Showing Modal Window while BackgroundWorker runs, without getting STA/MTA issue - c#

I am working on a WPF application. I have a time consuming method that I want to run async via BackgroundWorker. While the method runs, I want to display a modal "Please Wait..." dialog window, which must automatically close when the BackgroundWorker completes.
I currently have very little experience with BackgroundWorker or any multi threaded programming.
The code below currently results in an InvalidOperationException, with the message "The calling thread must be STA, because many UI components require this."
Please advise me on how to achieve what I am trying to achieve, and extra brownie-points if you can help me understand what is going wrong.
Many thanks!
EDIT
Just to clarify - The idea is that the main thread launches the BackgroundWorker, then shows the modal dialog. When the worker completes, it closes the modal dialog. When the modal dialog closes, the main thread continues.
public class ImageResizer
{
private BackgroundWorker worker;
private MemoryStream ImageData { get; set; } // incoming data
private public MemoryStream ResizedImageData { get; private set; } // resulting data
private Dialogs.WorkInProgressDialog ProgressDialog;
// Public interface, called by using class:
public MemoryStream ReduceImageSize(MemoryStream imageData)
{
// injected data:
this.ImageData = imageData;
// init progress dialog window:
ProgressDialog = new Dialogs.WorkInProgressDialog();
// Start background worker that asyncronously does work
worker = new BackgroundWorker();
worker.DoWork += new DoWorkEventHandler(worker_DoWork);
worker.RunWorkerCompleted += new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
worker.RunWorkerAsync();
// Show progress dialog. Dialog is MODAL, and must only be closed when resizing is complete
ProgressDialog.ShowDialog(); // THIS LINE CAUSES THE INVALID OPERATION EXCEPTION
// This thread will only continue when ProgressDialog is closed.
// Return result
return ResizedImageData;
}
private void worker_DoWork(object sender, DoWorkEventArgs e)
{
// Call time consuming method
ResizedImageData = ReduceImageSize_ActualWork();
}
// The actual work method, called by worker_DoWork
private MemoryStream ReduceImageSize_ActualWork()
{
// Lots of code that resizes this.ImageData and assigns it to this.ResizedImageData
}
private void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
// Async work completed - close progress dialog
ProgressDialog.Close();
}
}

You can't call ShowDialog from the BackgroundWorker. You have to use the Dispatcher to ask the UI thread to execute it:
this.Dispatcher.BeginInvoke(new Action(() => ProgressDialog.ShowDialog()));
The 'Completed' event of the BackgroundWorker is executed in the UI thread, so this part should be fine.

Related

Form is not available and doesn't update while a loop is in progress

I have a method that has a for loop in it. In the for loop I want to update some label's text on the mainform, but the changes are only done after the loop ends.
I tried to do it on another thread like this:
Thread firstthread = new Thread(new ThreadStart(myMethod));
firstthread.Start();
When I did that I got an InvalidOperationException because of trying to access controls on another thread or something like that.
How should I update the labels(or other controls) on the mainform from a loop while the loop is in progress?
You should use a BackgroundWorker. Place your long running loop inside of the DoWork event handler; it will run in a background thread and not block the UI thread. You can set ReportProgress to true and then attach an event handler to that to allow you to update a label (or whatever else) periodically. The ProgressReported event runs in the UI thread. You can also add a handler to the Completed event which runs in the UI thread as well.
You can look at the MSDN page for BackgroundWorker for details and code samples.
You should check the Invoke and BeginInvoke methods on the Form (for Windows.Forms) or on the Dispatcher object of the window (for WPF).
For example:
this.BeginInvoke(new Action(() => this.Text = "ciao"));
changes the title bar of the form.
BeginInvoke is asynchronous - it doesn't wait for the change to happen - while Invoke is synchronous and blocks until the change is done. Unless you have specifically that need, I would suggest using BeginInvoke which reduces the chances of an accidental deadlock.
This will allow you to update UI from a concurrent thread - and works whatever threading mechanism you are using (TPL tasks, plain Thread, etc.).
As Servy said, you can use something like in this simple example:
public partial class Form1 : Form
{
BackgroundWorker bgw;
public Form1()
{
InitializeComponent();
bgw = new BackgroundWorker();
bgw.DoWork += new DoWorkEventHandler(bgw_DoWork);
bgw.ProgressChanged += new ProgressChangedEventHandler(bgw_ProgressChanged);
bgw.WorkerReportsProgress = true;
}
void bgw_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
string text = (string)e.UserState;
SetValue(text);//or do whatever you want with the received data
}
void SetValue(string text)
{
this.label1.Text = text;
}
void bgw_DoWork(object sender, DoWorkEventArgs e)
{
for (int i = 0; i < 10000; i++)
{
string text = "Value is " + i.ToString();
bgw.ReportProgress(1, text);
Thread.Sleep(1000);
}
}
private void button1_Click(object sender, EventArgs e)
{
bgw.RunWorkerAsync();
}
}

How to update UI from another thread running in another class

I am currently writing my first program on C# and I am extremely new to the language (used to only work with C so far). I have done a lot of research, but all answers were too general and I simply couldn't get it t work.
So here my (very common) problem:
I have a WPF application which takes inputs from a few textboxes filled by the user and then uses that to do a lot of calculations with them. They should take around 2-3 minutes, so I would like to update a progress bar and a textblock telling me what the current status is.
Also I need to store the UI inputs from the user and give them to the thread, so I have a third class, which I use to create an object and would like to pass this object to the background thread.
Obviously I would run the calculations in another thread, so the UI doesn't freeze, but I don't know how to update the UI, since all the calculation methods are part of another class.
After a lot of reasearch I think the best method to go with would be using dispatchers and TPL and not a backgroundworker, but honestly I am not sure how they work and after around 20 hours of trial and error with other answers, I decided to ask a question myself.
Here a very simple structure of my program:
public partial class MainWindow : Window
{
public MainWindow()
{
Initialize Component();
}
private void startCalc(object sender, RoutedEventArgs e)
{
inputValues input = new inputValues();
calcClass calculations = new calcClass();
try
{
input.pota = Convert.ToDouble(aVar.Text);
input.potb = Convert.ToDouble(bVar.Text);
input.potc = Convert.ToDouble(cVar.Text);
input.potd = Convert.ToDouble(dVar.Text);
input.potf = Convert.ToDouble(fVar.Text);
input.potA = Convert.ToDouble(AVar.Text);
input.potB = Convert.ToDouble(BVar.Text);
input.initStart = Convert.ToDouble(initStart.Text);
input.initEnd = Convert.ToDouble(initEnd.Text);
input.inita = Convert.ToDouble(inita.Text);
input.initb = Convert.ToDouble(initb.Text);
input.initc = Convert.ToDouble(initb.Text);
}
catch
{
MessageBox.Show("Some input values are not of the expected Type.", "Wrong Input", MessageBoxButton.OK, MessageBoxImage.Error);
}
Thread calcthread = new Thread(new ParameterizedThreadStart(calculations.testMethod);
calcthread.Start(input);
}
public class inputValues
{
public double pota, potb, potc, potd, potf, potA, potB;
public double initStart, initEnd, inita, initb, initc;
}
public class calcClass
{
public void testmethod(inputValues input)
{
Thread.CurrentThread.Priority = ThreadPriority.Lowest;
int i;
//the input object will be used somehow, but that doesn't matter for my problem
for (i = 0; i < 1000; i++)
{
Thread.Sleep(10);
}
}
}
I would be very grateful if someone had a simple explanation how to update the UI from inside the testmethod. Since I am new to C# and object oriented programming, too complicated answers I will very likely not understand, I'll do my best though.
Also if someone has a better idea in general (maybe using backgroundworker or anything else) I am open to see it.
First you need to use Dispatcher.Invoke to change the UI from another thread and to do that from another class, you can use events.
Then you can register to that event(s) in the main class and Dispatch the changes to the UI and in the calculation class you throw the event when you want to notify the UI:
class MainWindow : Window
{
private void startCalc()
{
//your code
CalcClass calc = new CalcClass();
calc.ProgressUpdate += (s, e) => {
Dispatcher.Invoke((Action)delegate() { /* update UI */ });
};
Thread calcthread = new Thread(new ParameterizedThreadStart(calc.testMethod));
calcthread.Start(input);
}
}
class CalcClass
{
public event EventHandler ProgressUpdate;
public void testMethod(object input)
{
//part 1
if(ProgressUpdate != null)
ProgressUpdate(this, new YourEventArgs(status));
//part 2
}
}
UPDATE:
As it seems this is still an often visited question and answer I want to update this answer with how I would do it now (with .NET 4.5) - this is a little longer as I will show some different possibilities:
class MainWindow : Window
{
Task calcTask = null;
void buttonStartCalc_Clicked(object sender, EventArgs e) { StartCalc(); } // #1
async void buttonDoCalc_Clicked(object sender, EventArgs e) // #2
{
await CalcAsync(); // #2
}
void StartCalc()
{
var calc = PrepareCalc();
calcTask = Task.Run(() => calc.TestMethod(input)); // #3
}
Task CalcAsync()
{
var calc = PrepareCalc();
return Task.Run(() => calc.TestMethod(input)); // #4
}
CalcClass PrepareCalc()
{
//your code
var calc = new CalcClass();
calc.ProgressUpdate += (s, e) => Dispatcher.Invoke((Action)delegate()
{
// update UI
});
return calc;
}
}
class CalcClass
{
public event EventHandler<EventArgs<YourStatus>> ProgressUpdate; // #5
public TestMethod(InputValues input)
{
//part 1
ProgressUpdate.Raise(this, status); // #6 - status is of type YourStatus
// alternative version to the extension for C# 6+:
ProgressUpdate?.Invoke(this, new EventArgs<YourStatus>(status));
//part 2
}
}
static class EventExtensions
{
public static void Raise<T>(this EventHandler<EventArgs<T>> theEvent,
object sender, T args)
{
if (theEvent != null)
theEvent(sender, new EventArgs<T>(args));
}
}
#1) How to start the "synchronous" calculations and run them in the background
#2) How to start it "asynchronous" and "await it": Here the calculation is executed and completed before the method returns, but because of the async/await the UI is not blocked (BTW: such event handlers are the only valid usages of async void as the event handler must return void - use async Task in all other cases)
#3) Instead of a new Thread we now use a Task. To later be able to check its (successfull) completion we save it in the global calcTask member. In the background this also starts a new thread and runs the action there, but it is much easier to handle and has some other benefits.
#4) Here we also start the action, but this time we return the task, so the "async event handler" can "await it". We could also create async Task CalcAsync() and then await Task.Run(() => calc.TestMethod(input)).ConfigureAwait(false); (FYI: the ConfigureAwait(false) is to avoid deadlocks, you should read up on this if you use async/await as it would be to much to explain here) which would result in the same workflow, but as the Task.Run is the only "awaitable operation" and is the last one we can simply return the task and save one context switch, which saves some execution time.
#5) Here I now use a "strongly typed generic event" so we can pass and receive our "status object" easily
#6) Here I use the extension defined below, which (aside from ease of use) solve the possible race condition in the old example. There it could have happened that the event got null after the if-check, but before the call if the event handler was removed in another thread at just that moment. This can't happen here, as the extensions gets a "copy" of the event delegate and in the same situation the handler is still registered inside the Raise method.
I am going to throw you a curve ball here. If I have said it once I have said it a hundred times. Marshaling operations like Invoke or BeginInvoke are not always the best methods for updating the UI with worker thread progress.
In this case it usually works better to have the worker thread publish its progress information to a shared data structure that the UI thread then polls at regular intervals. This has several advantages.
It breaks the tight coupling between the UI and worker thread that Invoke imposes.
The UI thread gets to dictate when the UI controls get updated...the way it should be anyway when you really think about it.
There is no risk of overrunning the UI message queue as would be the case if BeginInvoke were used from the worker thread.
The worker thread does not have to wait for a response from the UI thread as would be the case with Invoke.
You get more throughput on both the UI and worker threads.
Invoke and BeginInvoke are expensive operations.
So in your calcClass create a data structure that will hold the progress information.
public class calcClass
{
private double percentComplete = 0;
public double PercentComplete
{
get
{
// Do a thread-safe read here.
return Interlocked.CompareExchange(ref percentComplete, 0, 0);
}
}
public testMethod(object input)
{
int count = 1000;
for (int i = 0; i < count; i++)
{
Thread.Sleep(10);
double newvalue = ((double)i + 1) / (double)count;
Interlocked.Exchange(ref percentComplete, newvalue);
}
}
}
Then in your MainWindow class use a DispatcherTimer to periodically poll the progress information. Configure the DispatcherTimer to raise the Tick event on whatever interval is most appropriate for your situation.
public partial class MainWindow : Window
{
public void YourDispatcherTimer_Tick(object sender, EventArgs args)
{
YourProgressBar.Value = calculation.PercentComplete;
}
}
You're right that you should use the Dispatcher to update controls on the UI thread, and also right that long-running processes should not run on the UI thread. Even if you run the long-running process asynchronously on the UI thread, it can still cause performance issues.
It should be noted that Dispatcher.CurrentDispatcher will return the dispatcher for the current thread, not necessarily the UI thread. I think you can use Application.Current.Dispatcher to get a reference to the UI thread's dispatcher if that's available to you, but if not you'll have to pass the UI dispatcher in to your background thread.
Typically I use the Task Parallel Library for threading operations instead of a BackgroundWorker. I just find it easier to use.
For example,
Task.Factory.StartNew(() =>
SomeObject.RunLongProcess(someDataObject));
where
void RunLongProcess(SomeViewModel someDataObject)
{
for (int i = 0; i <= 1000; i++)
{
Thread.Sleep(10);
// Update every 10 executions
if (i % 10 == 0)
{
// Send message to UI thread
Application.Current.Dispatcher.BeginInvoke(
DispatcherPriority.Normal,
(Action)(() => someDataObject.ProgressValue = (i / 1000)));
}
}
}
Everything that interacts with the UI must be called in the UI thread (unless it is a frozen object). To do that, you can use the dispatcher.
var disp = /* Get the UI dispatcher, each WPF object has a dispatcher which you can query*/
disp.BeginInvoke(DispatcherPriority.Normal,
(Action)(() => /*Do your UI Stuff here*/));
I use BeginInvoke here, usually a backgroundworker doesn't need to wait that the UI updates. If you want to wait, you can use Invoke. But you should be careful not to call BeginInvoke to fast to often, this can get really nasty.
By the way, The BackgroundWorker class helps with this kind of taks. It allows Reporting changes, like a percentage and dispatches this automatically from the Background thread into the ui thread. For the most thread <> update ui tasks the BackgroundWorker is a great tool.
If this is a long calculation then I would go background worker. It has progress support. It also has support for cancel.
http://msdn.microsoft.com/en-us/library/cc221403(v=VS.95).aspx
Here I have a TextBox bound to contents.
private void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
Debug.Write("backgroundWorker_RunWorkerCompleted");
if (e.Cancelled)
{
contents = "Cancelled get contents.";
NotifyPropertyChanged("Contents");
}
else if (e.Error != null)
{
contents = "An Error Occured in get contents";
NotifyPropertyChanged("Contents");
}
else
{
contents = (string)e.Result;
if (contentTabSelectd) NotifyPropertyChanged("Contents");
}
}
You are going to have to come back to your main thread (also called UI thread) in order to update the UI.
Any other thread trying to update your UI will just cause exceptions to be thrown all over the place.
So because you are in WPF, you can use the Dispatcher and more specifically a beginInvoke on this dispatcher. This will allow you to execute what needs done (typically Update the UI) in the UI thread.
You migh also want to "register" the UI in your business, by maintaining a reference to a control/form, so you can use its dispatcher.
Thank God, Microsoft got that figured out in WPF :)
Every Control, like a progress bar, button, form, etc. has a Dispatcher on it. You can give the Dispatcher an Action that needs to be performed, and it will automatically call it on the correct thread (an Action is like a function delegate).
You can find an example here.
Of course, you'll have to have the control accessible from other classes, e.g. by making it public and handing a reference to the Window to your other class, or maybe by passing a reference only to the progress bar.
Felt the need to add this better answer, as nothing except BackgroundWorker seemed to help me, and the answer dealing with that thus far was woefully incomplete. This is how you would update a XAML page called MainWindow that has an Image tag like this:
<Image Name="imgNtwkInd" Source="Images/network_on.jpg" Width="50" />
with a BackgroundWorker process to show if you are connected to the network or not:
using System.ComponentModel;
using System.Windows;
using System.Windows.Controls;
public partial class MainWindow : Window
{
private BackgroundWorker bw = new BackgroundWorker();
public MainWindow()
{
InitializeComponent();
// Set up background worker to allow progress reporting and cancellation
bw.WorkerReportsProgress = true;
bw.WorkerSupportsCancellation = true;
// This is your main work process that records progress
bw.DoWork += new DoWorkEventHandler(SomeClass.DoWork);
// This will update your page based on that progress
bw.ProgressChanged += new ProgressChangedEventHandler(bw_ProgressChanged);
// This starts your background worker and "DoWork()"
bw.RunWorkerAsync();
// When this page closes, this will run and cancel your background worker
this.Closing += new CancelEventHandler(Page_Unload);
}
private void bw_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
BitmapImage bImg = new BitmapImage();
bool connected = false;
string response = e.ProgressPercentage.ToString(); // will either be 1 or 0 for true/false -- this is the result recorded in DoWork()
if (response == "1")
connected = true;
// Do something with the result we got
if (!connected)
{
bImg.BeginInit();
bImg.UriSource = new Uri("Images/network_off.jpg", UriKind.Relative);
bImg.EndInit();
imgNtwkInd.Source = bImg;
}
else
{
bImg.BeginInit();
bImg.UriSource = new Uri("Images/network_on.jpg", UriKind.Relative);
bImg.EndInit();
imgNtwkInd.Source = bImg;
}
}
private void Page_Unload(object sender, CancelEventArgs e)
{
bw.CancelAsync(); // stops the background worker when unloading the page
}
}
public class SomeClass
{
public static bool connected = false;
public void DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker bw = sender as BackgroundWorker;
int i = 0;
do
{
connected = CheckConn(); // do some task and get the result
if (bw.CancellationPending == true)
{
e.Cancel = true;
break;
}
else
{
Thread.Sleep(1000);
// Record your result here
if (connected)
bw.ReportProgress(1);
else
bw.ReportProgress(0);
}
}
while (i == 0);
}
private static bool CheckConn()
{
bool conn = false;
Ping png = new Ping();
string host = "SomeComputerNameHere";
try
{
PingReply pngReply = png.Send(host);
if (pngReply.Status == IPStatus.Success)
conn = true;
}
catch (PingException ex)
{
// write exception to log
}
return conn;
}
}
For more information: https://msdn.microsoft.com/en-us/library/cc221403(v=VS.95).aspx

Cross-thread operation exception when worker thread adds to BindingList

I have a worker thread that needs to add items to a BindingList. However, the BindingList is databound to a DataGridView. So, when I try to add to the list, I get an InvalidOperationException (Cross-thread operation not valid: Control accessed from a thread other than the thread it was created on.)
Normally for this exception you would do:
if(winformControl.InvokeRequired) {
winformControl.Invoke(MethodDelegate);
}
However, the databinding confuses things, as there is no Winform control in sight. All I have is the following line, which throws the exception:
ClassInstance.MyBindingList.Add(myObject);
If you have a solution specifically for this scenario, great.
If not, how can I get the worker thread to tell my main thread to perform a particular method (with several parameters supplied by the worker thread)? This may be a preferable option, since my worker thread is actually doing a bunch of stuff at the moment (like writing to the database), and I'm not sure if everything is thread-safe. I'm a student, and new to multithreading, and it really is not my forte yet.
One option here is to tell BindingList<T> to use the sync-context, like this - however, this is arguably not the best approach. I wonder if you could expose your data via an event or similar (rather than adding to the list directly) - then have your UI handle the event by sending to the right thread and adding to the UI model.
In your worker class constructor, try this:
private System.Threading.SynchronizationContext mContext = null;
/// <summary>
/// Constructor for MyBackgroundWorkerClass
/// </summary>
public MyBackgroundWorkerClass(System.Threading.SynchronizationContext context)
{
mContext = context;
}
Then, when you need to invoke something on the UI thread:
private void CallOnTheUiThread(object dataToPassToUiThread)
{
// Make sure the code is run on the provided thread context.
// Make the calling thread wait for completion by calling Send, not Post.
mContext.Send(state =>
{
// Change your UI here using dataToPassToUiThread.
// Since this class is not on a form, you probably would
// raise an event with the data.
}
), null);
}
When creating your worker class from a form on the UI thread, this is what you would pass as the synchronization context.
private void Form1_Load(object sender, EventArgs e)
{
var worker = new MyBackgroundWorkerClass(SynchronizationContext.Current);
}
You can fire an event to the main, UI, thread and there have:
if (this.InvokeRequired)
{
this.Invoke(...);
}
so you are testing on the main Window itself.
BackgroundWorkers are easy to implement if you are able to given the requirements.
Define a DoWork method that runs on a background thread such as saves to the database. The RunWorkerCompleted method is called when DoWork finishes. RunWorkerCompleted runs on the UI thread, and you can update the view's list with no problems.
// on the UI thread
BackgroundWorker worker = new BackgroundWorker();
worker.DoWork += DoWork;
worker.RunWorkerCompleted += RunWorkerCompleted;
worker.RunWorkerAsync("argument");
Events:
static void DoWork(object sender, DoWorkEventArgs e)
{
e.Result = "4";
}
static void RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (e.Error == null)
{
string a = (string)e.Result;
Console.WriteLine(a);
}
else
{
Console.WriteLine(e.Error.Message);
}
}

Show progress in dialog

I have a process that takes a long time, and I want a window to show the progress. But, I can't figure how to display the progress.
Here's the code:
if (procced)
{
// the wpf windows :
myLectureFichierEnCour = new LectureFichierEnCour(_myTandemLTEclass);
myLectureFichierEnCour.Show();
bgw = new BackgroundWorker();
bgw.DoWork += startThreadProcessDataFromFileAndPutInDataSet;
bgw.RunWorkerCompleted += threadProcessDataFromFileAndPutInDataSetCompleted;
bgw.RunWorkerAsync();
}
And:
private void startThreadProcessDataFromFileAndPutInDataSet(object sender, DoWorkEventArgs e)
{
_myTandemLTEclass.processDataFromFileAndPutInDataSet(
_strCompositeKey,_strHourToSecondConversion,_strDateField);
}
I can call _myTandemLTEclass.processProgress to get a hint of the progress.
You should handle the ProgressChanged event and update the progress bar in your user interface there.
In the actual function that does the work (DoWork event handler), you'll call the ReportProgress method of the BackgroundWorker instance with an argument specifying the amount of task completed.
The BackgroundWorker example in MSDN Library is a simple code snippet that does the job.
Your backgroundWorker thread needs to handle the DoWork method and ProgressChanged.
You also need to make sure you turn on the WorkerReportsProgress flag to true (off by default).
See example code:
private void downloadButton_Click(object sender, EventArgs e)
{
// Start the download operation in the background.
this.backgroundWorker1.RunWorkerAsync();
// Disable the button for the duration of the download.
this.downloadButton.Enabled = false;
// Once you have started the background thread you
// can exit the handler and the application will
// wait until the RunWorkerCompleted event is raised.
// Or if you want to do something else in the main thread,
// such as update a progress bar, you can do so in a loop
// while checking IsBusy to see if the background task is
// still running.
while (this.backgroundWorker1.IsBusy)
{
progressBar1.Increment(1);
// Keep UI messages moving, so the form remains
// responsive during the asynchronous operation.
Application.DoEvents();
}
}

C# Windows Form created by EventHandler disappears immediately

I don't know why this is happening, but when I create a new form inside an EventHandler, it disappears as soon as the method is finished.
Here's my code. I've edited it for clarity, but logically, it is exactly the same.
static void Main()
{
myEventHandler = new EventHandler(launchForm);
// Code that creates a thread which calls
// someThreadedFunction() when finished.
}
private void someThreadedFunction()
{
//Do stuff
//Launch eventhandler
EventHandler handler = myEventHandler;
if (handler != null)
{
handler(null, null);
myEventHandler = null;
}
}
private void launchForm(object sender, EventArgs e)
{
mf = new myForm();
mf.Show();
MessageBox.Show("Do you see the form?");
}
private myForm mf;
private EventHandler myEventHandler;
The new form displays as long as the MessageBox "Do you see the form?" is there. As soon as I click OK on it, the form disappears.
What am I missing? I thought that by assigning the new form to a class variable, it would stay alive after the method finished. Apparently, this is not the case.
I believe the problem is that you are executing the code within the handler from your custom thread, and not the UI thread, which is required because it operates the Windows message pump. You want to use the Invoke method here to insure that the form gets and shown on the UI thread.
private void launchForm(object sender, EventArgs e)
{
formThatAlreadyExists.Invoke(new MethodInvoker(() =>
{
mf = new myForm();
mf.Show();
MessageBox.Show("Do you see the form?");
}));
}
Note that this assumes you already have a WinForms object (called formThatAlreadyExists) that you have run using Application.Run. Also, there may be a better place to put the Invoke call in your code, but this is at least an example of it can be used.
I think if you create a form on a thread, the form is owned by that thread. When creating any UI elements, it should always be done on the main (UI) thread.
this looks as if you are not on the form sta thread so once you show the form it is gone and the thread finishes it's job it kills it self since there is nothing referenceing the thread. Its not the best solution out there for this but you ca use a showdialog() rather than a show to accomplish it keeping state if you need a code example i use this exact same process for a "loading...." form
public class Loading
{
public delegate void EmptyDelegate();
private frmLoadingForm _frmLoadingForm;
private readonly Thread _newthread;
public Loading()
{
Console.WriteLine("enteredFrmLoading on thread: " + Thread.CurrentThread.ManagedThreadId);
_newthread = new Thread(new ThreadStart(Load));
_newthread.SetApartmentState(ApartmentState.STA);
_newthread.Start();
}
public void Load()
{
Console.WriteLine("enteredFrmLoading.Load on thread: " + Thread.CurrentThread.ManagedThreadId);
_frmLoadingForm = new frmLoadingForm();
if(_frmLoadingForm.ShowDialog()==DialogResult.OK)
{
}
}
/// <summary>
/// Closes this instance.
/// </summary>
public void Close()
{
Console.WriteLine("enteredFrmLoading.Close on thread: " + Thread.CurrentThread.ManagedThreadId);
if (_frmLoadingForm != null)
{
if (_frmLoadingForm.InvokeRequired)
{
_frmLoadingForm.Invoke(new EmptyDelegate(_frmLoadingForm.Close));
}
else
{
_frmLoadingForm.Close();
}
}
_newthread.Abort();
}
}
public partial class frmLoadingForm : Form
{
public frmLoadingForm()
{
InitializeComponent();
}
}
Is
dbf.Show();
a typo? Is it supposed to be this instead?
mf.Show();
Is it possible that there is another form that you are showing other than the one you intend to show?
You created a window on a non UI thread. When the thread aborts it will take your window along with it. End of story.
Perform invoke on the main form passing a delegate which will execute the method that creates the messagebox on the UI thread.
Since the MessageBox is a modal window, if dont want the launchForm method to block the background thread, create a custom form with the required UI and call show() on it, not ShowDialog().

Categories