlim.
int TasksLimit = 10;
BlockingCollection<Task> tasks = new BlockingCollection<Task>(new ConcurrentBag<Task>(), TasksLimit);
void ProduceAndConsume()
{
var producer = Task.Factory.StartNew(RunProducer);
var consumer = Task.Factory.StartNew(RunConsumer);
try
{
Task.WaitAll(new[] { producer, consumer });
}
catch (AggregateException ae) { }
}
void RunConsumer()
{
foreach (var task in tasks.GetConsumingEnumerable())
{
task.Start();
}
}
void RunProducer()
{
for (int i = 0; i < 1000; i++)
{
tasks.Add(new Task(() => Thread.Sleep(1000), TaskCreationOptions.AttachedToParent));
}
}
Note that the RunProducer and RunConsumer has spawn two independent tasks.

Continue with a method after completing producer-consumer

I have a producer-consumer application in WPF. After I click a button.
private async void Start_Click(object sender, RoutedEventArgs e)
{
try
{
// set up data
var producer = Producer();
var consumer = Consumer();
await Task.WhenAll(producer, consumer);
// need log the results in Summary method
Summary();
}
}
The summary method is a void one; I assume it is proper.
private void Summary(){}
async Task Producer(){ await something }
async Task Consumer(){ await something }
EDIT:
My question is in Summary() method I have to use the calculated values from the tasks, however the Consumer task is a long running process. The program run Summary quickly even not getting the updated values. It use the initial values.
My thought:
await Task.WhenAll(producer, consumer);
Summary();
EDIT2: 11:08 AM 11/05/2014
private void Summary()
{
myFail = 100 - mySuccess;
_dataContext.MyFail = myFail; // update window upon property changed
async Task Consumer()
{
try
{
Dictionary<string, string> dict = new Dictionary<string, string>();
var executionDataflowBlockOptions = new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = 5,
CancellationToken = cToken
};
var c = new ActionBlock<T>(
t=>
{
if (cToken.IsCancellationRequested)
return;
dict = Do(t, cToken);
if(dict["Success"] == "Success")
mySuccess++;
The current problem is mySuccess is always the initial value in Summary method.
You can use ContinueWith method to execute Summary after both producer and consumer have finished:
Task.WhenAll(producer, consumer)
.ContinueWith(continuation => Summary());
EDIT 1
It seems that you are abusing or using wrong the Producer/Consumer pattern.
The producer is supposed to produce the values and shovel them into one end of a communication pipe. On the other end of the pipe, the consumer consumes the values as they become available. In other words, the consumer waits for the producer to produce some value and to put the value in the pipe and for the value to arrive at the end of the pipe.
Usually this involves some sort of signaling mechanism where the producer signals (awakes) the consumer whenever a value has been created.
In your case, you don't have the signaling mechanism and I strongly suspect that your producer is generating only one value. If the later is the case you can just return a value from the "producer".
If however, your producer is creating more than one values, you can use the BlockingCollection<T> class to send values from producer to consumer.
In your Producer class, get a reference to the pipe and put data into it:
public class Producer
{
private BlockingCollection<Data> _pipe;
public void Start()
{
while(!done)
{
var value = ProduceValue();
_pipe.Add(value);
}
// Signal the consumer that we're finished
_pipe.CompleteAdding();
}
}
In the Consumer class wait for the values to arrive and process each one:
public class Consumer
{
private BlockingCollection<Data> _pipe;
public void Start()
{
foreach(var value in _pipe.GetConsumingEnumerable())
{
// GetConsumingEnumerable will block until a value arrives and
// will exit when producer calls CompleteAdding()
Process(value);
}
}
}
Having the above in place you can use ContinueWith or await on the WhenAll method to run the Summary.
EDIT 2
As promised in the comments I have analyzed the code you've posted on MSDN Forum. There are several problems in the code.
First of all and the simplest one to fix is that you're not incrementing the counter in a thread-safe manner. An increment (value++) is not an atomic operation so you should be careful when incrementing shared fields. An easy way to do this is:
Interlocked.Increment(ref evenNumber);
Now, the actual problems in your code:
As I mentioned earlier, the consumer does not know when the producer has finished producing the values. So, after the producer exits the for block it should signal that it has finished. The consumer waits for the finish signal of the producer; otherwise it will wait forever for the next value but there won't be one.
You are linking the BufferBlock with the consumer code which starts to execute but you're not waiting for the consumer block to finish - you're only waiting 0.5 of a second and exit the consumer method leaving the worker threads of the consumer block to do their work in vain.
As a consequence of the above, your Report method executes before the processing is finished outputting the value of the evenNumber counter at the moment when the method executes not when all processing is finished.
Below is the edited code with some comments:
class Program
{
public static BufferBlock<int> m_Queue = new BufferBlock<int>(new DataflowBlockOptions { BoundedCapacity = 1000 });
private static int evenNumber;
static void Main(string[] args)
{
var producer = Producer();
var consumer = Consumer();
Task.WhenAll(producer, consumer).Wait();
Report();
}
static void Report()
{
Console.WriteLine("There are {0} even numbers", evenNumber);
Console.Read();
}
static async Task Producer()
{
for (int i = 0; i < 500; i++)
{
// Send a value to the consumer and wait for the value to be processed
await m_Queue.SendAsync(i);
}
// Signal the consumer that there will be no more values
m_Queue.Complete();
}
static async Task Consumer()
{
var executionDataflowBlockOptions = new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = 4
};
var consumerBlock = new ActionBlock<int>(x =>
{
int j = DoWork(x);
if (j % 2 == 0)
// Increment the counter in a thread-safe way
Interlocked.Increment(ref evenNumber);
}, executionDataflowBlockOptions);
// Link the buffer to the consumer
using (m_Queue.LinkTo(consumerBlock, new DataflowLinkOptions { PropagateCompletion = true }))
{
// Wait for the consumer to finish.
// This method will exit after all the data from the buffer was processed.
await consumerBlock.Completion;
}
}
static int DoWork(int x)
{
Thread.Sleep(100);
return x;
}
}

Categories