I had andriod code and I tried to convert it to c#. It's a simple Encryption class. But when I try to decrypt data with it I catch: Wrong algorithm: AES or Rijndael required.
Here is my converted code:
public static string decrypt(string data)
{
byte[] dataBytes = Convert.FromBase64String(data);
SecretKey secretKey = getSecretKey(hashTheKey("ABCD"));
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(2, secretKey, new IvParameterSpec(new byte[16]),
SecureRandom.getInstance("SHA1PRNG"));
var x = cipher.doFinal(dataBytes);
return System.Text.Encoding.UTF8.GetString(x);
}
public static SecretKey getSecretKey(char[] key)
{
var secretKeyType = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
var secretkey = secretKeyType.generateSecret(new PBEKeySpec(key,
System.Text.Encoding.UTF8
.GetBytes("ABCD"),
100, 128)).getEncoded();
return new SecretKeySpec(secretkey, "AES/CBC/PKCS5Padding");
}
public static char[] hashTheKey(string key)
{
MessageDigest messageDigest = MessageDigest.getInstance("SHA1");
messageDigest.update(System.Text.Encoding.UTF8.GetBytes(key));
return Convert.ToBase64String(messageDigest.digest()).ToCharArray();
}
Here is my original android code:
private char[] hashTheKey(String key) throws UnsupportedEncodingException, NoSuchAlgorithmException {
MessageDigest messageDigest = MessageDigest.getInstance("SHA1");
messageDigest.update(key.getBytes());
return Base64.encodeToString(messageDigest.digest(),
Base64.NO_PADDING).toCharArray();
}
private SecretKey getSecretKey(char[] key) throws NoSuchAlgorithmException, UnsupportedEncodingException, InvalidKeySpecException {
return new SecretKeySpec(
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
.generateSecret(new PBEKeySpec(key,
"ABCD".getBytes("UTF8"),
100, 128)).getEncoded(), "AES");
}
public String decrypt(String data) throws NoSuchPaddingException, NoSuchAlgorithmException, InvalidAlgorithmParameterException, InvalidKeyException, BadPaddingException, IllegalBlockSizeException, UnsupportedEncodingException, InvalidKeySpecException {
byte[] dataBytes = Base64.decode(data, Base64.DEFAULT);
SecretKey secretKey = getSecretKey(hashTheKey("ABCD"));
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(2, secretKey, new IvParameterSpec(new byte[16]),
SecureRandom.getInstance("SHA1PRNG"));
return new String(cipher.doFinal(dataBytes));
}
c# and java are using the same well-estabilished cryptography algorithms, but differs in approach how to invoke them. It is still possible to convert the code though.
One key point is difference in base64 encoding - C# always use padding.
Converted code goes like:
const int KeySize = 128;
static string HashTheKey(string key) {
String hashKey;
using (var sha = new SHA1Managed()) {
hashKey = Convert.ToBase64String(sha.ComputeHash(Encoding.UTF8.GetBytes(key)));
}
// beware - you're on C# now so remove the padding and add the newline to match java
return hashKey.Replace("=", "") + "\n";
}
static byte[] GetSecretKey(string password) {
var salt = Encoding.UTF8.GetBytes("JVAaVhAiddKAaghraikhmaini");
using (var pass = new Rfc2898DeriveBytes(password, salt, 65536)) {
return pass.GetBytes(KeySize / 8);
}
}
static void Main(string[] args) {
string encrypted = "vtlkQHTz7/oz2weuAAkLz2Q5c2yj2LGukF7SHJjT+TA8oRLixTQSXQ7dG1O736hyT1HJxcz0P4DzzVaO5chWKKSJQ2uPEpDQJu/fZGguqDw=";
byte[] encryptedBytes = Convert.FromBase64String(encrypted);
using (var aes = new AesManaged()) {
aes.KeySize = KeySize;
aes.Padding = PaddingMode.PKCS7;
aes.Key = GetSecretKey(HashTheKey("Android"));
// you're using the same init vector in your android code
aes.IV = new byte[16];
using (var decryptor = aes.CreateDecryptor()) {
// dumps {"barcode":"12345678","token":"cad603fc-1e53-4a95-9150-f1694baa07f9"}
Console.Out.WriteLine(Encoding.UTF8.GetString(decryptor.TransformFinalBlock(encryptedBytes, 0, encryptedBytes.Length)));
}
}
}
C# does not handle the encryption algorithms as Android or java do you have to use either AES or Rijndael algorithm as you can see the error to covert to the simple text into Encrypted Base64 and vice versa you can use the following class in C#
public static class Stringcipher
{
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 256;
// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;
public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = Generate256BitsOfRandomEntropy();
var ivStringBytes = Generate256BitsOfRandomEntropy();
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}
public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
var plainTextBytes = new byte[cipherTextBytes.Length];
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
}
}
}
}
private static byte[] Generate256BitsOfRandomEntropy()
{
var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits.
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
}
I want to include iv and salt in the HMACSHA512 calculation without add then to the encrypted data.
At the moment someone could change the iv and a wouldn't noticed that.
I chain different streams to ensure Encrypt-then-MAC, later I want to encrypt large files, so this design is necessary.
So if I add the the iv and salt to a stream, with e.g. new MemoryStream(iv).CopyTo(hmacStream); the result will contain this data.
This is my code so far:
private static IHmacAndData EncryptInternal(byte[] key, byte[] iv, byte[] plainData, byte[] salt)
{
byte[] hmacHash;
byte[] encryptedBytes;
using (var aesManaged = CreateAesManaged(iv, key))
{
var encryptor = aesManaged.CreateEncryptor(aesManaged.Key, aesManaged.IV);
var hmacsha512 = new HMACSHA512(key);
using (var resultStream = new MemoryStream())
{
using (var hmacStream = new CryptoStream(resultStream, hmacsha512, CryptoStreamMode.Write))
{
using (var aesStream = new CryptoStream(hmacStream, encryptor, CryptoStreamMode.Write))
{
using (var plainStream = new MemoryStream(plainData))
{
plainStream.CopyTo(aesStream);
}
}
}
encryptedBytes = resultStream.ToArray();
}
hmacHash = hmacsha512.Hash;
}
return new Message {HMAC = hmacHash, Data = encryptedBytes};
}
private static AesManaged CreateAesManaged(byte[] iv, byte[] key)
{
var aesManaged = new AesManaged
{
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7,
KeySize = KeySize,
IV = iv,
Key = key
};
return aesManaged;
}
My temporary solution is to make a second HMACSHA512 calculation at the end.
But this seems not right in any way.
var overallHmac = new HMACSHA512(keyHmac);
hmacHash = overallHmac.ComputeHash(hmacHash.Concat(iv).Concat(saltPassword).Concat(saltHmac).ToArray());
Here is the full sample, search for CreateOverallHmacKey to find the spot.
https://gist.github.com/dhcgn/85b88b516953e8996af8544ee9d7b567
I am using Windows Live Id service for logging and authentication for my application. I get a token in the response sent by the Windows Live Id Service after the user get authenticated. I wish to decode this token in order to obtain the Unique Identifier out of it.Here is the link which explains this better:
http://msdn.microsoft.com/en-us/library/bb676622.aspx
I see exceptions while debugging in visual studio when I try to create a CryptoStream Object although the code does not break.
But when I try to convert the stream to bytes it throws an error and the code breaks.
It says:
"Length of the data to decrypt is invalid"
Here is the code that I am using:
string token=""; //Token Sent by the service
string SecretKey = ""; //SecretKey Obtained while registering my application
byte[] cryptKey = derive(secretKey, "ENCRYPTION");
static byte[] derive(string secret, string prefix)
{
using(HashAlgorithm hashAlg = HashAlgorithm.Create("SHA256"))
{
const int keyLength = 16;
byte[] data = Encoding.Default.GetBytes(prefix+secret);
byte[] hashOutput = hashAlg.ComputeHash(data);
byte[] byteKey = new byte[keyLength];
Array.Copy(hashOutput, byteKey, keyLength);
return byteKey;
}
}
const int ivLength = 16;
token = HttpUtility.UrlDecode(token);
byte[] ivAndEncryptedValue = Convert.FromBase64String(token);
aesAlg = new RijndaelManaged();
aesAlg.KeySize = 128;
aesAlg.Key = cryptKey;
aesAlg.Padding = PaddingMode.PKCS7;
memStream = new MemoryStream(ivAndEncryptedValue);
byte[] iv = new byte[ivLength];
memStream.Read(iv, 0, ivLength);
aesAlg.IV = iv;
cStream = new CryptoStream(memStream, aesAlg.CreateDecryptor(), CryptoStreamMode.Read);
sReader = new StreamReader(cStream, Encoding.ASCII);
The next line of code throws error: "Length of the data to decrypt is invalid"
decodedValue = sReader.ReadToEnd(); //Throws error:"Length of the data to decrypt is invalid"
Does anyone have any idea as to what can be the reason behind this?
Any kind of help or guidance will be greatly appreciated.
Thank you in advance.
Regards,
Abhishek
Here is an example of something that I currently use when Decrypting a value
I hope that this will help you in regards to seeing what you have done incorrectly in your existing code
static string Decrypt()
{
byte[] keyBytes = Convert.FromBase64String("U6XksFkhWV4.......eo3fRg=="");
byte[] iv = Convert.FromBase64String("KLnP....wA=="");
byte[] cipherTextBytes = Convert.FromBase64String("Put the EncryptedText here");
var symmetricKey = new RijndaelManaged { Mode = CipherMode.CBC, IV = iv, KeySize = 128, Key = keyBytes, Padding = PaddingMode.Zeros};
using (var decryptor = symmetricKey.CreateDecryptor())
using (var ms = new MemoryStream(cipherTextBytes))
using (var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read)) {
var plainTextBytes = new byte[cipherTextBytes.Length];
int decryptedByteCount = cs.Read(plainTextBytes, 0, plainTextBytes.Length);
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
per my question Aes Encryption... missing an important piece, I have now learned that my assumption for creating a reversible encryption on a string was a bit off. I now have
public static byte[] EncryptString(string toEncrypt, byte[] encryptionKey)
{
var toEncryptBytes = Encoding.UTF8.GetBytes(toEncrypt);
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
provider.Mode = CipherMode.CBC;
provider.Padding = PaddingMode.PKCS7;
using (var encryptor = provider.CreateEncryptor(provider.Key, provider.IV))
{
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write))
{
cs.Write(toEncryptBytes, 0, toEncryptBytes.Length);
cs.FlushFinalBlock();
}
return ms.ToArray();
}
}
}
}
and this produces consistent results; however, I will not be able to decrypt without knowing/ setting the initialization vector. I really do not want to pass three values into this method (on for the IV), which leaves me with hardcoding the IV or deriving it from the key. I'd like to know if this is a good practice, or if it will render the encrypted value vulnerable to attack somehow... or am I really overthinking this and should just hardcode the IV?
UPDATE
Per Iridium's suggestion, I tried something like this instead:
public static byte[] EncryptString(string toEncrypt, byte[] encryptionKey)
{
if (string.IsNullOrEmpty(toEncrypt)) throw new ArgumentException("toEncrypt");
if (encryptionKey == null || encryptionKey.Length == 0) throw new ArgumentException("encryptionKey");
var toEncryptBytes = Encoding.UTF8.GetBytes(toEncrypt);
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
provider.Mode = CipherMode.CBC;
provider.Padding = PaddingMode.PKCS7;
using (var encryptor = provider.CreateEncryptor(provider.Key, provider.IV))
{
using (var ms = new MemoryStream())
{
ms.Write(provider.IV, 0, 16);
using (var cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write))
{
cs.Write(toEncryptBytes, 0, toEncryptBytes.Length);
cs.FlushFinalBlock();
}
return ms.ToArray();
}
}
}
}
public static string DecryptString(byte[] encryptedString, byte[] encryptionKey)
{
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
provider.Mode = CipherMode.CBC;
provider.Padding = PaddingMode.PKCS7;
using (var ms = new MemoryStream(encryptedString))
{
byte[] buffer;
ms.Read(buffer, 0, 16);
provider.IV = buffer;
using (var decryptor = provider.CreateDecryptor(provider.Key, provider.IV))
{
using (var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read))
{
byte[] decrypted = new byte[encryptedString.Length];
var byteCount = cs.Read(decrypted, 0, encryptedString.Length);
return Encoding.UTF8.GetString(decrypted, 0, byteCount);
}
}
}
}
}
however, this shows something odd in my unit test:
[TestMethod]
public void EncryptionClosedLoopTest()
{
var roundtrip = "This is the data I am encrypting. There are many like it but this is my encryption.";
var encrypted = Encryption.EncryptString(roundtrip, encryptionKey);
var decrypted = Encryption.DecryptString(encrypted, encryptionKey);
Assert.IsTrue(roundtrip == decrypted);
}
my decrypted text shows up as "92ʪ�F"�,hpv0�� I am encrypting. There are many like it but this is my encryption." which seems almost right but of course completely wrong. It looks like I'm close though. Am I missing an offset on the memory stream?
The IV should be random and unique for every run of your encryption method. Deriving it from the key/message or hard-coding it is not sufficiently secure. The IV can be generated within this method, instead of passed into it, and written to the output stream prior to the encrypted data.
When decrypting, the IV can then be read from the input before the encrypted data.
When Encrypting, generate your IV and pre-pend it to the cipher text (something like this)
using (var aes= new AesCryptoServiceProvider()
{
Key = PrivateKey,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
var input = Encoding.UTF8.GetBytes(originalPayload);
aes.GenerateIV();
var iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(aes.Key, iv))
using (var cipherStream = new MemoryStream())
{
using (var tCryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var tBinaryWriter = new BinaryWriter(tCryptoStream))
{
//Prepend IV to data
//tBinaryWriter.Write(iv); This is the original broken code, it encrypts the iv
cipherStream.Write(iv); //Write iv to the plain stream (not tested though)
tBinaryWriter.Write(input);
tCryptoStream.FlushFinalBlock();
}
string encryptedPayload = Convert.ToBase64String(cipherStream.ToArray());
}
}
When decrypting this back, get first 16 bytes out and use it in crypto stream
var aes= new AesCryptoServiceProvider()
{
Key = PrivateKey,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
};
//get first 16 bytes of IV and use it to decrypt
var iv = new byte[16];
Array.Copy(input, 0, iv, 0, iv.Length);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aes.CreateDecryptor(aes.Key, iv), CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cs))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
input,
iv.Length,
input.Length - iv.Length
);
}
return Encoding.Default.GetString(ms.ToArray());
}
Great input from folks. I took the combined answers from ankurpatel and Konstantin and cleaned it up and added some convenient method overrides. This works as of June 2019 in .NET Core 2.2.
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
private const int AesKeySize = 16;
public static void Main()
{
// the data to encrypt
var message = "Here is some data to encrypt!";
// create KeySize character key
var key = "g(KMDu(EEw63.*V`";
// encrypt the string to a string
var encrypted = AesEncrypt(message, key);
// decrypt the string to a string.
var decrypted = AesDecrypt(encrypted, key);
// display the original data and the decrypted data
Console.WriteLine($"Original: text: {encrypted}");
Console.WriteLine($"Round Trip: text: {decrypted}");
}
static string AesEncrypt(string data, string key)
{
return AesEncrypt(data, Encoding.UTF8.GetBytes(key));
}
static string AesDecrypt(string data, string key)
{
return AesDecrypt(data, Encoding.UTF8.GetBytes(key));
}
static string AesEncrypt(string data, byte[] key)
{
return Convert.ToBase64String(AesEncrypt(Encoding.UTF8.GetBytes(data), key));
}
static string AesDecrypt(string data, byte[] key)
{
return Encoding.UTF8.GetString(AesDecrypt(Convert.FromBase64String(data), key));
}
static byte[] AesEncrypt(byte[] data, byte[] key)
{
if (data == null || data.Length <= 0)
{
throw new ArgumentNullException($"{nameof(data)} cannot be empty");
}
if (key == null || key.Length != AesKeySize)
{
throw new ArgumentException($"{nameof(key)} must be length of {AesKeySize}");
}
using (var aes = new AesCryptoServiceProvider
{
Key = key,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
aes.GenerateIV();
var iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(aes.Key, iv))
using (var cipherStream = new MemoryStream())
{
using (var tCryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var tBinaryWriter = new BinaryWriter(tCryptoStream))
{
// prepend IV to data
cipherStream.Write(iv);
tBinaryWriter.Write(data);
tCryptoStream.FlushFinalBlock();
}
var cipherBytes = cipherStream.ToArray();
return cipherBytes;
}
}
}
static byte[] AesDecrypt(byte[] data, byte[] key)
{
if (data == null || data.Length <= 0)
{
throw new ArgumentNullException($"{nameof(data)} cannot be empty");
}
if (key == null || key.Length != AesKeySize)
{
throw new ArgumentException($"{nameof(key)} must be length of {AesKeySize}");
}
using (var aes = new AesCryptoServiceProvider
{
Key = key,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
// get first KeySize bytes of IV and use it to decrypt
var iv = new byte[AesKeySize];
Array.Copy(data, 0, iv, 0, iv.Length);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aes.CreateDecryptor(aes.Key, iv), CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cs))
{
// decrypt cipher text from data, starting just past the IV
binaryWriter.Write(
data,
iv.Length,
data.Length - iv.Length
);
}
var dataBytes = ms.ToArray();
return dataBytes;
}
}
}
I modified your decryption method as follows and it works:
public static string DecryptString(byte[] encryptedString, byte[] encryptionKey)
{
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
using (var ms = new MemoryStream(encryptedString))
{
// Read the first 16 bytes which is the IV.
byte[] iv = new byte[16];
ms.Read(iv, 0, 16);
provider.IV = iv;
using (var decryptor = provider.CreateDecryptor())
{
using (var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read))
{
using (var sr = new StreamReader(cs))
{
return sr.ReadToEnd();
}
}
}
}
}
}
The problem with your implementation is that you are reading too many bytes into the CryptoStream. You really need to read encryptedText.Length - 16. Using a StreamReader simplifies this, since you don't need to worry about offsets anywhere anymore.
The accepted answer is correct, but doesn't provide a good example of how to get a random IV.
It turns out that this is a lot easier than people are trying to make it. The AesCryptoServiceProvider in .NET automatically generates a cryptographically random IV every time you construct one. And if you need to use the same instance for multiple encryptions, you can call GenerateIV()
You can also prepend the IV to the encrypted value before returning it and have the decrypting end pull it off
private static void Main(string[] args) {
var rnd = new Random();
var key = new byte[32]; // For this example, I'll use a random 32-byte key.
rnd.NextBytes(key);
var message = "This is a test";
// Looping to encrypt the same thing twice just to show that the IV changes.
for (var i = 0; i < 2; ++i) {
var encrypted = EncryptString(message, key);
Console.WriteLine(encrypted);
Console.WriteLine(DecryptString(encrypted, key));
}
}
public static string EncryptString(string message, byte[] key) {
var aes = new AesCryptoServiceProvider();
var iv = aes.IV;
using (var memStream = new System.IO.MemoryStream()) {
memStream.Write(iv, 0, iv.Length); // Add the IV to the first 16 bytes of the encrypted value
using (var cryptStream = new CryptoStream(memStream, aes.CreateEncryptor(key, aes.IV), CryptoStreamMode.Write)) {
using (var writer = new System.IO.StreamWriter(cryptStream)) {
writer.Write(message);
}
}
var buf = memStream.ToArray();
return Convert.ToBase64String(buf, 0, buf.Length);
}
}
public static string DecryptString(string encryptedValue, byte[] key) {
var bytes = Convert.FromBase64String(encryptedValue);
var aes = new AesCryptoServiceProvider();
using (var memStream = new System.IO.MemoryStream(bytes)) {
var iv = new byte[16];
memStream.Read(iv, 0, 16); // Pull the IV from the first 16 bytes of the encrypted value
using (var cryptStream = new CryptoStream(memStream, aes.CreateDecryptor(key, iv), CryptoStreamMode.Read)) {
using (var reader = new System.IO.StreamReader(cryptStream)) {
return reader.ReadToEnd();
}
}
}
}
[EDIT: I modified my answer to include how to pass the IV in the encrypted value and get it when decrypting. I also refactored the example a bit]
In order to resolve the setting of IV on the provider (As Iridium pointed out):
ms.Read(provider.IV, 0, 16);
I added the following to your code:
var iv = new byte[provider.IV.Length];
memoryStream.Read(iv, 0, provider.IV.Length);
using (var decryptor = provider.CreateDecryptor(key, iv);
granted, my key is not set by the provider on each run. I generated it once and then stored it. The IV is randomly generated off of the provider for each encryption.
In my case, to generate the IV, I use something like this
/// <summary>
/// Derives password bytes
/// </summary>
/// <param name="Password">password</param>
/// <returns>derived bytes</returns>
private Rfc2898DeriveBytes DerivePass(string Password)
{
byte[] hash = CalcHash(Password);
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(Password, hash, _KEY_ITER);
return pdb;
}
/// <summary>
/// calculates the hash of the given string
/// </summary>
/// <param name="buffer">string to hash</param>
/// <returns>hash value (byte array)</returns>
private byte[] CalcHash(string buffer)
{
RIPEMD160 hasher = RIPEMD160.Create();
byte[] data = Encoding.UTF8.GetBytes(buffer);
return hasher.ComputeHash(data);
}
that is, I calculate the password hash using RIPEMD160 and use it to generate the derived bytes, at that point, when it comes to intializing the encryption/decryption I just use something like this
Rfc2898DeriveBytes pdb = DerivePass(Password);
SymmetricAlgorithm alg = _engine;
alg.Key = pdb.GetBytes(_keySize);
alg.IV = pdb.GetBytes(_IVSize);
I don't know if it's "correct" (probably crypto gurus here will shoot at me :D), but, at least, it gives me a decent IV and I don't have to store it "somewhere" since just entering the correct password will give back the needed IV value; as a note, the _engine in the above example is declared as "SymmetricAlgorithm" and initialized using something like this
_engine = Rijndael.Create();
_keySize = (_engine.KeySize / 8);
_IVSize = (_engine.BlockSize / 8);
which creates the desired crypto objects and initializes the key and IV sizes
To generate random IV you would need a truly random number. Whichever language specific API you use for generating the random number, should generate true random number. Both android and ios have apis which generate random numbers based on sensor data.
I recently implemented AES 256 with random IV (Generated using really random numbers) and hashed key. For more secure(random IV + hashed key) cross platform (android, ios, c#) implementation of AES see my answer here - https://stackoverflow.com/a/24561148/2480840