I wanted to make a dynamic method in which i pass any instance of object i made, for example:
public class Employee()
{
public string FName;
public string SName;
.....etc.
}
The method i want is like the following:
public void methodName(Object oObject)
{
//lets say that i have passed object employee to it.
}
Is it possible to extract any values from the oObject, i have tried to do so but it have no attributes to do so, and when i put in the watch i can acutally see all the attribute of class employee in it.
So is there any way ?
There are many ways.
Update: you say you want the whole object. Casting or interfaces to expose the properties is the way foward.
You can cast the object to the specific type:
if (oObject is Employee)
{
string name = (oObject as Employee).FName;
}
You can expose an interface that defines what the method expects, then provided types implement the interface:
public interface IFirstName
{
string FName { get; }
}
public void methodName(IFirstName objectWithFirstName)
{
string name = objectWithFirstName.FName;
}
You can use dynamic and hope for the best at runtime (.NET 4):
public void methodName(dynamic oObject)
{
string name = oObject.FName;
}
And then there is reflection.
But the better question to ask is, is this a good method? I would be a little skeptical about methods that take anything and make expectations about things... though that's not to say it doesn't or shouldn't happen.
Yes, you can access values by simply type casting object back into Employee class like this
public void methodName(Object oObject)
{
//lets say that i have passed object employee to it.
//if oObject belongs to Employee class
if(oObject is Employee)
{
Employee employee = oObject as Employee;
//you can get access values here
}
}
Related
Say I want to create a method that accepts enum instead of a string so I could specify a parameter instead of writing string value representing the passed parameter.
For instance, let's say mods are strings of names so each of the variants has items of it's own and do has to place a call to chosen item.
public void DoWithMode(chosenMod parModifier)
{
string SelectedM = parModifier.ToString();
dedicateLineTo(Seleted...) or something
}
public class Com
{
public enum chosenMode{dummy1, dummy2};
}
public class Tel:Com
{
public new emum chosenMode {Telmod1, Telmod2};
public Tel
{
DoWithMode(chosenMode.Tel1mode);
}
}
class fax:Com
{
emum new chosenMode {Faxmod1, Faxmod2};
public fax
{
DoWithMode(chosenMode.Faxmod2);
}
}
What if I would like to make a generic ChosenMode. Say, for example, phone and fax have some common usage with the Do() method, i could make some overrides but this is only 2 kinds what if I have 20 or more classes and each has its own items to pass?
So it's only strings or method overrides though I was thinking of the comfortable usage of enum rather a class of const strings.
What is the workaround for this case?
I could do something else using enum type but then intellisense would not auto-suggest it so i would need to write something like
DoSomething(namespaceA.classT.subclassV.classX....class.modifier.item)
I have data from multiple organisations (police, fire, office) that need output in different formats.
To achieve this, I defined the following (this is a little simplified):
Transaction class -
"Success" indicator - Boolean.
"Type of department"- String or Enum.
A class which can be of any type - Police, Fire or Office (My question is on this as you will see).
A GenerateOutput() method - to handle generation of file formats.
Police class
Age - String
VehicleNumber - Integer
Supervisor - String
Fire class
Name - String
FireEngineNumber - Integer
County - Enum
WorkTimings - Enum
Office Class
Age - String
DeskNumber - Integer
Department - String
PayScale - Enum
IsManagement - Bool
As you can see, the Police, Fire and Office classes dont share anything in common and are primarily intended as data carrying entities. I intend to use a Factory to return an appropriate generic (not a C# generic) Transaction object with the data (Transaction object with Police, Fire or Office data within it) and then pass the returned object to a Strategy pattern which determines the file format (CSV, Excel, or XML; specified in a configuration file) each one needs.
My problem is in the definition of the Transaction object.
What type does the class in "3." of the Transaction class need to be? The data for each org differs, there are no common members, I am unable to define a common class for all.
Is the overall design appropriate? What other designs should I consider?
Based on Peter's comments below:
I think using generics might work, I ran into a problem though. I would like to use a factory to return the object requested, using GetTransactionObject, as below. What should be the return type of GetTransactionObject to accomodate this.
class TransactionFactory
{
Dictionary<string, Type> typeClassLookup;
public TransactionFactory()
{
typeClassLookup = new Dictionary<string, Type>();
typeClassLookup.Add("Police", typeof(PoliceData));
typeClassLookup.Add("Fire", typeof(FireData));
}
Transaction<????> GetTransactionObject(string org)
{
if( typeClassLookup.TryGetValue(org, out typeValue))
{
switch (typeValue.ToString())
{
case "policeData":
transactionObject = new Transaction<PoliceData>() { Data = new PoliceData(), params = null};
case "FireData":
transactionObject = new Transaction<FireData>() {Data = new FireData(), params = null};
}
}
return transactionObject;
If the types really have nothing in common, then you need no explicit base class. System.Object suffices, just as with many other generic types (i.e. any generic type lacking a constraint).
In other words, you could declare as:
class Transaction<T>
{
public bool Success { get; private set; }
public T Entity { get; private set; }
public Transaction(bool success, T entity)
{
Success = success;
Entity = entity;
}
public void GenerateOutput() { /* something goes here */ }
}
Personally, I would avoid adding a "department type" member. After all, that's implicit from the type parameter T. But you could add that easily to the above if you want.
If and when you find that the types do have something in common, such that your Transaction<T> type needs to do more than simply hold onto an instance of one of those types (which is about all it can do without a constraint), then you will be able to put that commonality into an interface or base class (depending on the specific need), and specify that in a constraint for the Transaction<T> class.
Note that it's not clear what you mean for the GenerateOutput() to do, or how it should work. But assuming that you want output that is specific for each Entity value, it seems to me that that is your "something in common". I.e., it's not the Transaction<T> class at all that needs to implement that method, but rather each entity type. In that case, you have something like this:
interface IDepartmentEntity
{
void GenerateOutput();
}
class Office : IDepartmentEntity
{
public void GenerateOutput() { /* department-specific logic here */ }
}
// etc.
Then you can declare:
class Transaction<T> where T : IDepartmentEntity
{
public bool Success { get; private set; }
public T Entity { get; private set; }
public Transaction(bool success, T entity)
{
Success = success;
Entity = entity;
}
public void GenerateOutput() { Entity.GenerateOutput(); }
}
EDIT:
Per Prasant's follow-up edit, with a request for advice on the GetTransactionObject()…
The right way to do this depends on the caller and the context, a detail not provided in the question. IMHO, the best scenario is where the caller is aware of the type. This allows the full power of generics to be used.
For example:
class TransactionFactory
{
public Transaction<T> GetTransactionObject<T>()
where T : IDepartmentEntity, new()
{
return new Transaction<T>()
{
Data = new T(),
params = null
}
}
}
Then you call like this:
Transaction<FireData> transaction = factory.GetTransactionObject<FireData>();
The caller, of course already knowing the type it is creating, then can fill in the appropriate properties of the transaction.Data object.
If that approach is not possible, then you will need for Transaction<T> itself to have a base class, or implement an interface. Note that in my original example, the IDepartmentEntity interface has only one method, and it's the same as the GenerateOutput() method in the Transaction class.
So maybe, that interface is really about generating output instead of being a data entity. Call it, instead of IDepartmentEntity, something like IOutputGenerator.
In that case, you might have something like this:
class Transaction<T> : IOutputGenerator
{
// all as before
}
class TransactionFactory
{
public IOutputGenerator GetTransactionObject(string org)
{
if( typeClassLookup.TryGetValue(org, out typeValue))
{
switch (typeValue.ToString())
{
case "policeData":
transactionObject = new Transaction<PoliceData>() { Data = new PoliceData(), params = null};
case "FireData":
transactionObject = new Transaction<FireData>() {Data = new FireData(), params = null};
}
}
return transactionObject;
}
}
This is an inferior solution, as it means the caller can only directly access the IOutputGenerator functionality. Anything else requires doing some type-checking and special-case code, something that really ought to be avoided whenever possible.
Note: if the Transaction type has other members which, like the GenerateOutput() method, are independent of the contained type T here, and which would be useful to callers who don't know T, then a possible variation of the above is to not reuse the interface used for the department-specific data types, but instead declare a base class for Transaction<T>, named of course Transaction, containing all those members not related to T. Then the return value can be Transaction.
What type does the class in "3." of the Transaction class need to be?
To decouple your department classes from the various export types, I recommend you make the department classes implement a common interface. Something like this:
public interface Exportable {
// return a list of attribute names, values, and types to export
IList<Tuple<String, String, Type>> GetAttributes();
}
For example:
public class Police : Exportable {
public IList<Tuple<String, String, Type>> GetAttributes() {
// return list size 3 - attribute info for Age, VehicleNumber, Supervisor
}
}
Is the overall design appropriate? What other designs should I consider?
The Transaction class design doesn't seem well suited for this problem.
Consider an Export class with a method for each export type, each method which receives the attributes returned from the Exportable interface method. Basic outline:
public static class Export {
public static boolean CSV(IList<Tuple<String, String, Type>> attributes) {
// export attributes to CSV, return whether succeeded
}
public static boolean Excel(IList<Tuple<String, String, Type>> attributes) {
// export attributes to Excel, return whether succeeded
}
// same thing for XML
}
I have a C# class that is used in my custom DB ORM tools, called DbFieldAttribute.
I place it over my field, like so:
[DbField("User_Id")]
public int UserId{ get; set; }
Challenge: From my attributes Constructor code, get the FieldInfo of the field it is associated with the attribute. In the case above, it would give me the FieldInfo for UserId.
Any help would be great. Thanks.
Unfortunately, to the best of my knowledge, there is no way to accomplish what you are asking for.
But if it is not necessary that you get the PropertyInfo or the FieldInfo object inside your constructor, but instead you would be satisfied with it being passed to a method, then there is a possible solution.
First of all, your DbField class would need to be defined in the following way.
class DbField : Attribute
{
public DbField(string source) { }
public void GetInstance(PropertyInfo source)
{
Console.WriteLine(source.Name);
}
}
You would then need to define the following class which would get all the (in this case) properties marked with the DbField attribute, and pass them to the GetInstance(PropertyInfo) method.
class ActivateAttributes
{
public ActivateAttributes(object source)
{
source.GetType()
.GetProperties()
.Where(x => x.GetCustomAttributes().OfType<DbField>().Any())
.ToList()
.ForEach(x => (x.GetCustomAttributes().OfType<DbField>().First() as DbField).GetInstance(x));
}
}
The way you would trigger this process is inside an abstract class, which is defined as so.
abstract class AbstractDecoratedClass
{
public AbstractDecoratedClass()
{
new ActivateAttributes(this);
}
}
Now your target class, which has its properties decorated by DbField attributes, simply needs to derive from this class, so that you won't be bothered by the invocation inside the constructor.
class DecoratedClass : AbstractDecoratedClass
{
[DbField("User_Id")]
public int UserId { get; set; }
[DbField("User_Id2")]
public int UserId2 { get; set; }
}
You are now only left with testing the solution as shown here.
class Program
{
static void Main()
{
new DecoratedClass();
Console.Read();
}
}
The solution could not be solved directly, as #Mario pointed out, but here is the solution I ended up going with.
The key is to know that the attribute alone has no way of knowing this information, but at the time it is called it is reasonable to expect that the FieldInfo or PropertyInfo was also available.
My original problem was that my ORM code looked to an attribute to determine if a field/property related to a database field. Then, I had instances where the Prop/Field name in the class did not match up with the database for reasons of making it more logical to the Code/Db. In those cases I needed to pass in a field name to use instead of the actual field. I was hoping the attribute could do more of the work, or at least help make it more obvious for any future code that used it.
(I stripped out xml comments and extra code not relavant to this solution)
[AttributeUsage(AttributeTargets.Field | AttributeTargets.Property)]
public class DbFieldAttribute : Attribute
{
private string fieldName = "";
public DbFieldAttribute() { }
public DbFieldAttribute(string fieldName)
{
this.fieldName = fieldName;
}
public string FieldName(PropertyInfo pi)
{
if (this.fieldName != "") return this.fieldName;
else return pi.Name;
}
public string FieldName(FieldInfo fi)
{
if (this.fieldName != "") return this.fieldName;
else return fi.Name;
}
Now when my ORM code wants the field name, it has to pass in the field or property info related to that field. This means that what is needed, is now intrinsic in the attributes use, instead of needing to be derived in external code.
I'm creating a list of class "Task" in a way such as this.
List<Task> toDoList = new List<Task>;
Task is a base class and have designed it as such:
public class Task : IDetail
{
string _taskName; //Task title.
string _taskDescription; //Task description.
public Task(string tn, string td) //Constructor.
{
_taskName = tn;
_taskDescription = td;
}
// Method set or return _taskName.
public string taskName
{
get
{
return _taskName;
}
set
{
_taskName = value;
}
}
//Method to set or return _taskDescription.
public string taskDescription
{
get
{
return _taskDescription;
}
set
{
_taskDescription = value;
}
}
public virtual void editList()
{
Creator editCreator = new Creator();
editCreator.Show();
}
}
What i've been trying todo is call methods that exists within the inherited class like one the one i have designate "Note" and have defined it as follows.
class Note : Task, IDetail
{
string _noteDescription;
public Note(string nd, string tn, string td) //Constructor.
: base(tn, td)
{
_noteDescription = nd;
}
//Method to set or return _noteDescription.
public string noteDescription
{
get
{
return _noteDescription;
}
set
{
_noteDescription = value;
}
}
public override void editList()
{
noteBuilder editNote = new noteBuilder();
editNote.Show();
}
}
However when i try to call a method of the inherited task on the list i get an error. I am trying to access the method as such:
toDoList.ElementAt(x).noteDescription;
My question is how do i prevent an error from occurring?
the error states
'toDoList.Task' does not contain a definition for 'noteDescription' and no extension method etc etc.
Should i perhaps be declaring the base class as Abstract? or is there something else i am missing?
Many thanks in advance
You've got a List<Task>. That could contain any kind of Task reference - e.g. a different derived type, not a Note. Either you want a List<Note> (so it can all be type-safe), or you'll need to cast the element of the list to Note:
Note note = (Note) toDoList[x];
string description = note.noteDescription;
(Given that you've got a List<T>, you don't need to use ElementAt - use the indexer.)
Filter the list and convert them to notes, like:
var noteList = toDoList.Where(x => x is Note)
.Select(x => (Note)x)
.ToList();
then write
noteList.ElementAt(x).noteDescription;
Because Your list is a list of Task objects, not Note objects.
You'll need to cast your objects to Note objects before you can call methods of the Note class.
(toDoList.ElementAt(x) as Note).noteDescription;
or
toDoList.Cast<Note>().ElementAt(x).noteDescription;
The second option requires all objects in the list be Note objects.
notDescription is a property you have for your derived class. But here you are creating a list of your base class
List<Task> toDoList = new List<Task>;
You can not get the properties of derived class in a base class. IT works the other way. You can access the properties of base class in your child class.
toDoList contains Task elements, not Note elements. Now a Note element is a type of Task element, sure, but polymorphism only works in one direction: you can treat a subclass like its superclass, but you can't treat a superclass like a subclass without casting it first.
If you think about it, you'll realize that it has to be that way. What if you had a second subclass of Task called Foo: you can put both of those types in toDoList...if you tried to access noteDescription on an object that is of type Foo, you'd be in trouble.
However, there is a way to do what you want, it just requires a cast:
var note = toDoList.ElementAt(x) as Note;
var noteDescription = note==null ? "<not a note>" : note.noteDescription;
The other way to do it, of course, would be to move noteDescription into Todo, where it would be accessible from any subclass of Todo, but that's probably not what you want since the name implies that it belongs to Note.
I have some extension methods which could be used like this:
MyType myObject;
string displayName = myObject.GetDisplayName(x => x.Property);
The problem here is that it needs an instance, even if the extension method only needs the type MyType. So if there is no instance, it needs to be called like this:
string displayName = BlahBlahUtility.GetDisplayName((MyTpe x) => x.Property);
Which is not so nice anymore.
Is there a way to write better syntax for such cases?
What I actually want to do is this (pseudo language):
string displayName = MyType.Property.GetDisplayName()
Which of course does not work with C#.
But what about something like this:
string displayName = ((MyType x) => x.Property).GetDisplayName();
This is also not possible (after a lambda, a dot is not accepted).
Any ideas?
Edit:
My "favorite syntax" MyType.Property.GetDisplayName() seems to be misleading. I don't talk about static properties here. I know that this syntax won't be possible. I just tried to show in pseudo language, what information is necessary. This would be ideal, every additional stuff is just syntactical overhead. Any working syntax that is close to this would be great.
I don't want to write a certain extension method. I want an easy, readable and compile time safe syntax, using any language feature.
Have a look at the Express and Reflect classes in the Lokad Shared Libraries. Think they may help out with what you are trying to do. Read more here:
Strongly Typed Reflection in Lokad Shared
How to Find Out Variable or Parameter Name in C#?
From your comment: "I want an easy and compile time safe syntax to get information about members".
This is a very frequently requested feature and has been discussed in the C# team's meetings for about a decade, but has never been prioritised high enough to be included.
This blog post explains why:
http://blogs.msdn.com/ericlippert/archive/2009/05/21/in-foof-we-trust-a-dialogue.aspx
So for now, you're just going to be fighting against a missing feature. Maybe you could post more information about your broader problem and see if people can suggest different approaches.
Update
Without more info about your problem this is just guesswork. But if you have a property that represents a value but also carries additional "meta" information, you could always represent that as a new type and use an "injection" step to set everything up.
Here's a suggested abstract interface to such a "meta property":
public interface IMetaProperty<TValue>
{
TValue Value { get; set; }
string DisplayName { get; }
event Action<TValue, TValue> ValueChanged;
}
The value of the property is just another sub-property, with its type defined by the user.
I've put in the display name, and also as a bonus you've got an event that fires when the value changes (so you get "observability" for free).
To have properties like this in a class, you'd declare it like this:
public class SomeClass
{
public IMetaProperty<string> FirstName { get; private set; }
public IMetaProperty<string> LastName { get; private set; }
public IMetaProperty<int> Age { get; private set; }
public SomeClass() { MetaProperty.Inject(this); }
}
Note how the setters on the properties are private. This stops anyone from accidentally setting the property itself instead of setting the Value sub-property.
So this means the class has to set up those properties so they aren't just null. It does this by calling a magic Inject method, which can work on any class:
public static class MetaProperty
{
// Make it convenient for us to fill in the meta information
private interface IMetaPropertyInit
{
string DisplayName { get; set; }
}
// Implementation of a meta-property
private class MetaPropertyImpl<TValue> : IMetaProperty<TValue>,
IMetaPropertyInit
{
private TValue _value;
public TValue Value
{
get { return _value; }
set
{
var old = _value;
_value = value;
ValueChanged(old, _value);
}
}
public string DisplayName { get; set; }
public event Action<TValue, TValue> ValueChanged = delegate { };
}
public static void Inject(object target)
{
// for each meta property...
foreach (var property in target.GetType().GetProperties()
.Where(p => p.PropertyType.IsGenericType &&
p.PropertyType.GetGenericTypeDefinition()
== typeof(IMetaProperty<>)))
{
// construct an implementation with the correct type
var impl = (IMetaPropertyInit)
typeof (MetaPropertyImpl<>).MakeGenericType(
property.PropertyType.GetGenericArguments()
).GetConstructor(Type.EmptyTypes).Invoke(null);
// initialize any meta info (could examine attributes...)
impl.DisplayName = property.Name;
// set the value
property.SetValue(target, impl, null);
}
}
}
It just uses reflection to find all the IMetaProperty slots hiding in the object, and fills them in with an implementation.
So now a user of SomeClass could say:
var sc = new SomeClass
{
FirstName = { Value = "Homer" },
LastName = { Value = "Simpson" },
Age = { Value = 38 },
};
Console.WriteLine(sc.FirstName.DisplayName + " = " + sc.FirstName.Value);
sc.Age.ValueChanged += (from, to) =>
Console.WriteLine("Age changed from " + from + " to " + to);
sc.Age.Value = 39;
// sc.Age = null; compiler would stop this
If you're already using an IOC container you may be able to achieve some of this without going directly to reflection.
It looks like you're trying to create a static extension method?
DateTime yesterday = DateTime.Yesterday(); // Static extension.
Instead of
DateTime yesterday = DateTime.Now.Yesterday(); // Extension on DateTime instance.
If this is what you're trying to pull off, I do not believe it is possible in the current version of C#.
It sounds like you are integrating layers a little too tightly. Normally in this type of situation I would let the presentation layer decide the implementation of GetDisplayName() instead of making it an extension of the property itself. You could create an interface called MyTypeDisplayer or whatever you fancy, and let there be multiple implementations of it not limiting you to a single display implementation.
The issue here is that one cannot get a reference to non-static methods via instance MyType.[Member]. These can only be seen through a reference to an instance of the type. You also cannot build an extension method on-top of a type declaration, only on an instance of a type - that is the extension method itself has to be defined using an instance of a type (this T x).
One can however define the expression like this to get a reference to static members:
((MyType x) => MyType.Property)
One could do something similar to string displayName = ((MyType x) => x.Property).GetDisplayName();
The first issue is guaranteeing that the compiler treats your (x=> x.Property) as an Expression rather than an action/func etc...
To do this one might need to do this:
string displayName = ((Expression<Func<PropertyType>>)((MyType x) => x.Property).GetDisplayName();
The extension method would then have to be defined like this:
public static string GetDisplayName<T>(this Expression<Func<T>> expression)
You might also have to define an extension method on top of Expression<Action>> and Expression<Action<T>> if your members are also methods.
You can do a dot after an Expression - this is where the Compile method would reside.
Appended:
I think the static call to the extension method in cases that one doesn't have an instance of the type one needs to do "reflection" on to determine a Members name would be the cleanest syntax still - this way you could still use the extension method when using an instance of a type and fall back to the static call definition => MyExtensionClass.GetDisplayName(TypeOfX x => TypeOfX.StaticMember OR x.Property/Member) when one doesn't have an instance
If you interface your properties, you could make the extension on the interface instead:
namespace Linq1
{
class Program
{
static void Main(string[] args)
{
MyType o = new MyType();
o.Property.GetDisplayName();
}
}
public class MyType
{
public IDisplayableProperty Property { get; set; }
}
public interface IDisplayableProperty
{
string GetText();
}
public class MyProperty1 : IDisplayableProperty
{
public string GetText() { return "MyProperty2"; }
}
public class MyProperty2 : IDisplayableProperty
{
public string GetText() { return "MyProperty2"; }
}
public static class Extensions
{
public static string GetDisplayName(this IDisplayableProperty o)
{
return o.GetText();
}
}
}