Resolve instance with multiple constructors using unity - c#

I'd like to create an instance of a class using unity where the class has two constructors with the same number of parameters.
Here is the instantiation:
_unityContainer.Resolve<IGradeType>(new ParameterOverride("gradeTypeStringFromXmlFile", gradeTypeStringFromXmlFile));
And here are the constructors:
public GradeType(string gradeTypeStringFromXmlFile)
{
_gradeTypeStringFromXmlFile = gradeTypeStringFromXmlFile;
}
public GradeType(Enum.GradeType gradeType)
{
_gradeType = gradeType;
}
If I try to do this I get an exception saying The type GradeType has multiple constructors of length 1. Unable to disambiguate.
I can set the attribute [InjectionConstructor] over one constructor to make it work with one, but then I can't create an instance with unity using the other constructor.
Is it some way to have multiple constructors with equal number of parameters and still use unity to create the instances?

Yes it's possible to tell Unity which constructor should it use, but you can only do this when you register your type with InjectionConstructor. If you want to use both constructor it's even complicated because you have to name your registrations and use that name when resolving.
Sample built with Unity version 2.1.505:
var continer = new UnityContainer();
continer.RegisterType<IGradeType, GradeType>("stringConstructor",
new InjectionConstructor(typeof(string)));
continer.RegisterType<IGradeType, GradeType>("enumConstructor",
new InjectionConstructor(typeof(EnumGradeType)));
IGradeType stringGradeType = continer.Resolve<IGradeType>("stringContructor" ,
new DependencyOverride(typeof(string), "some string"));
IGradeType enumGradeType = continer.Resolve<IGradeType>("enumConstructor",
new DependencyOverride(typeof(EnumGradeType), EnumGradeType.Value));

An alternative option using Reflection and following the Strategy Pattern.
1) Create a base class for the constructors' arguments
public abstract class ConstructorArgs
{
}
2) Create a sequence of different concrete arguments classes:
public class StringArg : ConstructorArgs
{
public string _gradeTypeStringFromXmlFile { get; set; }
public StringArg (string gradeTypeStringFromXmlFile)
{
this._gradeTypeStringFromXmlFile = gradeTypeStringFromXmlFile ;
}
}
public class EnumArg : ConstructorArgs
{
public Enum.GradeType _gradeType { get; set; }
public EnumArg (Enum.GradeType gradeType)
{
this._gradeType = gradeType ;
}
}
3) Now in your GradeType class create the methods required for the Reflection. The ParseArguments scans the args for properties and for each one that it finds, it copies its value to the respective property of the GradeType using the SetProperty. Since it uses the property name for the matching, it is important to keep the same property name across both the GradeType and the concrete ConstructorArgs:
private void SetProperty(String propertyName, object value)
{
var property = this.GetType().GetProperty(propertyName);
if (property != null)
property.SetValue(this, value);
}
private void ParseArguments(ConstructorArgs args)
{
var properties = args.GetType().GetProperties();
foreach (PropertyInfo propertyInfo in properties)
{
this.SetProperty(propertyInfo.Name,
args.GetType().GetProperty(propertyInfo.Name).GetValue(args));
}
}
4) In your GradeType class create the respective properties (mind that you must use exactly the same names and types that you used in the concrete ConstructorArgs but you can use any access modifiers you like)
public string _gradeTypeStringFromXmlFile { get; set; }
public Enum.GradeType _gradeType { get; set; }
5) Create a constructor for your GradeType class with a parameter of type ConstructorArgs:
public GradeType(ConstructorArgs args)
{
this.ParseArguments(args);
}
6) Now you can register the GradeType in Unity using a single constructor but you can pass in different types as arguments when resolving it:
_unityContainer.RegisterType<IGradeType, GradeType>(
new InjectionConstructor( typeof(ConstructorArgs) ));
var args1 = new StringArg(gradeTypeStringFromXmlFile); // string
IGradeType gradeType1 = _unityContainer.Resolve<IGradeType>(
new ResolverOverride[]{new ParameterOverride("args", args1)});
var args2 = new EnumArg(gradeType); // enum
IGradeType gradeType2 = _unityContainer.Resolve<IGradeType>(
new ResolverOverride[]{new ParameterOverride("args", args2)});
If you are planning to repeatedly resolve your type in an iteration that approach might not be ideal, since Reflection comes with a performance penalty.

Remove one constructor, and cast the string to the enum, or vice-versa, and then resolve using the container.

Related

C# - Change value inside a class from a form

Hey I have the following two classes:
public class YoloCocoP7Model : YoloModel
{
public override int Width { get; set; } = 640;
public override int Height { get; set; } = 640;
public YoloCocoP7Model()
{
}
}
public class YoloScorer<T> : IDisposable where T : YoloModel
{
public YoloScorer(string weights, SessionOptions opts = null) : this()
{
_inferenceSession = new InferenceSession(File.ReadAllBytes(weights), opts ?? new SessionOptions());
}
}
Now I can call a function like this:
public YoloScorer<YoloCocoP7Model> _scorer;
I want to change the Width and Height inside the YoloCocoP7Model class and Initialize it to the YoloScorer class and tried it the following way:
var test = new YoloCocoP7Model();
test.Width = 10;
test.Height = 10;
This works but however If I want to use that changed class then with:
var _scorer = new YoloScorer<test>;
I get an error saying "test" is a "variable" but is used like "Type".
How can I use the changed Class then?
The YoloScorer<T> in your class definition is a generic class, meaning it can work for different types.
You can now implement methods with that type like public T GetNewObject() or public string[] GetAllPropertyNames<T>() that use that Type T.
The type is, however, not the object itself, it's the type of object. In your case, the type is YoloCocoP7Model. The type has no instance.
If you want to give your class YoloScorer a object YoloCocoP7Model, you need to declare a member of that type and add it, i.e. via constructor:
public class YoloScorer : IDisposable
{
public YoloModel Model {get; set;};
public YoloScorer(YoloModel model) : this()
{
Model = model;
}
}
Then, you can modify it by calling
var _scorer = new YoloScorer<test>;
_scorer.Model.Width = 1337;
Adding <T> to a class makes it generic. That means it can work with values of different types. For instance, the List class you might have used before is generic. It can store elements of any types you provide it with.
Therefore, when you want to create a list of type int, for instance, you type new List<int>().
Now, the class you defined is also generic. That means, when you create an instance of it with new YoloScorer<...>(), you create a new YoloScorer that works with objects of type .... This is not exactly what you want, from my understanding.
Instead, you want to pass the specific YoloCocoP7Model to this class. To do that, just add a parameter corresponding to it to the constructor:
public YoloScorer(string weights, YoloCocoP7Model model, SessionOptions opts = null)
Now you can access model from the inside (and probably store it in some sort of private variable to make it accessible at later stages). From my understanding, your class does not need to be generic (<T> is not necessary).

Why is it impossible to cast to a derived type [duplicate]

Is it possible to assign a base class object to a derived class reference with an explicit typecast in C#?.
I have tried it and it creates a run-time error.
No. A reference to a derived class must actually refer to an instance of the derived class (or null). Otherwise how would you expect it to behave?
For example:
object o = new object();
string s = (string) o;
int i = s.Length; // What can this sensibly do?
If you want to be able to convert an instance of the base type to the derived type, I suggest you write a method to create an appropriate derived type instance. Or look at your inheritance tree again and try to redesign so that you don't need to do this in the first place.
No, that's not possible since assigning it to a derived class reference would be like saying "Base class is a fully capable substitute for derived class, it can do everything the derived class can do", which is not true since derived classes in general offer more functionality than their base class (at least, that's the idea behind inheritance).
You could write a constructor in the derived class taking a base class object as parameter, copying the values.
Something like this:
public class Base {
public int Data;
public void DoStuff() {
// Do stuff with data
}
}
public class Derived : Base {
public int OtherData;
public Derived(Base b) {
this.Data = b.Data;
OtherData = 0; // default value
}
public void DoOtherStuff() {
// Do some other stuff
}
}
In that case you would copy the base object and get a fully functional derived class object with default values for derived members. This way you can also avoid the problem pointed out by Jon Skeet:
Base b = new Base();//base class
Derived d = new Derived();//derived class
b.DoStuff(); // OK
d.DoStuff(); // Also OK
b.DoOtherStuff(); // Won't work!
d.DoOtherStuff(); // OK
d = new Derived(b); // Copy construct a Derived with values of b
d.DoOtherStuff(); // Now works!
Solution with JsonConvert (instead of typecast)
Today i faced the same issue and i found a simple and quick solution to the problem using JsonConvert.
var base = new BaseClass();
var json = JsonConvert.SerializeObject(base);
DerivedClass derived = JsonConvert.DeserializeObject<DerivedClass>(json);
I had this problem and solved it by adding a method that takes a type parameter and converts the current object into that type.
public TA As<TA>() where TA : Base
{
var type = typeof (TA);
var instance = Activator.CreateInstance(type);
PropertyInfo[] properties = type.GetProperties();
foreach (var property in properties)
{
property.SetValue(instance, property.GetValue(this, null), null);
}
return (TA)instance;
}
That means that you can use it in you code like this:
var base = new Base();
base.Data = 1;
var derived = base.As<Derived>();
Console.Write(derived.Data); // Would output 1
As many others have answered, No.
I use the following code on those unfortunate occasions when I need to use a base type as a derived type. Yes it is a violation of the Liskov Substitution Principle (LSP) and yes most of the time we favor composition over inheritance. Props to Markus Knappen Johansson whose original answer this is based upon.
This code in the base class:
public T As<T>()
{
var type = typeof(T);
var instance = Activator.CreateInstance(type);
if (type.BaseType != null)
{
var properties = type.BaseType.GetProperties();
foreach (var property in properties)
if (property.CanWrite)
property.SetValue(instance, property.GetValue(this, null), null);
}
return (T) instance;
}
Allows:
derivedObject = baseObect.As<derivedType>()
Since it uses reflection, it is "expensive". Use accordingly.
No it is not possible, hence your runtime error.
But you can assign an instance of a derived class to a variable of base class type.
As everyone here said, that's not possible directly.
The method I prefer and is rather clean, is to use an Object Mapper like AutoMapper.
It will do the task of copying properties from one instance to another (Not necessarily the same type) automatically.
In c# 9.0 you can try to use records for this. They have default copy constructor that copy all fields - no need to use reflection / constructor with all fields.
public record BaseR
{
public string Prop1 { get; set; }
}
public record DerivedR : BaseR
{
public DerivedR(BaseR baseR) : base(baseR) { }
public string Prop2 { get; set; }
}
var baseR = new BaseR { Prop1 = "base prob" };
var derivedR = new DerivedR(baseR) { Prop2 = "new prop" };
Not in the Traditional Sense... Convert to Json, then to your object, and boom, done! Jesse above had the answer posted first, but didn't use these extension methods which make the process so much easier. Create a couple of extension methods:
public static string ConvertToJson<T>(this T obj)
{
return JsonConvert.SerializeObject(obj);
}
public static T ConvertToObject<T>(this string json)
{
if (string.IsNullOrEmpty(json))
{
return Activator.CreateInstance<T>();
}
return JsonConvert.DeserializeObject<T>(json);
}
Put them in your toolbox forever, then you can always do this:
var derivedClass = baseClass.ConvertToJson().ConvertToObject<derivedClass>();
Ah, the power of JSON.
There are a couple of gotchas with this approach: We really are creating a new object, not casting, which may or may not matter. Private fields will not be transferred, constructors with parameters won't be called, etc. It is possible that some child json won't be assigned. Streams are not innately handled by JsonConvert. However, if our class doesn't rely on private fields and constructors, this is a very effective method of moving data from class to class without mapping and calling constructors, which is the main reason why we want to cast in the first place.
Expanding on #ybo's answer - it isn't possible because the instance you have of the base class isn't actually an instance of the derived class. It only knows about the members of the base class, and doesn't know anything about those of the derived class.
The reason that you can cast an instance of the derived class to an instance of the base class is because the derived class actually already is an instance of the base class, since it has those members already. The opposite cannot be said.
You can cast a variable that is typed as the base-class to the type of a derived class; however, by necessity this will do a runtime check, to see if the actual object involved is of the correct type.
Once created, the type of an object cannot be changed (not least, it might not be the same size). You can, however, convert an instance, creating a new instance of the second type - but you need to write the conversion code manually.
You have to use an object cloner/copier that will assign all the properties one by one.
Doing this by hand is inefficient and not future-proof. But serializing & deserializing to JSON and back is not the best solution, it is slow and very memory inefficient.
However, using AutoMapper is fast. PropMapper is even faster.
PS. Disclosure: I am a contributor at PropMapper open source project.
No, it is not possible.
Consider a scenario where an ACBus is a derived class of base class Bus. ACBus has features like TurnOnAC and TurnOffAC which operate on a field named ACState. TurnOnAC sets ACState to on and TurnOffAC sets ACState to off. If you try to use TurnOnAC and TurnOffAC features on Bus, it makes no sense.
class Program
{
static void Main(string[] args)
{
a a1 = new b();
a1.print();
}
}
class a
{
public a()
{
Console.WriteLine("base class object initiated");
}
public void print()
{
Console.WriteLine("base");
}
}
class b:a
{
public b()
{
Console.WriteLine("child class object");
}
public void print1()
{
Console.WriteLine("derived");
}
}
}
when we create a child class object,the base class object is auto initiated so base class reference variable can point to child class object.
but not vice versa because a child class reference variable can not point to base class object because no child class object is created.
and also notice that base class reference variable can only call base class member.
There actually IS a way to do this. Think about how you might use Newtonsoft JSON to deserialize an object from json. It will (or at least can) ignore missing elements and populate all the elements that it does know about.
So here's how I did it. A small code sample will follow my explanation.
Create an instance of your object from the base class and populate it accordingly.
Using the "jsonconvert" class of Newtonsoft json, serialize that object into a json string.
Now create your sub class object by deserializing with the json string created in step 2. This will create an instance of your sub class with all the properties of the base class.
This works like a charm! So.. when is this useful? Some people asked when this would make sense and suggested changing the OP's schema to accommodate the fact that you can't natively do this with class inheritance (in .Net).
In my case, I have a settings class that contains all the "base" settings for a service. Specific services have more options and those come from a different DB table, so those classes inherit the base class. They all have a different set of options. So when retrieving the data for a service, it's much easier to FIRST populate the values using an instance of the base object. One method to do this with a single DB query. Right after that, I create the sub class object using the method outlined above. I then make a second query and populate all the dynamic values on the sub class object.
The final output is a derived class with all the options set. Repeating this for additional new sub classes takes just a few lines of code. It's simple, and it uses a very tried and tested package (Newtonsoft) to make the magic work.
This example code is vb.Net, but you can easily convert to c#.
' First, create the base settings object.
Dim basePMSettngs As gtmaPayMethodSettings = gtmaPayments.getBasePayMethodSetting(payTypeId, account_id)
Dim basePMSettingsJson As String = JsonConvert.SerializeObject(basePMSettngs, Formatting.Indented)
' Create a pmSettings object of this specific type of payment and inherit from the base class object
Dim pmSettings As gtmaPayMethodAimACHSettings = JsonConvert.DeserializeObject(Of gtmaPayMethodAimACHSettings)(basePMSettingsJson)
You can use an Extention:
public static void CopyOnlyEqualProperties<T>(this T objDest, object objSource) where T : class
{
foreach (PropertyInfo propInfo in typeof(T).GetProperties())
if (objSource.GetType().GetProperties().Any(z => z.Name == propInfo.Name && z.GetType() == propInfo.GetType()))
propInfo.SetValue(objDest, objSource.GetType().GetProperties().First(z => z.Name == propInfo.Name && z.GetType() == propInfo.GetType()).GetValue(objSource));
}
In Code:
public class BaseClass
{
public string test{ get; set;}
}
public Derived : BaseClass
{
//Some properies
}
public void CopyProps()
{
BaseClass baseCl =new BaseClass();
baseCl.test="Hello";
Derived drv=new Derived();
drv.CopyOnlyEqualProperties(baseCl);
//Should return Hello to the console now in derived class.
Console.WriteLine(drv.test);
}
Might not be relevent, but I was able to run code on a derived object given its base. It's definitely more hacky than I'd like, but it works:
public static T Cast<T>(object obj)
{
return (T)obj;
}
...
//Invoke parent object's json function
MethodInfo castMethod = this.GetType().GetMethod("Cast").MakeGenericMethod(baseObj.GetType());
object castedObject = castMethod.Invoke(null, new object[] { baseObj });
MethodInfo jsonMethod = baseObj.GetType ().GetMethod ("ToJSON");
return (string)jsonMethod.Invoke (castedObject,null);
You can do this using generic.
public class BaseClass
{
public int A { get; set; }
public int B { get; set; }
private T ConvertTo<T>() where T : BaseClass, new()
{
return new T
{
A = A,
B = B
}
}
public DerivedClass1 ConvertToDerivedClass1()
{
return ConvertTo<DerivedClass1>();
}
public DerivedClass2 ConvertToDerivedClass2()
{
return ConvertTo<DerivedClass2>();
}
}
public class DerivedClass1 : BaseClass
{
public int C { get; set; }
}
public class DerivedClass2 : BaseClass
{
public int D { get; set; }
}
You get three benefits using this approach.
You are not duplicating the code
You are not using reflection (which is slow)
All of your conversions are in one place
I know this is old but I've used this successfully for quite a while.
private void PopulateDerivedFromBase<TB,TD>(TB baseclass,TD derivedclass)
{
//get our baseclass properties
var bprops = baseclass.GetType().GetProperties();
foreach (var bprop in bprops)
{
//get the corresponding property in the derived class
var dprop = derivedclass.GetType().GetProperty(bprop.Name);
//if the derived property exists and it's writable, set the value
if (dprop != null && dprop.CanWrite)
dprop.SetValue(derivedclass,bprop.GetValue(baseclass, null),null);
}
}
I combined some portions of the previous answers (thanks to those authors) and put together a simple static class with two methods that we're using.
Yes, it's simple, no it doesn't cover all scenarios, yes it could be expanded and made better, no it's not perfect, yes it could possibly be made more efficient, no it's not the greatest thing since sliced bread, yes there are full-on robust nuget package object mappers out there that are way better for heavy use, etc etc, yada yada - but it works for our basic needs though :)
And of course it will try to map values from any object to any object, derived or not (only the public properties that are named the same of course - ignores the rest).
USAGE:
SesameStreetCharacter puppet = new SesameStreetCharacter() { Name = "Elmo", Age = 5 };
// creates new object of type "RealPerson" and assigns any matching property
// values from the puppet object
// (this method requires that "RealPerson" have a parameterless constructor )
RealPerson person = ObjectMapper.MapToNewObject<RealPerson>(puppet);
// OR
// create the person object on our own
// (so RealPerson can have any constructor type that it wants)
SesameStreetCharacter puppet = new SesameStreetCharacter() { Name = "Elmo", Age = 5 };
RealPerson person = new RealPerson("tall") {Name = "Steve"};
// maps and overwrites any matching property values from
// the puppet object to the person object so now our person's age will get set to 5 and
// the name "Steve" will get overwritten with "Elmo" in this example
ObjectMapper.MapToExistingObject(puppet, person);
STATIC UTILITY CLASS:
public static class ObjectMapper
{
// the target object is created on the fly and the target type
// must have a parameterless constructor (either compiler-generated or explicit)
public static Ttarget MapToNewObject<Ttarget>(object sourceobject) where Ttarget : new()
{
// create an instance of the target class
Ttarget targetobject = (Ttarget)Activator.CreateInstance(typeof(Ttarget));
// map the source properties to the target object
MapToExistingObject(sourceobject, targetobject);
return targetobject;
}
// the target object is created beforehand and passed in
public static void MapToExistingObject(object sourceobject, object targetobject)
{
// get the list of properties available in source class
var sourceproperties = sourceobject.GetType().GetProperties().ToList();
// loop through source object properties
sourceproperties.ForEach(sourceproperty => {
var targetProp = targetobject.GetType().GetProperty(sourceproperty.Name);
// check whether that property is present in target class and is writeable
if (targetProp != null && targetProp.CanWrite)
{
// if present get the value and map it
var value = sourceobject.GetType().GetProperty(sourceproperty.Name).GetValue(sourceobject, null);
targetobject.GetType().GetProperty(sourceproperty.Name).SetValue(targetobject, value, null);
}
});
}
}
You can use a copy constructor that immediately invokes the instance constructor, or if your instance constructor does more than assignments have the copy constructor assign the incoming values to the instance.
class Person
{
// Copy constructor
public Person(Person previousPerson)
{
Name = previousPerson.Name;
Age = previousPerson.Age;
}
// Copy constructor calls the instance constructor.
public Person(Person previousPerson)
: this(previousPerson.Name, previousPerson.Age)
{
}
// Instance constructor.
public Person(string name, int age)
{
Name = name;
Age = age;
}
public int Age { get; set; }
public string Name { get; set; }
}
Referenced the Microsoft C# Documentation under Constructor for this example having had this issue in the past.
With regarding #MarkusKnappenJohansson answer and below comments we can change his code extending extension function :) so it may update an existing deriving class instance via this code :
public static TDerived As<TDerived>(this Base baseInstance, TDerived updateDerivedInstance = null) where TDerived : Base, new()
{
Type baseType = typeof(Base);
Type derivedType = typeof(TDerived);
PropertyInfo[] properties = baseType.GetProperties();
object instanceDerived = null;
if (updateDerivedInstance == null)
{
instanceDerived = Activator.CreateInstance(derivedType);
}
else
{
instanceDerived = (object)(updateDerivedInstance);
}
foreach (PropertyInfo property in properties)
{
if (property.CanWrite)
{
property.SetValue(instanceDerived, property.GetValue(baseInstance, null), null);
}
}
return (TDerived)instanceDerived;
}
Usage for getting new derived Instance is var base = new Base(); base.Data = 1; var derived = base.As<Derived>(); Console.Write(derived.Data); // Would output 1
Usage for updating existing derived Instance is var derived = new Derived(); var base = new Base(); base.Data = 1; var derivedUpdated = base.As<Derived>(derived); Console.Write(derivedUpdated.Data); // Would output 1
Another solution is to add extension method like so:
public static void CopyProperties(this object destinationObject, object sourceObject, bool overwriteAll = true)
{
try
{
if (sourceObject != null)
{
PropertyInfo[] sourceProps = sourceObject.GetType().GetProperties();
List<string> sourcePropNames = sourceProps.Select(p => p.Name).ToList();
foreach (PropertyInfo pi in destinationObject.GetType().GetProperties())
{
if (sourcePropNames.Contains(pi.Name))
{
PropertyInfo sourceProp = sourceProps.First(srcProp => srcProp.Name == pi.Name);
if (sourceProp.PropertyType == pi.PropertyType)
if (overwriteAll || pi.GetValue(destinationObject, null) == null)
{
pi.SetValue(destinationObject, sourceProp.GetValue(sourceObject, null), null);
}
}
}
}
}
catch (ApplicationException ex)
{
throw;
}
}
then have a constructor in each derived class that accepts base class:
public class DerivedClass: BaseClass
{
public DerivedClass(BaseClass baseModel)
{
this.CopyProperties(baseModel);
}
}
It will also optionally overwrite destination properties if already set (not null) or not.
Is it possible to assign a base class object to a derived class reference with an explicit typecast in C#?.
Not only explicit, but also implicit conversions are possible.
C# language doesn't permit such conversion operators, but you can still write them using pure C# and they work. Note that the class which defines the implicit conversion operator (Derived) and the class which uses the operator (Program) must be defined in separate assemblies (e.g. the Derived class is in a library.dll which is referenced by program.exe containing the Program class).
//In library.dll:
public class Base { }
public class Derived {
[System.Runtime.CompilerServices.SpecialName]
public static Derived op_Implicit(Base a) {
return new Derived(a); //Write some Base -> Derived conversion code here
}
[System.Runtime.CompilerServices.SpecialName]
public static Derived op_Explicit(Base a) {
return new Derived(a); //Write some Base -> Derived conversion code here
}
}
//In program.exe:
class Program {
static void Main(string[] args) {
Derived z = new Base(); //Visual Studio can show squiggles here, but it compiles just fine.
}
}
When you reference the library using the Project Reference in Visual Studio, VS shows squiggles when you use the implicit conversion, but it compiles just fine. If you just reference the library.dll, there are no squiggles.
How about:
public static T As<T>(this object obj)
{
return JsonConvert.DeserializeObject<T>(JsonConvert.SerializeObject(obj));
}
Best way to add all base properties to derived item is use reflection in costructor. Try this code, without creating methods or instances.
public Derived(Base item) :base()
{
Type type = item.GetType();
System.Reflection.PropertyInfo[] properties = type.GetProperties();
foreach (var property in properties)
{
try
{
property.SetValue(this, property.GetValue(item, null), null);
}
catch (Exception) { }
}
}
I disagree that it is not possible. You can do it like this:
public class Auto
{
public string Make {get; set;}
public string Model {get; set;}
}
public class Sedan : Auto
{
public int NumberOfDoors {get; set;}
}
public static T ConvertAuto<T>(Sedan sedan) where T : class
{
object auto = sedan;
return (T)loc;
}
Usage:
var sedan = new Sedan();
sedan.NumberOfDoors = 4;
var auto = ConvertAuto<Auto>(sedan);
This is how I solved this for fields. You can do the same iteration through properties if you want. You may want to do some checks for null etc. but this is the idea.
public static DerivedClass ConvertFromBaseToDerived<BaseClass, DerivedClass>(BaseClass baseClass)
where BaseClass : class, new()
where DerivedClass : class, BaseClass, new()
{
DerivedClass derived = (DerivedClass)Activator.CreateInstance(typeof(DerivedClass));
derived.GetType().GetFields().ToList().ForEach(field =>
{
var base_ = baseClass.GetType().GetField(field.Name).GetValue(baseClass);
field.SetValue(derived, base_);
});
return derived;
}
You can just serialize the base object to JSON and then deserialize it to the derived object.
No, see this question which I asked - Upcasting in .NET using generics
The best way is to make a default constructor on the class, construct and then call an Initialise method

How to select a constructor by ExplicitArguments type in StructureMap?

I have the class Foo with 3 constructors where each of them has 2 parameters.
public class Foo
{
public string Location;
public Foo(IContainer container, DefaultData data)
{
Location = "DefaultData";
}
public Foo(IContainer container, DbData data)
{
Location = "DbData";
}
public Foo(IContainer container, NetworkData data)
{
Location = "NetworkData";
}
}
public class DefaultData
{
}
public class DbData
{
}
public class NetworkData
{
}
Now if I want to get an instance
var container = new Container();
ExplicitArguments args = new ExplicitArguments();
args.Set(new NetworkData(new decimal(1.3D), 'f'));
var instance = container.GetInstance<Foo>(args);
I'm always getting the following exception:
Unable to create a build plan for concrete type TestConsole.DefaultData
new DefaultData(String s, Int32 i)
┣ String s = Required primitive dependency is not explicitly defined
┗ Int32 i = Required primitive dependency is not explicitly defined
1.) Attempting to create a BuildPlan for Instance of TestConsole.DefaultData -- TestConsole.DefaultData
2.) new Foo(*Default of IContainer*, *Default of DefaultData*)
3.) TestConsole.Foo
4.) Instance of TestConsole.Foo
5.) Container.GetInstance<TestConsole.Foo>({TestConsole.NetworkData=TestConsole.NetworkData})
I also tried to solve my problem with a custom IConstructor selector, but I don't receive the supplied parameter (types) and cannot decide which constructor I should use then.
I want to achieve that the constructor is automatically selected by the passed ExplicitArguments.

Is there a way to initialize properties after construction of object?

I have a Conversion class like this:
public class Conversion
{
public memorySource MSource { get; set; }
public Rule[] Rules { get; set; }
public Conversion(XElement xElement)
{
// I use Rules property here
// From Rules property and xElement parameter i initialize MSource Property
}
public Conversion(ExcelPackage)
{
// Also i use Rules property here
// From Rules property and xElement parameter i initialize MSource Property
}
}
When I want to construct an instance of the Conversion class, I do this:
Conversion cvr = new Conversion(xElement) { Rules = rules };
Then I get this error:
Object reference not set to an instance of an object
I know that construction of object begins before initializing of properties, but is there a way to do inverse?
I can use Rules property as parameter of constructor but it is not suitable for performance because I have several constructors.
Yes, simply pass the value as parameter in the constructor. It's the only way:
Conversion cvr = new Conversion(rules, package);
Where the constructor is:
public Conversion(Rule[] rules, ExcelPackage package)
{
this.Rules = rules;
...
}
You can default the rules parameter for your other constructor, so you don't have to duplicate code:
public Conversion(ExcelPackage package) : this(new Rule[] { ... }, package)
{
...
}

Generic class can't match argument list

Trying to write my first generic class in C#:
public class HighScoreList<ScoreType>
where ScoreType : System.IComparable<ScoreType>
{
...
public HighScoreList(List<ScoreType> highScoreList)
{
....
}
...
}
I have run into problems writing unit tests for it. It can't for some reason match the constructor's argument list and gives me the error:
Error 7 The best overloaded method match for 'TDGLX.FileManagement.HighScoreList.HighScoreList(System.Collections.Generic.List)' has some invalid arguments C:\Users\eric\Documents\Visual Studio 2010\Projects\TDGLX\UnitTests\FileManagmentTest\HighScoreListTest.cs 183 54 UnitTests
On this and several other tests:
HighScoreList<GenericScore> highScoreList =
new HighScoreList<GenericScore>(new List<GenericScore>()
{
new GenericScore("Person1",400),
new GenericScore("Person2",200),
new GenericScore("Person3",100)
});
HighScoreList<GenericScore> target =
new HighScoreList<GenericScore>(highScoreList);
Here is the class that I'm using as a parameter to the template argument list in my tests.
[Serializable()]
public class GenericScore : System.IComparable<GenericScore>
{
public GenericScore(string name,int score)
{
Name = name;
Score = score;
}
public string Name { get; set; }
public int Score { get; set; }
public int CompareTo(GenericScore other)
{
return this.Score.CompareTo(other.Score);
}
}
I really can't figure out what's wrong with the test. Is there something have misunderstood about C# generics?
HighScoreList<GenericScore> target =
new HighScoreList<GenericScore>(highScoreList);
In the code above, you're passing a HighScoreList<GenericScore> to the constructor of HighScoreList<GenericScore>, but it expects a List<GenericScore>
Isn't that what you want ?
List<GenericScore> highScoreList = new List<GenericScore>()
{
new GenericScore("Person1",400),
new GenericScore("Person2",200),
new GenericScore("Person3",100)
};
HighScoreList<GenericScore> target =
new HighScoreList<GenericScore>(highScoreList);
On your second call to the HighScoreList ctor, you're passing in an instance of HighScoreList<GenericScore> as the List<GenericStore> ctor argument, but HighScoreList<T> doesn't inherit off List<T>, hence the error.
As a point of style, generic type names usually start with T, so it'll be HighScoreList<TScoreType>, or just HighScoreList<T>

Categories