c#: make a 3rd party object serializable - c#

On my own object I can add the metatag [Serializable] to make it serializable. Now I use a 3rd party library that I need to be serializable. I inspected the code and it should not be a problem. Is there a way to fix this without altering the 3rd party code?

My advice would be: serialize data, not implementation. The fact of the existence of a 3rd-party object is nothing to do with the data; that is an implementation detail. As such, I always offer the same advice: if serialization ever gets complex, the first thing to do is to introduce a separate DTO model that represents the data in isolation of the implementation, and just map the current state to that DTO. This allows you to handle implementation changes without impact on the storage, and allows otherwise non-serializable objects to be serialized.
Some serializers offer workarounds - for example with protobuf-net you can a: supply the serialization information for any type at runtime, and b: supply a "surrogate" to use automatically when it gets tricky, but - using a DTO model is simpler and easier to maintain.
Your use of [Serializable] suggests BinaryFormatter; in my opinion, this is almost never a good choice for any kind of storage, since BinaryFormatter relies on implementation details. It works nicely for passing data between two in-sync app-domains, though

If the types are public you should be able to use the XmlSerializer to do what you want.
There's more information on this here
Serializes and deserializes objects into and from XML documents. The
XmlSerializer enables you to control how objects are encoded into XML.

Exactly take your subclass and make it serializable.
[Serializable] public class Foo: Bar {}

Write an adapter or be prepared to do something more extreme like disassembling the assembly, injecting the serializable attribute and reassembling.

Related

Version control a protobuf-net serialised C# object

I have serialized a C# class using protobuf-net. The resultant byte array is stored in a database. This is for performance reasons and I probably won't be able to change this design. The C# language doesn't make it possible to prevent classes being modified, and the class structure being passed in for deserialization with time may require changes that will not match that used for serialization, causing retrieval to fail.
Other than the wrapper technique suggested here, is there a pattern or technique for handling this kind of problem?
The only othe technique that comes to my mind is to version the classes that need to be deserialized in order to not loose anything when you need to make some changes. When you serialize an instance of those classes, you have to serialize also the version of the class (it could be a field of the the class itself).
I don't think this is the best solution but a solution.
The versioning strategy could become very difficult to manage when the changes (and the versions) start to grow.

Serialize custom external class that is not serializable

I wonder if there is any possibility of serializing a class described in a topic.
Suppose we have someone's library that is shared as binary DLL file. Additionally a creator of this lib created a class that is not Serializable. How to serialize such a class? I know I can create a twin-class that contains all the poperties etc. that can be serialized. But is there any other, easier solution to do this? How do you serialize classes that are "not yours" and are stored as binary only?
The 3rd party class is an implementation detail; frankly, it is a very bad idea to involve this in your serialization, as you are then completely fenced into a corner, and can never change implementation. You would also face significant risk of versioning issues - something that BinaryFormatter simply doesn't handle well.
It might not be what you want to hear, but I offer two recommendations:
do not serialize implementation details; serialize the data (only); this may indeed require you to write a DTO that mirrors the implementation, but this is usually a trivial job
make sure you understand the implications of BinaryFormatter; frankly, I never recommend it - it has... glitches.
As for workarounds: you can investigate serialization surrogates, but that isn't a trivial thing to do inside BinaryFormatter, and is basically just a re-statement of the first bullet.
If it was me (although I am hugely biased), I would change serializer; protobuf-net (disclosure: I'm the author) works as a binary serializer, and has easy-to-implement support for surrogates if the third-party model is already coupled to your model.

Why should I not make a class Serializable?

I'm storing some objects in my viewstate and I was wondering if there are any disadvantages to making a class Serializable?
Is it bad practice to make all of the classes Serializable?
Firstly. Avoid viewstate.
Generally serialization (textual) is used for transferring objects.
You should avoid marking any class as serializable that is not a DTO (Data transfer object) or message class. We do this for several reasons. What ever picks up your class in serialized format may not have the method information (which is in the original assembly) of a non DTO class. Secondly, a class may reference a resource (DB connection, file handle, etc) Do NOT serialize these, since de serialization does not re-establish resource connections and state, unless explicitly designed for, but is still a bad idea.
So in summary: Do NOT serialize when you have contextual methods and storing data for a thrid party to use. (Like a service response with methods is a bad idea). And do NOT serialize when the class contains a resource reference. Keep your serializable object clean from methods as much as possible. This might involve a little re factoring into a service type pattern.
Do serialize DTO's and messages.
This is more of a design choice.
It is a good practice to make all classes that are actually Serializable as Serializable. I would just use common sense, and set it for those classes that are intended for crossing process boundaries (DTO classes).
So it those classes which:
All their properties are simple types
And if they have complex properties, their types themselves are serializable
Marking it as [Serializable] (or ISerializable) is necessary for anything using BinaryFormatter, which may well include viewstate under the default configuration. As for good vs bad practice... well, most classes don't need to be serialized, and IMO even when they are, using BinaryFormatter is not always the best choice*. And specifically, marking it as both [Serializable] and [DataContract] will cause an exception IIRC.
*=actually, IMO BinaryFormatter is very rarely a good choice, but I might be biased... and I deliberately don't use viewstate ;p

Why is Serializable Attribute required for an object to be serialized

Based on my understanding, SerializableAttribute provides no compile time checks, as it's all done at runtime. If that's the case, then why is it required for classes to be marked as serializable?
Couldn't the serializer just try to serialize an object and then fail? Isn't that what it does right now? When something is marked, it tries and fails. Wouldn't it be better if you had to mark things as unserializable rather than serializable? That way you wouldn't have the problem of libraries not marking things as serializable?
As I understand it, the idea behind the SerializableAttribute is to create an opt-in system for binary serialization.
Keep in mind that, unlike XML serialization, which uses public properties, binary serialization grabs all the private fields by default.
Not only this could include operating system structures and private data that is not supposed to be exposed, but deserializing it could result in corrupt state that can crash an application (silly example: a handle for a file open in a different computer).
This is only a requirement for BinaryFormatter (and the SOAP equivalent, but nobody uses that). Diego is right; there are good reasons for this in terms of what it does, but it is far from the only option - indeed, personally I only recommend BinaryFormatter for talking between AppDomains - it is not (IMO) a good way to persist data (to disk, in cache, to a database BLOB, etc).
If this behaviour causes you trouble, consider using any of the alternatives:
XmlSerializer, which works on public members (not just the fields), but demands a public parameterless constructor and public type
DataContractSerializer, which can work fully opt-in (using [DataContract]/[DataMember]), but which can also (in 3.5 and above) work against the fields instead
Also - for a 3rd-party option (me being the 3rd party); protobuf-net may have options here; "v2" (not fully released yet, but available as source) allows the model (which members to serialize, etc) to be described independently of the type, so that it can be applied to types that you don't control. And unlike BinaryFormatter the output is version-tolerant, known public format, etc.

Why doesn't the XmlSerializer need the type to be marked [Serializable]?

In C#, if I want to serialize an instance with XmlSerializer, the object's type doesn't have to be marked with [Serializable] attribute. However, for other serialization approaches, such as DataContractSerializer, needs the class be marked as [Serializable] or [DataContract].
Is there any standard or pattern about serialization requirement?
This is because XmlSerializer only serializes public fields/properties. Other forms of serialization can serialize private data, which constitutes a potential security risk, so you have to "opt in" using an attribute.
Security isn't the only issue; simply, serialization only makes sense for certain classes. For example, it makes little snse to serialize a "connection". A connection string, sure, but the connection itself? nah. Likewise, anything that requires an unmanaged pointer/handle is not going to serialize very well. Nor are delegates.
Additionally, XmlSerializer and DataContractSerializer (by default) are tree serializers, not graph serializers - so any recursive links (like Parent) will cause it to break.
Marking the class with the serializer's preferred token is simply a way of saying "and it should make sense".
IIRC, both [XmlSerializer and [DataContractSerializer] used to be very rigid about demanding things like [Serializable], [DataContract] or [IXmlSerializable], but they have become a bit more liberal lately.
Right now there are really 3 forms of serialization in the .Net Framework.
XmlSerialization - By default works on public fields and properties. Can still be controlled via XmlElementAttribute, XmlAttributeAttribute, etc ...
BinarySerialization - Controlled by the SerializationAttribute. Deeply integrated into the CLR
WCF Seralization - DataContractAttribute, etc ...
There unfortunately is standard overall pattern for serialization. All 3 frameworks have different requirements and quirks.

Categories