Uniting TCP and UDP in C# - c#

So ideally, I am looking for a way to unite TCP and UDP on the server and manage both these connections under individual client threads. Currently, I am wondering if it is possible to accept a TCP connection and set up UDP communication from that.
Here is my ideal setup:
Client connects on TCP to server via TCPClient.connect()
Server accepts TCP connection via TCPListener
when server accepts TCP connection, it also gets the IPEndpoint from the TCP connection
and uses that to begin UDP communcation with:
serverUDPSocket.BeginReceiveFrom (byteData, 0, 1024,
SocketFlags.None, ref (Endpoint)ThatIPEndpointThatIJustMentioned,
new AsyncCallback(client.receiveUDP),
(Endpoint)ThatIPEndpointThatIJustMentioned);
^so this is where I am running into a little bit of a theoretical issue. From my understanding, the endpoints for TCP and UDP would be formatted differently. How can I resolve this issue? I would like to avoid having the client connect to UDP on a separate thread and then uniting these threads under a single managing class.
EDIT:
Here is the code that I am trying to implement:
//Listening for TCP
TcpClient newclient = listenTCP.AcceptTcpClient(); //Accept the client
Client clientr = new Client(newclient); //Create a new Client class to manage the connection
clientr.actionThread = new Thread(clientr.action); //This thread manages the data flow from the client via the TCP stream
clientr.actionThread.Start(clientr);
EndPoint endPoint = newclient.Client.RemoteEndPoint; //so this is the sketchy part. I am trying to get the endpoint from the TCP connection to set up a UDP "connection". I am unsure about the compatibility as UDP and TCP sockets are different.
UDPSocket.BeginReceiveFrom(new byte[1024],0,1024, SocketFlags.None,ref endPoint, new AsyncCallback(clientr.receiveUDP), null); //the AsyncCallBack is like the manager thread for UDP (same as in TCP)
clients.Add(clientr);

There is no problem in creating two listeners in one application, even if they use different protocol. I suppose you are not asking if you can do it on the same port (there is no point to do it anyway).
However listener is consuming thread so it need different thread if there is gui or some process to do in application (for example calculations meanwhile).
If you want to do everything in one thread you must first receive message from first listener, then setup second one. There is no possibility to setup 2 listeners in one thread at the same time because if you setup first listener it will consome whole thread waiting for message.

This was due to a lack of understanding of UDP on my part from the code level.
I ended up setting up the other method I described where it would accept initial UDP packets individually and then direct the communication (EndPoint + Message) towards a managing client class by comparing IP addresses.

Related

synchronous multiple socket client clarification

I am going to create multiple synchronous clients . I need some explanation about below code.
When i am creating a socket like below and call connect what is happening at network level.
I believe when we create a socket and call connect, a TCP/IP connection a tunnel made between client socket and server socket.
Once this sender(socket) connect with server ,that client & server will have a unique tunnel between them.
if i create another client it will have another unique tunnel between them.
In case if we got an error, that the client is not connected, always we should reconnect using existing socket(sender) then we will access the same data/connection that we had.
And we should not create a new socket then we will have a new tunnel and we will lost the previous connection and data.
Socket sender = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp );
sender.Connect(remoteEndpoint)
Please clarify if i am wrong.
What you call tunnel is really called a connection. Broken connections cannot be revived. Data loss is to be expected.
When you reuse an existing socket object to connect again you are creating a new connection. Reusing socket objects is not recommended (by me) because it is confusing.
Note, that TCP does not know what a socket is. The spec does not contain that word. Sockets are OS-level things.

A service that makes tcp connections to multiple clients

Most of the examples online are examples of a multithreaded tcp server, whereby the server listens for multiple incoming connections from the client.
What I'm looking for is for the "server", to initiate the connections. If I have 100 devices (all different IP address of course), my server will have to make 100 individual connections to each device and receive data from the devices.
This is how I would make my connection to a device
_socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
_socket.SetSocketOption(SocketOptionLevel.Tcp, SocketOptionName.NoDelay, true);
_socket.SendTimeout = 2000;
_socket.ReceiveTimeout = 2000;
_socket.Connect(new IPEndPoint(IPAddress, TCPPort));
But I would like to know if there's any component out there, that would fulfill the following
establish as many tcp connections as I want to the devices
receive & send data through the connection
handle tcp timeouts/disconnects/etc & re-establish connection to the IP
If there aren't any of such components, are there any tips as to how I should go about doing it? e.g., 1 connection per thread, or how do I handle if the data is received in multiple packets, etc?
Any insights would be greatly appreciated
There are several existing components out there that you could use to achieve what you want. Checkout http://www.networkcomms.net and http://code.google.com/p/lidgren-network-gen3/.
Having said that people always prefer to add that there is nothing stopping you writing everything from scratch yourself as per the example you give.
Disclaimer: I'm a developer for NetworkComms.Net.

C# Async Sockets Concept

This is my listening function and connection function
Socket Listen
public void Listen(){
IPEndPoint ep = new IPEndPoint(IPAddress.Any, PortNumber);
Listen.Bind(ep);
Listen.Listen(10);
Listen.BeginAccept(new AsyncCallback(NewConnection), null);}
public void NewConnection(IAsyncResult asyn)
{
Socket Accepted = Listen.EndAccept(asyn);
Listen.BeginAccept(new AsyncCallback(NewConnection), null);
SomeFunction(Accepted);
}
the code works fine and there is no problem - I traced the code to see how to work with different clients and I understand the flow. However, I don't understand how can 1 socket serve different clients. Does it time multiplex between the clients over the socket?
I read on MSDN that Accepted in my code can be only used for the established connection and can't be used any further - that part I don't understand. What actually happens when the client tries to connect to the server socket? Does EndAccept return a totally different socket with different port to establish the connection and keep listening with the same socket to accept more requests at the same time?
What you've said is basically correct, based on my understanding. The Accepted socket is not the same as Listen. After you EndAccept, you can kick off another BeginAccept async call with your listen socket, and you can use the newly created socket to communicate with your remote peer.
To verify, you can check the local port of the listen socket and the connected socket; they should be different.

Server/client sockets

Ok so I am new to socket programing and I'm making a game that is going to run from a server. I am going to try to be able to get a hundred clients to run off my server. Should I make one listener instance or one for every client? Also I've tried to make a hundred listeners all at 100 different ports but when I run my server I get an error while trying to start my listeners. The game is going to be a 3D RPG/MMORPG. Most of the game logic is in the clients though. What do you think that I should do?
If you are going to use TCP sockets, then you should create one listener socket (i.e. create a socket, bind it to a specific port and call Listen() on it). Then, when you Accept a connection and get another socket, which you use for receiving/sending data from/to client:
Socket socketListener;
// create listening socket
socketListener = new Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);
IPEndPoint ipLocal = new IPEndPoint(IPAddress.Any, 30120); // use port 30120
//bind to local IP Address.
socketListener.Bind(ipLocal);
//start listening
socketListener.Listen(4);
while (true) // loop that accepts client connections
{
Socket socketWorker = socketListener.Accept();
HandleClientConnection(socketWorker); // your routine where you communicate with a client
}
Also, consider using sockets in asynchronous mode, that will be more efficient in terms of performance.
You only ever have one listener per server endpoint. The listener will then create a connection for the client that uses a different port. It is this connection you actually use for communication.

Confused about Sockets with UDP Protocol in C#

I've just started learning Sockets through various Google searches but I'm having some problems figuring it out how to properly use Sockets in C# and I'm in the need of some help.
I have a test application (Windows Forms) and on a different class (which is actually in it's own .dll, but that's irrelevant) I have all the server/client code for my sockets code.
Question 1)
On my test application, on the server part, the user can click the "start listening" button and the server part of my sockets application should start listening for connections on the specified address and port, so far so good.
However, the application will be blocked and I can't do anything until someone connects to the server. What if no one connects? How should I handle that? I could specify a receive timeout but what then? It throws an exception, what can I do with that? What I would like is to have some sort of activity on the main application so the user knows the application didn't froze and is waiting for connections. But if a connection doesn't come, it should timeout and close everything.
Maybe I should use asynchronous calls to send/receive methods but they seem confusing and I was not able to make it work, only synchronous work (I'll post my current code below).
Question 2)
Do I need to close anything when some send/receive call times out. As you'll see on my current code, I have a bunch of closes on the socket, but this doesn't feel right somehow. But it also doesn't feel right when an operation times out and I don't close the socket.
In conclusion of my two questions.... I would like an application that doesn't block so the user knows the server is waiting for a connection (with a little marquee animation for instance). If a connection is never established after a period of time, I want to close everything that should be closed. When a connection is established or if it doesn't happen after a period of time, I would like to inform the main application of the result.
Here's some of my code, the rest is similar. The Packet class is a custom class that represents my custom data unit, it's just a bunch of properties based on enums for now, with methods to convert them to bytes and back into properties.
The function that starts to listen for connections is something like this:
public void StartListening(string address, int port) {
try {
byte[] bufferBytes = new byte[32];
if(address.Equals("0.0.0.0")) {
udpSocket.Bind(new IPEndPoint(IPAddress.Any, port));
} else {
udpSocket.Bind(new IPEndPoint(IPAddress.Parse(address), port));
}
remoteEndPoint = new IPEndPoint(IPAddress.Any, 0);
int numBytesReceived = udpSocket.ReceiveFrom(bufferBytes, ref remoteEndPoint);
if(numBytesReceived == 0) {
udpSocket.Close();
return;
}
Packet syncPacket = new Packet(bufferBytes);
if(syncPacket.PacketType != PacketType.Control) {
udpSocket.Close();
return;
}
} catch {
if(udpSocket != null) {
udpSocket.Close();
}
}
}
I'm sure that I have a bunch of unnecessary code but I'm new at this and I'm not sure what do, any help fixing up my code and how to solve the issues above is really appreciated.
EDIT:
I should probably have stated that my requirements are to use UDP and implement these things myself in the application layer. You can consider this as homework but I haven't tagged as such because the code is irrelevant and will not be part of my grade and my problem (my question) is in "how to code" as my Sockets experience is minimal and it's not taught.
However I must say that I solved my problem for now I think... I was using threading on the demo application which was giving me some problems, now I'm using it in the protocol connections, makes more sense and I can easily change my custom protocol class properties and read those from the demo application.
I have specified a timeout and throw a SocketException if it reaches the timeout. Whenever an exception like this is caught, the socket connection is closed. I'm just talking about the connection handshake, nothing more. If no exceptions are caught, the code probably went smooth and the connection is established.
Please adapt your answers accordingly. Right now it doesn't make sense for me to marky any of them as the accepted answer, hope you understand.
You have got stuff a bit wrong.
First of all, UDP is connection-less. You do not connect or disconnect. All you do is to send and receive (must specify destination each time). You should also know that the only thing UDP promises is that a complete message arrives on each read. UDP do not guarantee that your messages arrive in the correct order or that they arrive at all.
TCP on the other hand is connection-based. You connect, send/receive and finally disconnect. TCP is stream-based (while UDP is message-based) which means that you can get a half message in the first read and the other half at the second read. TCP promises you that everything will arrive and in the correct order (or will die trying ;). So using TCP means that you should have some kind of logic to know when a complete message has arrived and a buffer that you use to build the complete message.
The next big question was about blocking. Since you are new at this, I recommend that you use Threads to handle sockets. Put the listener socket in one thread and each connecting socket in a separate thread (5 connected clients = 5 threads).
I also recommend that you use TCP since it's easier to build complete messages than ordering messages and build a transaction system (which will needed if you want to make sure that all messages arrives to/from clients).
Update
You still got UDP wrong. Close doesn't do anything other than cleaning up system resources. You should do something like this instead:
public void MySimpleServer(string address, int port)
{
try
{
byte[] bufferBytes = new byte[32];
if(address.Equals("0.0.0.0")) {
udpSocket.Bind(new IPEndPoint(IPAddress.Any, port));
} else {
udpSocket.Bind(new IPEndPoint(IPAddress.Parse(address), port));
}
remoteEndPoint = new IPEndPoint(IPAddress.Any, 0);
while (serverCanRun)
{
int numBytesReceived = udpSocket.ReceiveFrom(bufferBytes, ref remoteEndPoint);
// just means that one of the clients closed the connection using Shutdown.
// doesnt mean that we cant continue to receive.
if(numBytesReceived == 0)
continue;
// same here, loop to receive from another client.
Packet syncPacket = new Packet(bufferBytes);
if (syncPacket.PacketType != PacketType.Control)
continue;
HandlePacket(packet, endPoint);
}
} catch {
if(udpSocket != null) {
udpSocket.Close();
}
}
}
See? since there are no connection it's just waste of time to close a UDP socket to start listening from another one. The same socket can receive from ALL udp clients that know the correct port and address. That's what the remoteEndPoint is for. It tells which client that send the message.
Update 2
Small update to make a summary of all my comments.
UDP is connectionless. You can never detect if a connection have been established or disconnected. The Close method on a UDP socket will only free system resources. A call on client.Close() will not notify the server socket (as it will with TCP).
The best way to check if a connection is open is to create a ping/pong style of packet. i.e. the client sends a PING message and the server responds with a PONG. Remember that UDP will not try to resend your messages if they do not arrive. Therefore you need to resend the PING a couple of times before assuming that the server is down (if you do not receive a PONG).
As for clients closing you need to send your own message to the server telling it that the the client is going to stop talking to the server. For reliability the same thing goes here, keep resending the BYE message until you receive a reply.
imho it's mandatory that you implement a transactional system for UDP if you want reliability. SIP (google rfc3261) is an example of a protocol which uses transactions over UDP.
From your description I feel you should use TCP sockets instead of UDP. The difference is
TCP - You wait for a connection at a particuler IP:Port some user can connect to it and until the socket is closed can communicate by sending and receiveing information. This is like calling someone on phone.
UDP - you wait for a message at some IP:Port. User who wants to communicate just sends a message through UDP. You will receive the message through UDP. The order of delivery is not guaranteed. This is more like sending a snail mail to someone. There is no dedicated communication channel established.
Now coming to your problem
Server
Create a Socket with TCP family.
Either create a thread and accept the connection in that thread or use the BeginAccept apis of Socket.
In the main thread you can still display the ticker or whatever you want to do.
Client
Connect to the server.
Communicate by sending and receiving data.

Categories