Refactor my code : Avoiding casting in derived class - c#

Firstly, I feel sorry about the title, I do not know how to describe my problem exactly. I hope it will be better explained through the code.
public abstract class AB {
public MyModel Model;
}
public class A : AB {
public A() {
Model = new MyModelA();
}
public void AMethod() {
var model = (MyModelA) model; // I have to do this all place
}
public void AnotherMethod() {
var model = (MyModelA) model; // same here
model.NewInt = 123;
}
}
public abstract class MyModel {
}
public class MyModelA : MyModel {
// new properties
public int NewInt {get;set;}
}
Take a look at the code, in order to use new properties from derived class, I have to do a cast but it is ugly when I have to use it same time all over places.
The method I think is declare another property: public MyModelA _tmp then I cast it in the constructor _tmp = (MyModelA) Model and use it instead of Model.
Are there any other appropriate ways to do this ?
Thanks !

You can make the base class generic:
public abstract class ServiceBase<TModel> where TModel : new() {
protected ServiceBase() { Model = new TModel(); }
public TModel Model { get; private set; }
}
public class AService : ServiceBase<MyModelA> {
...
}

You can maintain your Model reference in the derived class:
public abstract class AB {
public MyModel Model;
}
public class A : AB {
MyModel MyModel;
public A() {
MyModel = new MyModelA();
Model = MyModel;
}
public void AMethod() {
//just use MyModel
}
public void AnotherMethod() {
MyModel.NewInt = 123;
}
}
public abstract class MyModel {
}
public class MyModelA : MyModel {
// new properties
public int NewInt {get;set;}
}

The solution with _tmp rids you of having to write that manual cast all the time, but the problem of a strange object design remains.
I would guess your NewInt is there to perform some sort of functionality that was also present in MyModel (otherwise you'd be better off creating a new class for that to begin with). I'm wondering if you can't encapsulate that functionality in a way that MyModelA does not have to expose anything new. This may mean changing the definition of AB in order to allow for such generalizations.
The answer, I believe, is neither syntactic nor easily found in a OOP pattern without understanding the domain. Maybe you can provide some details on that.

Related

How do you return a class that inherits a base class with a generic response? [duplicate]

I have the following classes
public abstract class BaseViewPresenter { }
public abstract class BaseView<T> : UserControl
where T : BaseViewPresenter { }
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter> { }
I have a method that looks like this (simplified)
public BaseView<BaseViewPresenter> Resolve(BaseViewPresenter model)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
// Correctly creates BaseView object
var control = Activator.CreateInstance(viewType);
// Fails to cast as BaseView<BaseViewPresenter> so returns null
return control as BaseView<BaseViewPresenter>;
}
When I call this using an instances of LoginPresenter
var login = new LoginPresenter();
var ctl = Resolve(login);
The line Activator.CreateInstance(viewType) correctly resolves into a new instances of my LoginView, however control as BaseView<BaseViewPresenter> can't do the cast correctly so returns null.
Is there a way to correctly cast the control into BaseView<BaseViewPresenter> without using specific type generics?
Since LoginView inherits from BaseView<LoginPresenter>, and LoginPresenter inherits from BaseViewPresenter, I would assume there's a way to convert LoginView to BaseView<BaseViewPresenter>.
I am stuck with using .Net 3.5
This is a very frequently asked question. Let's rename your types:
abstract class Fruit { } // was BaseViewPresenter
abstract class FruitBowl<T> where T : Fruit // was BaseView
class Apple : Fruit { } // was LoginPresenter
class BowlOfApples : FruitBowl<Apple> { } // was LoginView
Your question now is:
I have a BowlOfApples, which inherits from FruitBowl<Apple>. Why can I not use it as a FruitBowl<Fruit>? An apple is a fruit, so a bowl of apples is a bowl of fruit.
No, it isn't. You can put a banana in a bowl of fruit, but you can't put a banana in a bowl of apples, and therefore a bowl of apples is not a bowl of fruit. (And by similar argument, a bowl of fruit is not a bowl of apples either.) Since the operations you can legally perform on the two types are different, they cannot be compatible.
Here is a photo of StackOverflow legend Jon Skeet demonstrating this fact:
The feature you want is called generic contravariance, and it is supported only on interfaces and delegate types when the compiler can prove that the variance is safe, and when the varying type is a reference type. For example, you can use an IEnumerable<Apple> in a context where IEnumerable<Fruit> is needed because the compiler can verify that there is no way that you can put a Banana into a sequence of fruit.
Do a search on "C# covariance and contravariance" on this site or on the web and you'll find many more details about how this feature works. In particular, my series of articles on how we designed and implemented this feature in C# 4 starts here: http://blogs.msdn.com/b/ericlippert/archive/2007/10/16/covariance-and-contravariance-in-c-part-one.aspx
I accepted Eric's answer since it provides a great explanation of why what I wanted wasn't possible, but I also thought I'd share my solution in case anyone else runs into this same problem.
I removed the generic type parameter from my original BaseView class, and created a 2nd version of the BaseView class that included the generic type parameter and specifics for it.
The first version is used by my .Resolve() method or other code that doesn't care about the specific types, and the second version is used by any code that does care, such as the implentation of a BaseView
Here's an example of how my code ended up looking
// base classes
public abstract class BaseViewPresenter { }
public abstract class BaseView : UserControl
{
public BaseViewPresenter Presenter { get; set; }
}
public abstract class BaseView<T> : BaseView
where T : BaseViewPresenter
{
public new T Presenter
{
get { return base.Presenter as T; }
set { base.Presenter = value; }
}
}
// specific classes
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter>
{
// Can now call things like Presenter.LoginPresenterMethod()
}
// updated .Resolve method used for obtaining UI object
public BaseView Resolve(BaseViewPresenter presenter)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
BaseView view = Activator.CreateInstance(viewType) as BaseView;
view.Presenter = presenter;
return view;
}
You're expecting to treat the type as being covariant with respect to the generic argument. Classes can never be covariant; you'd need to use an interface rather than (or in addition to) an abstract class to make it covariant with respect to T. You'd also need to be using C# 4.0.
My usual solution to this problem is to create an intermediary class that has access to the type-parametric class's methods through delegates. Fields can also be accessed through getters/setters.
The general pattern goes:
public abstract class Super {}
public abstract class MyAbstractType<T> where T : Super {
public MyGeneralType AsGeneralType() {
return MyGeneralType.Create(this);
}
// Depending on the context, an implicit cast operator might make things
// look nicer, though it might be too subtle to some tastes.
public static implicit operator MyGeneralType(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
public int field;
public void MyMethod1() {}
public void MyMethod2(int argument) {}
public abstract bool MyMethod3(string argument);
}
public delegate T Getter<T>();
public delegate void Setter<T>(T value);
public delegate void MyMethod1Del();
public delegate void MyMethod2Del(int argument);
public delegate bool MyMethod3Del(string argument);
public class MyGeneralType {
public Getter<int> FieldGetter;
public Setter<int> FieldSetter;
public MyMethod1Del MyMethod1;
public MyMethod2Del MyMethod2;
public MyMethod3Del MyMethod3;
public static MyGeneralType Create<T>(MyAbstractType<T> t) where T : Super {
var g = new MyGeneralType();
g.FieldGetter = delegate { return t.field; };
g.FieldSetter = value => { t.field = value; };
g.MyMethod1 = t.MyMethod1;
g.MyMethod2 = t.MyMethod2;
g.MyMethod3 = t.MyMethod3;
return g;
}
public int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
The above exemplifies getting all the methods and fields but normally I only need a few of them. This is a general solution to the problem and one could feasibly write a tool to generate these intermediary classes automatically, which I might at some point.
Try it here: https://dotnetfiddle.net/tLkmgR
Note that this is enough for all my cases, but you can be extra hacky with this:
public abstract class MyAbstractType<T> where T : Super {
// ... Same everything else ...
// data fields must become abstract getters/setters, unfortunate
public abstract int field {
get;
set;
}
public static implicit operator MyAbstractType<Super>(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
}
public class MyGeneralType : MyAbstractType<Super> {
// ... same constructors and setter/getter
// fields but only keep method fields
// that contain the method references for
// implementations of abstract classes,
// and rename them not to clash with the
// actual method names ...
public MyMethod3Del myMethod3Ref;
// Implement abstract methods by calling the corresponding
// method references.
public override bool MyMethod3(string argument) {
return myMethod3Ref(argument);
}
// Same getters/setters but with override keyword
public override int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
And there you go, now you can literally cast a MyAbstractType<Sub> where Sub : Super to a MyAbstractType<Super>, although it's no longer the same object anymore, but it does retain the same methods and data, it's sort of a complex pointer.
public class Sub : Super {}
public class MySubType : MyAbstractType<Sub> {
public int _field;
public override int field {
get { return _field; }
set { _field = value; }
}
public override bool MyMethod3(string argument) {
Console.WriteLine("hello " + argument);
return argument == "world";
}
}
public class MainClass {
public static void Main() {
MyAbstractType<Sub> sub = new MyAbstractType<Sub>();
MyAbstractType<Super> super = sub;
super.MyMethod3("hello"); // calls sub.MyMethod3();
super.field = 10; // sets sub.field
}
}
This isn't as good in my opinion, the other version of MyGeneralType is a more straighforward layer over the concrete types, plus it doesn't require rewriting the data fields, but it does actually answer the question, technically. Try it here: https://dotnetfiddle.net/S3r3ke
Example
Using these abstract classes:
public abstract class Animal {
public string name;
public Animal(string name) {
this.name = name;
}
public abstract string Sound();
}
public abstract class AnimalHouse<T> where T : Animal {
List<T> animals;
public AnimalHouse(T[] animals) {
this.animals = animals.ToList();
}
public static implicit operator GeneralAnimalHouse(AnimalHouse<T> house) {
return GeneralAnimalHouse.Create(house);
}
public List<string> HouseSounds() {
return animals.Select(animal => animal.Sound()).ToList();
}
}
We make this "general" variant:
public delegate List<string> HouseSoundsDel();
public class GeneralAnimalHouse {
public HouseSoundsDel HouseSounds;
public static GeneralAnimalHouse Create<T>(AnimalHouse<T> house) where T : Animal {
var general = new GeneralAnimalHouse();
general.HouseSounds = house.HouseSounds;
return general;
}
}
And finally with these inheritors:
public class Dog : Animal {
public Dog(string name) : base(name) {}
public override string Sound() {
return name + ": woof";
}
}
public class Cat : Animal {
public Cat(string name) : base(name) {}
public override string Sound() {
return name + ": meow";
}
}
public class DogHouse : AnimalHouse<Dog> {
public DogHouse(params Dog[] dogs) : base(dogs) {}
}
public class CatHouse : AnimalHouse<Cat> {
public CatHouse(params Cat[] cats) : base(cats) {}
}
We use it like this:
public class AnimalCity {
List<GeneralAnimalHouse> houses;
public AnimalCity(params GeneralAnimalHouse[] houses) {
this.houses = houses.ToList();
}
public List<string> CitySounds() {
var random = new Random();
return houses.SelectMany(house => house.HouseSounds())
.OrderBy(x => random.Next())
.ToList();
}
}
public class MainClass {
public static void Main() {
var fluffy = new Cat("Fluffy");
var miu = new Cat("Miu");
var snuffles = new Cat("Snuffles");
var snoopy = new Dog("Snoopy");
var marley = new Dog("Marley");
var megan = new Dog("Megan");
var catHouse = new CatHouse(fluffy, miu, snuffles);
var dogHouse = new DogHouse(snoopy, marley, megan);
var animalCity = new AnimalCity(catHouse, dogHouse);
foreach (var sound in animalCity.CitySounds()) {
Console.WriteLine(sound);
}
}
}
Output:
Miu: meow
Snoopy: woof
Snuffles: meow
Fluffy: meow
Marley: woof
Megan: woof
Notes:
I added names so it's clear that the method references carry their owner's data with them, for those unfamiliar with delegates.
The required using statements for this code are System, System.Collections.Generic, and System.Linq.
You can try it here: https://dotnetfiddle.net/6qkHL3#
A version that makes GeneralAnimalHouse a subclass of AnimalHouse<Animal> can be found here: https://dotnetfiddle.net/XS0ljg

Adding a generic method constraint from the another generic class

I'm not sure the title reflect the question that I was meant, but..
Let's say I have two classes, Entity and Component:
public abstract class Entity
{
private List<Component> _components = new List<Component>();
public void AddComponent<T>()
where T : Component
{
T component = (T)Activator.CreateInstance(typeof(T));
component.Owner = this;
_components.Add(component);
}
}
public abstract class Component
{
public Entity Owner { get; protected set; }
public abstract void Update();
}
As you may notice, above classes are abstract classes which mean is not intended for direct use. However, on the later stage of development, I'm aware that some Component require ability that only attachable / Added by specific class that inherited to Entity class.
So, I added a class Component<T> that inherit Component:
public abstract class Entity
{
private List<Component> _components = new List<Component>();
public void AddComponent<T>()
where T : Component
{
T component = (T)Activator.CreateInstance(typeof(T));
component.Owner = this;
_components.Add(component);
}
}
public abstract class Component
{
public Entity Owner { get; protected set; }
public abstract void Update();
}
public abstract class Component<T> : Component
{
// I hide the base.Owner with new keyword
// feel free to suggest me in case there is better approach to do this
new public T Owner
{
get { return (T)base.Owner; }
protected set { base.Owner = value; }
}
}
And now, let's say I have Foo, Bar and Processor class:
public class Foo : Entity
{
public int FooValue { get; set; }
}
public class Bar : Entity
{
public int BarValue { get; set; }
}
public class Processor : Component<Foo>
{
public override void Update()
{
Owner.FooValue = 10;
}
}
What I want to do is to make Processor class only add-able by Foo object. Currently AddComponent ignore it, so I don't know how to do that:
var foo = new Foo();
var bar = new Bar();
foo.AddComponent<Processor>(); // OK
bar.AddComponent<Processor>(); // Compiler should give an error at this point
I also tried to do this:
public void AddComponent<T, X>()
where T : Component<X>
where X : Entity
{
T component = (T)Activator.CreateInstance(typeof(T));
component.Owner = this;
_components.Add(component);
}
However, it require me to explicitly specify the X constraint:
foo.AddComponent<Processor, Foo>();
bar.AddComponent<Processor, Bar>(); // Error, but the syntax is weird!
Any ideas?
Your post isn't clear on what constraints, if any, you have on your basic Entity and Component classes. So I don't know if the below will be feasible in your scenario. That said, I believe that if it's not, you won't be able to do what you want because otherwise the generic type parameters won't be known by the compiler.
The solution, absent any other constraints, is to make your Entity class generic, and provide the sub-class type itself as the type parameter:
class Entity { }
class Entity<T> : Entity where T : Entity<T>
{
public void AddComponent<U>(U value) where U : Component<T> { }
}
class Component<T> where T : Entity { }
class Foo : Entity<Foo> { }
class Bar : Entity<Bar> { }
class P : Component<Foo> { }
I know it looks weird. But you're basically asking for a self-referential graph of generic type dependencies, and in C# code the above is what that looks like.
You can call the AddComponent() method using type inference (so no generic parameter needed). If you try to call it with the wrong type of Component<T> object, you'll get a compiler error:
Foo foo = new Foo();
Bar bar = new Bar();
P p = new P();
foo.AddComponent(p);
bar.AddComponent(p); // CS0311
Note: I would strongly recommend against hiding class members. It doesn't really affect your question as stated (i.e. you could have left that detail out completely), but having two different properties with the same name is just asking for bugs. If you must use hiding, IMHO you should at least have the new property use the hidden property. E.g.:
class Component
{
public Entity Owner { get; protected set; }
}
class Component<T> : Component where T : Entity
{
new public T Owner
{
get { return (T)base.Owner; }
set { base.Owner = value; }
}
}
You won't get compile-time checking on assignments to the non-generic Component.Owner property, but at least you'll get a run-time error if some code tries to dereference the Owner property as the generic version, if and when the wrong type was assigned by the base type for some reason.

How to correctly cast a class to an abstract class when using type generics?

I have the following classes
public abstract class BaseViewPresenter { }
public abstract class BaseView<T> : UserControl
where T : BaseViewPresenter { }
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter> { }
I have a method that looks like this (simplified)
public BaseView<BaseViewPresenter> Resolve(BaseViewPresenter model)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
// Correctly creates BaseView object
var control = Activator.CreateInstance(viewType);
// Fails to cast as BaseView<BaseViewPresenter> so returns null
return control as BaseView<BaseViewPresenter>;
}
When I call this using an instances of LoginPresenter
var login = new LoginPresenter();
var ctl = Resolve(login);
The line Activator.CreateInstance(viewType) correctly resolves into a new instances of my LoginView, however control as BaseView<BaseViewPresenter> can't do the cast correctly so returns null.
Is there a way to correctly cast the control into BaseView<BaseViewPresenter> without using specific type generics?
Since LoginView inherits from BaseView<LoginPresenter>, and LoginPresenter inherits from BaseViewPresenter, I would assume there's a way to convert LoginView to BaseView<BaseViewPresenter>.
I am stuck with using .Net 3.5
This is a very frequently asked question. Let's rename your types:
abstract class Fruit { } // was BaseViewPresenter
abstract class FruitBowl<T> where T : Fruit // was BaseView
class Apple : Fruit { } // was LoginPresenter
class BowlOfApples : FruitBowl<Apple> { } // was LoginView
Your question now is:
I have a BowlOfApples, which inherits from FruitBowl<Apple>. Why can I not use it as a FruitBowl<Fruit>? An apple is a fruit, so a bowl of apples is a bowl of fruit.
No, it isn't. You can put a banana in a bowl of fruit, but you can't put a banana in a bowl of apples, and therefore a bowl of apples is not a bowl of fruit. (And by similar argument, a bowl of fruit is not a bowl of apples either.) Since the operations you can legally perform on the two types are different, they cannot be compatible.
Here is a photo of StackOverflow legend Jon Skeet demonstrating this fact:
The feature you want is called generic contravariance, and it is supported only on interfaces and delegate types when the compiler can prove that the variance is safe, and when the varying type is a reference type. For example, you can use an IEnumerable<Apple> in a context where IEnumerable<Fruit> is needed because the compiler can verify that there is no way that you can put a Banana into a sequence of fruit.
Do a search on "C# covariance and contravariance" on this site or on the web and you'll find many more details about how this feature works. In particular, my series of articles on how we designed and implemented this feature in C# 4 starts here: http://blogs.msdn.com/b/ericlippert/archive/2007/10/16/covariance-and-contravariance-in-c-part-one.aspx
I accepted Eric's answer since it provides a great explanation of why what I wanted wasn't possible, but I also thought I'd share my solution in case anyone else runs into this same problem.
I removed the generic type parameter from my original BaseView class, and created a 2nd version of the BaseView class that included the generic type parameter and specifics for it.
The first version is used by my .Resolve() method or other code that doesn't care about the specific types, and the second version is used by any code that does care, such as the implentation of a BaseView
Here's an example of how my code ended up looking
// base classes
public abstract class BaseViewPresenter { }
public abstract class BaseView : UserControl
{
public BaseViewPresenter Presenter { get; set; }
}
public abstract class BaseView<T> : BaseView
where T : BaseViewPresenter
{
public new T Presenter
{
get { return base.Presenter as T; }
set { base.Presenter = value; }
}
}
// specific classes
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter>
{
// Can now call things like Presenter.LoginPresenterMethod()
}
// updated .Resolve method used for obtaining UI object
public BaseView Resolve(BaseViewPresenter presenter)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
BaseView view = Activator.CreateInstance(viewType) as BaseView;
view.Presenter = presenter;
return view;
}
You're expecting to treat the type as being covariant with respect to the generic argument. Classes can never be covariant; you'd need to use an interface rather than (or in addition to) an abstract class to make it covariant with respect to T. You'd also need to be using C# 4.0.
My usual solution to this problem is to create an intermediary class that has access to the type-parametric class's methods through delegates. Fields can also be accessed through getters/setters.
The general pattern goes:
public abstract class Super {}
public abstract class MyAbstractType<T> where T : Super {
public MyGeneralType AsGeneralType() {
return MyGeneralType.Create(this);
}
// Depending on the context, an implicit cast operator might make things
// look nicer, though it might be too subtle to some tastes.
public static implicit operator MyGeneralType(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
public int field;
public void MyMethod1() {}
public void MyMethod2(int argument) {}
public abstract bool MyMethod3(string argument);
}
public delegate T Getter<T>();
public delegate void Setter<T>(T value);
public delegate void MyMethod1Del();
public delegate void MyMethod2Del(int argument);
public delegate bool MyMethod3Del(string argument);
public class MyGeneralType {
public Getter<int> FieldGetter;
public Setter<int> FieldSetter;
public MyMethod1Del MyMethod1;
public MyMethod2Del MyMethod2;
public MyMethod3Del MyMethod3;
public static MyGeneralType Create<T>(MyAbstractType<T> t) where T : Super {
var g = new MyGeneralType();
g.FieldGetter = delegate { return t.field; };
g.FieldSetter = value => { t.field = value; };
g.MyMethod1 = t.MyMethod1;
g.MyMethod2 = t.MyMethod2;
g.MyMethod3 = t.MyMethod3;
return g;
}
public int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
The above exemplifies getting all the methods and fields but normally I only need a few of them. This is a general solution to the problem and one could feasibly write a tool to generate these intermediary classes automatically, which I might at some point.
Try it here: https://dotnetfiddle.net/tLkmgR
Note that this is enough for all my cases, but you can be extra hacky with this:
public abstract class MyAbstractType<T> where T : Super {
// ... Same everything else ...
// data fields must become abstract getters/setters, unfortunate
public abstract int field {
get;
set;
}
public static implicit operator MyAbstractType<Super>(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
}
public class MyGeneralType : MyAbstractType<Super> {
// ... same constructors and setter/getter
// fields but only keep method fields
// that contain the method references for
// implementations of abstract classes,
// and rename them not to clash with the
// actual method names ...
public MyMethod3Del myMethod3Ref;
// Implement abstract methods by calling the corresponding
// method references.
public override bool MyMethod3(string argument) {
return myMethod3Ref(argument);
}
// Same getters/setters but with override keyword
public override int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
And there you go, now you can literally cast a MyAbstractType<Sub> where Sub : Super to a MyAbstractType<Super>, although it's no longer the same object anymore, but it does retain the same methods and data, it's sort of a complex pointer.
public class Sub : Super {}
public class MySubType : MyAbstractType<Sub> {
public int _field;
public override int field {
get { return _field; }
set { _field = value; }
}
public override bool MyMethod3(string argument) {
Console.WriteLine("hello " + argument);
return argument == "world";
}
}
public class MainClass {
public static void Main() {
MyAbstractType<Sub> sub = new MyAbstractType<Sub>();
MyAbstractType<Super> super = sub;
super.MyMethod3("hello"); // calls sub.MyMethod3();
super.field = 10; // sets sub.field
}
}
This isn't as good in my opinion, the other version of MyGeneralType is a more straighforward layer over the concrete types, plus it doesn't require rewriting the data fields, but it does actually answer the question, technically. Try it here: https://dotnetfiddle.net/S3r3ke
Example
Using these abstract classes:
public abstract class Animal {
public string name;
public Animal(string name) {
this.name = name;
}
public abstract string Sound();
}
public abstract class AnimalHouse<T> where T : Animal {
List<T> animals;
public AnimalHouse(T[] animals) {
this.animals = animals.ToList();
}
public static implicit operator GeneralAnimalHouse(AnimalHouse<T> house) {
return GeneralAnimalHouse.Create(house);
}
public List<string> HouseSounds() {
return animals.Select(animal => animal.Sound()).ToList();
}
}
We make this "general" variant:
public delegate List<string> HouseSoundsDel();
public class GeneralAnimalHouse {
public HouseSoundsDel HouseSounds;
public static GeneralAnimalHouse Create<T>(AnimalHouse<T> house) where T : Animal {
var general = new GeneralAnimalHouse();
general.HouseSounds = house.HouseSounds;
return general;
}
}
And finally with these inheritors:
public class Dog : Animal {
public Dog(string name) : base(name) {}
public override string Sound() {
return name + ": woof";
}
}
public class Cat : Animal {
public Cat(string name) : base(name) {}
public override string Sound() {
return name + ": meow";
}
}
public class DogHouse : AnimalHouse<Dog> {
public DogHouse(params Dog[] dogs) : base(dogs) {}
}
public class CatHouse : AnimalHouse<Cat> {
public CatHouse(params Cat[] cats) : base(cats) {}
}
We use it like this:
public class AnimalCity {
List<GeneralAnimalHouse> houses;
public AnimalCity(params GeneralAnimalHouse[] houses) {
this.houses = houses.ToList();
}
public List<string> CitySounds() {
var random = new Random();
return houses.SelectMany(house => house.HouseSounds())
.OrderBy(x => random.Next())
.ToList();
}
}
public class MainClass {
public static void Main() {
var fluffy = new Cat("Fluffy");
var miu = new Cat("Miu");
var snuffles = new Cat("Snuffles");
var snoopy = new Dog("Snoopy");
var marley = new Dog("Marley");
var megan = new Dog("Megan");
var catHouse = new CatHouse(fluffy, miu, snuffles);
var dogHouse = new DogHouse(snoopy, marley, megan);
var animalCity = new AnimalCity(catHouse, dogHouse);
foreach (var sound in animalCity.CitySounds()) {
Console.WriteLine(sound);
}
}
}
Output:
Miu: meow
Snoopy: woof
Snuffles: meow
Fluffy: meow
Marley: woof
Megan: woof
Notes:
I added names so it's clear that the method references carry their owner's data with them, for those unfamiliar with delegates.
The required using statements for this code are System, System.Collections.Generic, and System.Linq.
You can try it here: https://dotnetfiddle.net/6qkHL3#
A version that makes GeneralAnimalHouse a subclass of AnimalHouse<Animal> can be found here: https://dotnetfiddle.net/XS0ljg

Can I define a property which is available to both the class type and instances of the class?

I have an interface for a base class, and every class that inherits from the base class should have an identifying field which tells the application what kind of object it is.
I wanted to use this property in two different ways:
Without creating an instance of the object
if (someValue == TestA.Id)
return new TestA();
elseif (someValue == TestB.Id)
return new TestB();
And as a property of the interface
void DoSomething(ITest testObject)
{
SomeValue = testObject.Id;
}
Is there an easy way to define the Id field in the interface, but still have it available to use without creating an instance of the class?
Right now I am using the following code. I could add a read-only Id property to the interface which returns the const string, however I was hoping there was a simpler way that I'm just not aware of.
public interface ITest
{
}
public class TestA : ITest
{
public const string Id = "A";
}
In short - no.
In order to be able to do this, you'd need to be able to specify this as a instance property on the interface (and implement it in the instance), and as a static property on the type.
The compiler won't let you do this.
You can put it in the interface, and also have it as a static property. Something like:
interface IInterface { Id { get; } }
class Class : IInterface
{
public static Id { get { return 1; } }
public Id { get { return Class.Id; } }
}
I've faced a similar problem, Rachel, and I've always (unfortunately) resorted to having that factory code rely on reflection to get a "TypeID" public static property on each concrete type... thus making an additional aspect of the contractual interface, but not having it in the C# interface code.
You could do it this way.
public interface ITest
{
SomeValue Id{ get;}
}
public class TestA : ITest
{
public SomeValue Id
{
get {return TestA.StaicId; }
}
public static SomeValue StaticId
{
get {return "This is TestA";}
}
}
if (someValue == TestA.StaticId)
return new TestA();
How about using attributes? Here's a small example of what can be done:
[AttributeUsage(AttributeTargets.Class, Inherited = false, AllowMultiple = false)]
public class IdAttribute : Attribute
{
public IdAttribute(string id)
{
this.Id = id;
}
public string Id { get; set; }
}
public interface IMyInterface
{
}
public abstract class BaseClass : IMyInterface
{
public static string GetId<T>() where T : IMyInterface
{
return ((IdAttribute)typeof(T).GetCustomAttributes(typeof(IdAttribute), true)[0]).Id;
}
}
[Id("A")]
public class ImplA : BaseClass
{
}
[Id("B")]
public class ImplB : BaseClass
{
}
internal class Program
{
private static void Main(string[] args)
{
var val1 = BaseClass.GetId<ImplA>();
var val2 = BaseClass.GetId<ImplB>();
Console.ReadKey();
}
}

C#: Generic Inherited Factories

I have a base class that takes a single generic argument. I then have several classes that inherit from this base class. Is there a simple way for the child classes to inherent a factory from the base class?
Example
class BaseClass<T>
{
T Value {get; set;}
string Name {get; set;}
public static BaseClass<T> Factory(T Value)
{
return new BaseClass<T>(Value);
}
}
class ChildClass : BaseClass<int>
{
public void Test()
{
// I want this below to work
// but Factory() returns a BaseClass
ChildClass bs = ChildClass.Factory(10);
}
}
I've noted in the code what I want to work. I can think of one way to overcome this, by adding an implicit operator to either BaseClass or SubClass that converts from BaseClass to ChildClass.
I can also just explicitly add the Factory to ChildClass but that defeats the point of inheritance.
Is there a better, more standardized way of doing this?
I would do something like this:
class BaseClass<T, K> where K : BaseClass<T, K>, new()
{
T Value { get; set; }
string Name { get; set; }
public static K Factory(T value)
{
return new K { Value = value };
}
}
class ChildClass : BaseClass<int, ChildClass>
{
public void Test()
{
ChildClass cs = Factory(10);
}
}
It's a bit hard to answer your question since you have described what you are trying to do, but not why. Hence I got to try to guess what you want.
I would not put the factory method in the same class as in the other answer or your question. How would you handle inheritance for once? It works for the two levels that you have. But what if you want to extend ChildClass?
Instead I would create a generic factory used for the object creation. Implement it has a singleton wrapped around a factory interface to be able to easy extend it or swap the implementation.
class MyFactory
{
private static IMyFactory _instance;
public static void Assign(IMyFactory factory) { _instance = factory; }
public static T Create<T>() { return _instance.Create<T>(); }
}
interface IMyFactory
{
T Create<T>();
}
class MyFactoryImp : IMyFactory
{
//do whatever needed in here
public T Create<T>(){ return new T(); }
}
class BaseClass<T>
{
T Value {get; set;}
string Name {get; set;}
}
class ChildClass : BaseClass<int>
{
public void Test()
{
ChildClass bs = MyFactory.Create<ChildClass>(10);
}
}
// start with this, you can easily switch implementation
MyFactory.Assign(new MyFactoryImp());
The other obvious answer would be to start using a Inversion Of Control container, for example autofac.

Categories