Accurate three-minute time timer intervals - c#

In my previos question I asked about rounding time value to nearest third-minute.
Well now I have some issues with my System.Threading.Timer that must work when is third-minute time is come. I Do following:
private System.Timers.Timer WorkTimer;
//...
public void StartProccessing()
{
WorkTimer = new System.Timers.Timer();
WorkTimer.AutoReset = false;
WorkTimer.Elapsed += new ElapsedEventHandler(WorkTimer_Elapsed);
StartWorkTimer();
}
//...
private void StartWorkTimer()
{
WorkTimer.Interval = (CurrentTime.AddMinutes(3) - DateTime.Now).TotalMilliseconds;
WorkTimer.Start();
}
void WorkTimer_Elapsed(object sender, ElapsedEventArgs e)
{
WorkTimer.Stop();
this.ProcessData(this.CurrentTime);
StartWorkTimer();
}
Problem is that the when timer started - it is not work in first third-minute time, its begin working after second third-minute time. For example:
Timer is started at 15.02.2012 12:20:32.871, in 15.02.2012 12:21:00.000 it must work WorkTimer_Elapsed, but its begin from 15.02.2012 12:24:01.871. How to fix this?
I fix my CurrentTime time (from previos question):
private DateTime CurrentTime
{
get
{
DateTime now = DateTime.Now.AddSeconds(30);
DateTime val;
val = new DateTime(now.Year, now.Month, now.Day, now.Hour, now.Minute, 0)
.AddMinutes(((now.Minute) / 3) * 3 - now.Minute);
return val;
}
}

The problem here is that you round to the nearest 3rd minute, but for your timer to work you have to use the most recent one.
So, if you remove the AddSeconds(30), your timer should work as expected.
On a side note: your rounding algorithm should add 90 seconds (as that's the half of 3 minutes) rather than 30. If you're adding 30 seconds to 12:31:50, you'd end up with 12:30:00, but it should be 12:33:00 instead.

Use the System.Threading.Timer class.
DateTime dt = ... // here you assign the start time, so you can calculate
// the first time you want to start it.
var timer = new Timer(callback, null, dt, TimeSpan.FromMinutes(3));
Callback is:
public delegate void TimerCallback(Object state)

Related

Time span subtract stopwatch countdown

I'm using WinForm's. I have a label in my form that should count down from 0:20 seconds. to 0:00 seconds. I'm trying to do this here, but the compiler gives me an error.
Error: Cannot convert from 'int' to 'System.TimeSpan'
Why cant I use timespan.Subtract()? and how could I count down from 0:20 to 0:00 seconds?
private void timer1_Tick(object sender, EventArgs e)
{
TimeSpan timespan = TimeSpan.FromSeconds(20);
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
Time_label.Text = timespan.Subtract(stopwatch.Elapsed.Seconds);
}
A better approach for a simple second counter would be to make use of the Timer itself.
private readonly Timer _timer;
private TimeSpan _timespan;
private readonly TimeSpan _oneSecond;
public Form1()
{
InitializeComponent();
_timer = new Timer();
_timer.Tick += timer1_Tick;
_timer.Interval = 1000;
_timespan = TimeSpan.FromSeconds(20);
_oneSecond = new TimeSpan(0, 0, 0, 1);
_timer.Start();
}
private void timer1_Tick(object sender, EventArgs eventArgs)
{
if (_timespan >= TimeSpan.Zero)
{
Time_label.Text = _timespan.ToString(#"m\:ss");
_timespan = _timespan.Subtract(_oneSecond);
}
else
{
_timer.Stop();
}
}
stopwatch.Elapsed.Seconds returns and int, specifically, the number of seconds. timespan.Subtract(TimeSpan) accepts a TimeSpan object.
You can try:
Time_label.Text = 20 - stopwatch.Elapsed.Seconds;
or
Time_label.Text = timespan.Subtract(stopwatch.Elapsed).Seconds;
Please note there is a flaw in your logic. You restart a new stopwatch everytime you fire the tick event, so everytime it fires you have a new 0:00 stopwatch and you will get 19 or 20 in the textbox.
Instantiate your stopwatch elsewhere so it is the same between ticks.
EDIT:
as suggested by a Quantic's comment, if you plan on having more than a minute worth of seconds
Time_label.Text = (int)timespan.Subtract(stopwatch.Elapsed).TotalSeconds;
TimeSpan.Subtract expects another TimeSpan struct. The Stopwatch.Elapsed.Seconds is an Int32 struct. There isn't any built in implicit conversion to convert an Int32 to TimeSpan. You could try this
Time_label.Text = timespan.Subtract(TimeSpan.FromSeconds(stopwatch.Elapsed.seconds)).ToString();
TimeSpan.Subtract expects that you subtract another instance of TimeSpan from it (TimeSpan in itself is not bound to a specific time unit, so by subtracting say "15" it doesn't "know" what unit you have in mind).
What you want is either
Time_label.Text = Timespan.Subtract(TimeSpan.FromSeconds(stopwatch.Elapsed.Seconds)));
which produces a rather nifty preformatted
00:00:20
Or (taking advantage of the fact that Stopwatch's Elapsed is a TimeSpan itself)
Time_label.Text = timespan.Subtract(stopwatch.Elapsed);
But that produces
00:00:19.9999765
which is probably too precise to display to an end user (it's caused by Stopwatch being precise down-to-a-tick).

Executing an activity at a particular interval

My C# application has to execute a task every few seconds. It is very important that the execution happens at exactly this interval; give or take a few milliseconds.
I tried using a Timer but the time gradually shifts after a few minutes.
The code used by me is as follows:
System.Timers.Timer timerObj = new System.Timers.Timer(10 * 1000);
timerObj.Elapsed += timerObj_Elapsed;
timerObj.AutoReset = true;
timerObj.Start();
static void timerObj_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
DateTime currentTime = DateTime.Now;
Console.WriteLine(currentTime.ToString("HH:mm:ss.fff"));
}
Is there a better way to do this kind of activity?
If it's really important to be that precise, set your timer's interval to something smaller than the max number of milliseconds by which you can be off. (Hopefully this will be greater than 15ms, as that's the resolution of System.Timers.Timer.) Then, in the tick handler, check whether the appropriate amount of time has passed and, if so, call the "real" handler. If your goal is to avoid drift, your test of whether it's time to fire should be based on the time elapsed since starting the timer, not the time elapsed since the last "tick."
You could try to always schedule a singelshot timer via AutoReset = false and calculate the delta on which the timer should fire. This should compensate your skew as it calculates the delta from the absolute time. Here a rough example:
// member variables
DateTime firstSchedule = DateTime.UtcNow;
var numElapsed = 1;
constructor()
{
this.timerObj = new System.Timers.Timer();
timerObj.Interval = CalcDelta();
timerObj.Elapsed += timerObj_Elapsed;
timerObj.AutoReset = false;
timerObj.Start();
}
void timerObj_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
this.numElapses++;
this.timerObj.Interval = CalcDelta();
this.timerObj.Start();
DateTime currentTime = DateTime.Now;
Console.WriteLine(currentTime.ToString("HH:mm:ss.fff"));
}
private long CalcDelta()
{
DateTime nextSchedule = firstSchedule + TimeSpan.FromSeconds(numElapses * 10);
return (nextSchedule - DateTime.UtcNow).TotalMilliseconds;
}
private void setTimerRepeat(object sender, DoWorkEventArgs e){
DateTime begin = DateTime.Now;
bool isRunning = true;
int sleep=500;
while(isRunning){
int milliSeconds = DateTime.Now.Subtract(begin).TotalMilliSeconds;
if(milliSeconds > 9000){
sleep=10;
}else{
sleep=500;
}
if(milliSeconds=>10000){//if you get drift here, it should be consistent - adjust firing time downward to offset drift (change sleep to a multiple such that sleep%yourNumber==0)
begin = DateTime.Now;
Task.Run(()=>fireEvent());
}
Thread.Sleep(sleep);
}
}
}

.NET, event every minute (on the minute). Is a timer the best option?

I want to do stuff every minute on the minute (by the clock) in a windows forms app using c#. I'm just wondering whats the best way to go about it ?
I could use a timer and set its interval to 60000, but to get it to run on the minute, I would have to enable it on the minute precisely, not really viable.
I could use a timer and set its interval to 1000. Then within its tick event, I could check the clocks current minute against a variable that I set, if the minute has changed then run my code. This worries me because I am making my computer do a check every 1 second in order to carry out work every 1 minutes. Surely this is ugly ?
I'm using windows forms and .Net 2.0 so do not want to use the DispatchTimer that comes with .Net 3.5
This must be a fairly common problem. Have any of you a better way to do this?
Building on the answer from aquinas which can drift and which doesn't tick exactly on the minute just within one second of the minute:
static System.Timers.Timer t;
static void Main(string[] args)
{
t = new System.Timers.Timer();
t.AutoReset = false;
t.Elapsed += new System.Timers.ElapsedEventHandler(t_Elapsed);
t.Interval = GetInterval();
t.Start();
Console.ReadLine();
}
static double GetInterval()
{
DateTime now = DateTime.Now;
return ((60 - now.Second) * 1000 - now.Millisecond);
}
static void t_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
Console.WriteLine(DateTime.Now.ToString("o"));
t.Interval = GetInterval();
t.Start();
}
On my box this code ticks consistently within .02s of each minute:
2010-01-15T16:42:00.0040001-05:00
2010-01-15T16:43:00.0014318-05:00
2010-01-15T16:44:00.0128643-05:00
2010-01-15T16:45:00.0132961-05:00
How about:
int startin = 60 - DateTime.Now.Second;
var t = new System.Threading.Timer(o => Console.WriteLine("Hello"),
null, startin * 1000, 60000);
Creating a Timer control that fires every 1 second (and usually does nothing but a simple check) will add negligible overhead to your application.
Simply compare the value of Environment.TickCount or DateTime.Now to the last stored time (the previous 'minute tick'), and you should have a reasonably precise solution. The resolution of these two time values is about 15ms, which should be sufficient for your purposes.
Do note however that the interval of the Timer control is not guaranteed to be that precise or even anywhere now, since it runs on the Windows message loop, which is tied in with the responsiveness of the UI. Never rely on it for even moderately precise timing - though it is good enough for firing repeating events where you can check the time using a more sensitive method such as one of the two given above.
You can nail this with reactive extensions which will take care of lots of timer related problems for you (clock changes, app hibernation etc). Use Nuget package Rx-Main and code like this:
Action work = () => Console.WriteLine(DateTime.Now.ToLongTimeString());
Scheduler.Default.Schedule(
// start in so many seconds
TimeSpan.FromSeconds(60 - DateTime.Now.Second),
// then run every minute
() => Scheduler.Default.SchedulePeriodic(TimeSpan.FromMinutes(1), work));
Console.WriteLine("Press return.");
Console.ReadLine();
Read here (search for "Introducing ISchedulerPeriodic") to see all the issues this is taking care of: http://blogs.msdn.com/b/rxteam/archive/2012/06/20/reactive-extensions-v2-0-release-candidate-available-now.aspx
I jsut wrote this class using the WPF DispatcherTimer but you can swap the dispatcher for any timer that supports changing when it's woken from sleep state.
The class is constructed with a fixed time step and supprts Start/Stop/Reset, Start/Stop/Start works like a resume operation. The timer is like a stopwatch in that regard.
A clock implementation would simply create the class with a interval of 1 second and listen to the event. Be wary though that this is a real-time clock, if the tick event takes longer than the interval to finish you'll notice that the clock will try and catch up to real-time this will cause a burst of tick events being raised.
public class FixedStepDispatcherTimer
{
/// <summary>
/// Occurs when the timer interval has elapsed.
/// </summary>
public event EventHandler Tick;
DispatcherTimer timer;
public bool IsRunning { get { return timer.IsEnabled; } }
long step, nextTick, n;
public TimeSpan Elapsed { get { return new TimeSpan(n * step); } }
public FixedStepDispatcherTimer(TimeSpan interval)
{
if (interval < TimeSpan.Zero)
{
throw new ArgumentOutOfRangeException("interval");
}
this.timer = new DispatcherTimer();
this.timer.Tick += new EventHandler(OnTimerTick);
this.step = interval.Ticks;
}
TimeSpan GetTimerInterval()
{
var interval = nextTick - DateTime.Now.Ticks;
if (interval > 0)
{
return new TimeSpan(interval);
}
return TimeSpan.Zero; // yield
}
void OnTimerTick(object sender, EventArgs e)
{
if (DateTime.Now.Ticks >= nextTick)
{
n++;
if (Tick != null)
{
Tick(this, EventArgs.Empty);
}
nextTick += step;
}
var interval = GetTimerInterval();
Trace.WriteLine(interval);
timer.Interval = interval;
}
public void Reset()
{
n = 0;
nextTick = 0;
}
public void Start()
{
var now = DateTime.Now.Ticks;
nextTick = now + (step - (nextTick % step));
timer.Interval = GetTimerInterval();
timer.Start();
}
public void Stop()
{
timer.Stop();
nextTick = DateTime.Now.Ticks % step;
}
}
Create a method or put this code where you want the timer to start:
int time = 60 - DateTime.Now.Second; // Gets seconds to next minute
refreshTimer.Interval = time * 1000;
refreshTimer.Start();
And then on your tick event set the interval to 60000:
private void refreshTimer_Tick(object sender, EventArgs e)
{
refreshTimer.Interval = 60000; // Sets interval to 60 seconds
// Insert Refresh logic
}
By making use of ReactiveExtensions you could use the following code if you were interested in doing something as simple as printing to the console.
using System;
using System.Reactive.Linq;
namespace ConsoleApplicationExample
{
class Program
{
static void Main()
{
Observable.Interval(TimeSpan.FromMinutes(1))
.Subscribe(_ =>
{
Console.WriteLine(DateTime.Now.ToString());
});
Console.WriteLine(DateTime.Now.ToString());
Console.ReadLine();
}
}
}
Running a bit of code to see if the minute has changed once per second should not require much CPU time, and should be acceptable.
What about Quartz.NET? I think its a good framework to do timed actions.
You could set up two timers. An initial short interval timer (perhaps to fire every second, but dependent on how presice the second timer must fire on the minute).
You would fire the short interval timer only until the desired start time of the main interval timer is reached. Once the initial time is reached, the second main interval timer can be activated, and the short interval timer can be deactivated.
void StartTimer()
{
shortIntervalTimer.Interval = 1000;
mainIntervalTimer.Interval = 60000;
shortIntervalTimer.Tick +=
new System.EventHandler(this.shortIntervalTimer_Tick);
mainIntervalTimer.Tick +=
new System.EventHandler(mainIntervalTimer_Tick);
shortIntervalTimer.Start();
}
private void shortIntervalTimer_Tick(object sender, System.EventArgs e)
{
if (DateTime.Now.Second == 0)
{
mainIntervalTimer.Start();
shortIntervalTimer.Stop();
}
}
private void mainIntervalTimer_Tick(object sender, System.EventArgs e)
{
// do what you need here //
}
Alternatively, you could sleep to pause execution until it times out which should be close to your desired time. This will only wake the computer when the sleep finishes so it'll save you CPU time and let the CPU power down between processing events.
This has the advantage of modifying the timeout so that it will not drift.
int timeout = 0;
while (true) {
timeout = (60 - DateTime.Now.Seconds) * 1000 - DateTime.Now.Millisecond;
Thread.Sleep(timeout);
// do your stuff here
}
Use a timer set to run every second (or millisecond, whatever your accuracy threshold is), and then code the method to run your functionality if and only if the current time is within that threshold past the "on the minute" point.
What I'm using for scheduled tasks is a System.Threading.Timer(System.Threading.TimerCallback, object, int, int) with the callback set to the code I want to execute based on the interval which is supplied in milliseconds for the period value.
What about a combination of aquinas' answer and 'polling': (apologies for the mixture of languages)
def waitForNearlyAMinute:
secsNow = DateTime.Now.Second;
waitFor = 55 - secsNow;
setupTimer(waitFor, pollForMinuteEdge)
def pollForMinuteEdge:
if (DateTime.Now.Second == 0):
print "Hello, World!";
waitForNearlyAMinute();
else:
setupTimer(0.5, pollForMinuteEdge)
I have a solution based on Environment.TickCount
static void Main(string[] args)
{
//constatnt total miliseconds to one minute
const Int32 minuteMilisecond = 60 * 1000;
//get actual datetime
DateTime actualDateTime = DateTime.UtcNow;
//compenzation to one minute
Int32 nexTimer = Environment.TickCount + ((59 - actualDateTime.Second) * 1000) + (999 - actualDateTime.Millisecond);
//random fuction to simulate different delays on thread
Random rnd = new Random();
//main loop
while (true)
{
if (Environment.TickCount > nexTimer)
{
nexTimer += minuteMilisecond;
//execute your code here every minute
Console.WriteLine($"actual DateTime: {DateTime.Now.ToString("yyyy.MM.dd HH:mm:ss:ffff")}");
}
//random sleep between 100 - 200 ms
Thread.Sleep(rnd.Next(100, 200));
}
}

Run once a day in C#

Is there any clever method out there to make my executeEveryDayMethod() execute once a day, without having to involve the Windows TaskScheduler?
I achieved this by doing the following...
Set up a timer that fires every 20 minutes (although the actual timing is up to you - I needed to run on several occasions throughout the day).
on each Tick event, check the system time. Compare the time to the scheduled run time for your method.
If the current time is less than the scheduled time, check a in some persistent storage to get the datetime value of the last time the method ran.
If the method last ran more than 24 hours ago, run the method, and stash the datetime of this run back to your data store
If the method last ran within the last 24 hours, ignore it.
HTH
*edit - code sample in C# :: Note : untested...
using System;
using System.Collections.Generic;
using System.Text;
using System.Timers;
namespace ConsoleApplication2
{
class Program
{
static void Main(string[] args)
{
Timer t1 = new Timer();
t1.Interval = (1000 * 60 * 20); // 20 minutes...
t1.Elapsed += new ElapsedEventHandler(t1_Elapsed);
t1.AutoReset = true;
t1.Start();
Console.ReadLine();
}
static void t1_Elapsed(object sender, ElapsedEventArgs e)
{
DateTime scheduledRun = DateTime.Today.AddHours(3); // runs today at 3am.
System.IO.FileInfo lastTime = new System.IO.FileInfo(#"C:\lastRunTime.txt");
DateTime lastRan = lastTime.LastWriteTime;
if (DateTime.Now > scheduledRun)
{
TimeSpan sinceLastRun = DateTime.Now - lastRan;
if (sinceLastRun.Hours > 23)
{
doStuff();
// Don't forget to update the file modification date here!!!
}
}
}
static void doStuff()
{
Console.WriteLine("Running the method!");
}
}
}
Take a look at quartz.net. It is a scheduling library for .net.
More specifically take a look here.
If the time when it is run is not relevant and can be reset each time the program starts you can just set a timer, which is the easiest thing to do. If that's not acceptable it starts getting more complex, like the solution presented here and which still doesn't solve the persistence problem, you need to tackle that separately if you truly wish to do what Scheduled Tasks would. I'd really consider again if it's worth going through all the trouble to replicate a perfectly good existing functionality.
Here's a related question (Example taken from there).
using System;
using System.Timers;
public class Timer1
{
private static Timer aTimer = new System.Timers.Timer(24*60*60*1000);
public static void Main()
{
aTimer.Elapsed += new ElapsedEventHandler(ExecuteEveryDayMethod);
aTimer.Enabled = true;
Console.WriteLine("Press the Enter key to exit the program.");
Console.ReadLine();
}
// Specify what you want to happen when the Elapsed event is
// raised.
private static void ExecuteEveryDayMethod(object source, ElapsedEventArgs e)
{
Console.WriteLine("The Elapsed event was raised at {0}", e.SignalTime);
}
}
public partial class Main : Form
{
public Main( ) // Windows Form is called Main
{
InitializeComponent( );
}
private void Main_Load( object sender, EventArgs e )
{
/*
This example uses a System.Windows.Forms Timer
This code allows you to schedule an event at any given time in one day.
In this example the timer will tick at 3AM.
*/
Int32 alarm = GetAlarmInMilliseconds( 3, 0, 0 ); // Milliseconds until 3:00 am.
timer_MessageCount.Interval = alarm; // Timer will tick at 3:00am.
timer_MessageCount.Start( );
}
private Int32 GetAlarmInMilliseconds(Int32 eventHour, Int32 eventMinute, Int32 eventSecond )
{
DateTime now = DateTime.Now;
DateTime eventTime = new DateTime( now.Year, now.Month, now.Day, eventHour, eventMinute, eventSecond );
TimeSpan ts;
if ( eventTime > now )
{
ts = eventTime - now;
}
else
{
eventTime = eventTime.AddDays( 1 );
ts = eventTime - now;
}
Console.WriteLine("Next alarm in: {0}", ts );
return ( Int32 ) ts.TotalMilliseconds;
}
static void DoSomething( )
{
Console.WriteLine( "Run your code here." );
}
private void timer_MessageCount_Tick( object sender, EventArgs e )
{
DoSomething( );
Int32 alarm = GetAlarmInMilliseconds( 3, 0, 0 ); // Next alarm time = 3AM
timer_MessageCount.Interval = alarm;
}
}
Suppose you have the daily time in _Settings.DataCleanupTime in Format "hh:mm:ss"
//note the namespace, there are 4 different timers in .NET
System.Threading.Timer _Timer;
DateTime now = DateTime.Now;
//convert "hh:mm:ss" to three integers
var dateparts = _Settings.DataCleanupTime.Split(new char[] { ':' }).Select(p => Convert.ToInt32(p)).ToArray();
DateTime firstTime = new DateTime(now.Year, now.Month, now.Day, dateparts[0], dateparts[1], dateparts[2]);
//e.g. firsttime is today at 2am and it is already 6am
if(firstTime < now)
{
//first run will be tomorrow
firstTime = firstTime.AddDays(1);
}
int delay = Convert.ToInt32((firstTime - now).TotalMilliseconds);
_Timer = new Timer(DoWork, state:null, delay, 3600 * 24 * 1000);
The signature of DoWork is:
public void DoWork(Object state)
To stop the timer just call:
_Timer.Dispose();
You could query time and run if your within some time frame, that way even if the machine goes off you'll call the method or use a timer like Vinko's suggestion.
But the better solution (akin to older CRON versions, so its a proven pattern) is to have some persistent data, with the cheapest solution I can think of right now being a blank file, check its last modified attribute, and if it hasn't been modified within the last 24 hours you touch it and run your method. This way you assure the method gets run first thing in the case the application is out for the weekend for example.
I've done this in C# before, but its was a year ago at another Job, so I don't have the code but it was about 20 lines (with comments and all) or so.
To run the job once daily between 7 and 8pm, i set up a timer with interval = 3600000 ms and then just execute the following code for timer tick.
private void timer1_Tick(object sender, EventArgs e)
{
//ensure that it is running between 7-8pm daily.
if (DateTime.Now.Hour == 19)
{
RunJob();
}
}
An hour window is fine for me. Extra granularity on time will require a smaller interval on the timer (60000 for a minute) and including minutes on the if.
eg
{
//ensure that it is running at 7:30pm daily.
if (DateTime.Now.Hour == 19 && DateTime.Now.Minute == 30)
{
RunJob();
}
}
If you only want to run it once a day and don't care when, this will work (will run just after midnight).
Declare a DateTime variable:
DateTime _DateLastRun;
In your startup, set the initial date value:
_DateLastRun = DateTime.Now.Date;
In the logic area where you want to check whether to perform the action:
if (_DateLastRun < DateTime.Now.Date)
{
// Perform your action
_DateLastRun= DateTime.Now.Date;
}
You can try this solution.
public Main()
{
StartService();
}
public async Task StartService(CancellationToken token = default(CancellationToken))
{
while (!token.IsCancellationRequested)
{
ExecuteFunction();
try
{
await Task.Delay(TimeSpan.FromDays(1), token);
}
catch (TaskCanceledException)
{
break;
}
}
}
public async Task ExecuteFunction()
{
...
}
Here is how you can do it if you're running a Windows Forms Application. But you need to configure a setting so that you can store the last date the event was fired. If you never intend to close the app you can just store the date as a static value.
Im using a timer to fire the event, as following:
private void tmrAutoBAK_Tick(object sender, EventArgs e)
{
if (BakDB.Properties.Settings.Default.lastFireDate != DateTime.Now.ToString("yyyy-MM-dd"))
{
tmrAutoBAK.Stop(); //STOPS THE TIMER IN CASE OF EVENTUAL MESSAGEBOXES.
createBakup(); //EVENT
BakDB.Properties.Settings.Default.lastFireDate = DateTime.Now.ToString("yyyy-MM-dd"); //STORING CURRENT DATE TO SETTINGS FILE.
BakDB.Properties.Settings.Default.Save(); //SAVING THE SETTING FILE.
tmrAutoBAK.Start(); //RESTARTING TIMER
}
}
This is my very simple solution to execute a method once once a day:
private static DateTime _LastAccessedTime;
private static void OnceADayCode() // method that you want access once a day
{
_LastAccessedTime = DateTime.Today;
}
public static void PublicMethod() // this can be a method called from outside
{
if (_LastAccessedTime != DateTime.Today)
{
OnceADayCode();
}
}
with the same logic you can also use:
private static DateTime _LastAccessedTime;
private static void OnceADayCode()
{
if (_LastAccessedTime.Today != DateTime.Today)
{
// code that you want access once a day
_LastAccessedTime = DateTime.Today;
}
}

How can I raise an event every hour (or specific time interval each hour) in .NET?

I'm working on a little web crawler that will run in the system tray and crawl a web site every hour on the hour.
What is the best way to get .NET to raise an event every hour or some other interval to perform some task. For example I want to run an event every 20 minutes based on the time. The event would be raised at:
00:20
00:40
01:00
01:20
01:40
and so on. The best way I can think of to do this is by creating a loop on a thread, that constantly checks if the time is divisible by a given interval and raises a callback event if the time is reached. I feel like there has got to be a better way.
I'd use a Timer but I'd prefer something that follows a "schedule" that runs on the hour or something along those lines.
Without setting up my application in the windows task scheduler is this possible?
UPDATE:
I'm adding my algorithm for calculating the time interval for a timer. This method takes a "minute" parameter, which is what time the timer should trigger a tick. For example, if the "minute" parameter is 20, then the timer will tick at the intervals in the timetable above.
int CalculateTimerInterval(int minute)
{
if (minute <= 0)
minute = 60;
DateTime now = DateTime.Now;
DateTime future = now.AddMinutes((minute - (now.Minute % minute))).AddSeconds(now.Second * -1).AddMilliseconds(now.Millisecond * -1);
TimeSpan interval = future - now;
return (int)interval.TotalMilliseconds;
}
This code is used as follows:
static System.Windows.Forms.Timer t;
const int CHECK_INTERVAL = 20;
static void Main()
{
t = new System.Windows.Forms.Timer();
t.Interval = CalculateTimerInterval(CHECK_INTERVAL);
t.Tick += new EventHandler(t_Tick);
t.Start();
}
static void t_Tick(object sender, EventArgs e)
{
t.Interval = CalculateTimerInterval(CHECK_INTERVAL);
}
System.Timers.Timer. If you want to run at specific times of the day, you will need to figure out how long it is until the next time and set that as your interval.
This is just the basic idea. Depending on how precise you need to be you can do more.
int minutes = DateTime.Now.Minute;
int adjust = 10 - (minutes % 10);
timer.Interval = adjust * 60 * 1000;
You may find help from Quartz.net http://quartznet.sourceforge.net/
Here is an example of a lightweight system using thread timing and an asynch call.
I know there are some downsides, but I like using this instead of a timer when kicking off a long running process (like schedualed backend services). Since it runs inline in the timer thread, you don't have to worry about it getting kicked off again before the the original call has finished. This could be extended quite a bit to make it use an array of datetimes as the trigger times or add some more abilities to it. I am sure some of you guys out there know some better ways.
public Form1()
{
InitializeComponent();
//some fake data, obviously you would have your own.
DateTime someStart = DateTime.Now.AddMinutes(1);
TimeSpan someInterval = TimeSpan.FromMinutes(2);
//sample call
StartTimer(someStart,someInterval,doSomething);
}
//just a fake function to call
private bool doSomething()
{
DialogResult keepGoing = MessageBox.Show("Hey, I did something! Keep Going?","Something!",MessageBoxButtons.YesNo);
return (keepGoing == DialogResult.Yes);
}
//The following is the actual guts.. and can be transplanted to an actual class.
private delegate void voidFunc<P1,P2,P3>(P1 p1,P2 p2,P3 p3);
public void StartTimer(DateTime startTime, TimeSpan interval, Func<bool> action)
{
voidFunc<DateTime,TimeSpan,Func<bool>> Timer = TimedThread;
Timer.BeginInvoke(startTime,interval,action,null,null);
}
private void TimedThread(DateTime startTime, TimeSpan interval, Func<bool> action)
{
bool keepRunning = true;
DateTime NextExecute = startTime;
while(keepRunning)
{
if (DateTime.Now > NextExecute)
{
keepRunning = action.Invoke();
NextExecute = NextExecute.Add(interval);
}
//could parameterize resolution.
Thread.Sleep(1000);
}
}
Another strategy for this would be to record the LAST TIME that the process was run and determine if your desired interval has elapsed since that time. In this strategy, you would code your event to fire if the elapsed time is equal to OR GREATER THAN the desired interval. In this way you can handle instances where long intervals (once per day, for example) could be missed if the computer were to be down for some reason.
So for example:
lastRunDateTime = 5/2/2009 at 8pm
I want to run my process every 24 hours
On a timer event, check whether 24 hours OR MORE passed since the last time the process was run.
If yes, run the process, update lastRunDateTime by adding the desired interval to it (24 hours in this case, but whatever you need it to be)
Obviously, for this to recover after the system has gone down, you will need to store lastRunDateTime in a file or database somewhere so the program could pick up where it left off on recovery.
System.Windows.Forms.Timer (or System.Timers.Timer)
but since now you say you don't want to use Timers, you can run a lightweight wait process on another thread (check time, sleep a few seconds, check time again...) or make a component that raises an event (using a lightweight wait process) on certain scheduled times or intervals
The following should do the trick.
static void Main(string[] Args)
{
try
{
MainAsync().GetAwaiter().GetResult();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
static async Task MainAsync()
{
CancellationTokenSource tokenSource = new CancellationTokenSource();
// Start the timed event here
StartAsync(tokenSource.Token);
Console.ReadKey();
tokenSource.Cancel();
tokenSource.Dispose();
}
public Task StartAsync(CancellationToken cancellationToken)
{
var nextRunTime = new DateTime();
switch (DateTime.Now.AddSeconds(1) < DateTime.Today.AddHours(12)) // add a second to current time to account for time needed to setup the task.
{
case true:
nextRunTime = DateTime.Today.AddHours(12); // Run at midday today.
break;
case false:
nextRunTime = DateTime.Today.AddDays(1).AddHours(12); // Run at midday tomorrow.
break;
}
var firstInterval = nextRunTime.Subtract(DateTime.Now);
Action action = () =>
{
// Run the task at the first interval, then run the task again at midday every day.
_timer = new Timer(
EventMethod,
null,
firstInterval,
DateTime.Today.AddDays(1).AddHours(12).Subtract(DateTime.Now)
);
};
// no need to await this call here because this task is scheduled to run later.
Task.Run(action);
return Task.CompletedTask;
}
private async void EventMethod(object state)
{
// do work
}
My goal is to run an import around 03:00 every night.
Here's my approach, using System.Timers.Timer:
private Timer _timer;
private Int32 _hours = 0;
private Int32 _runAt = 3;
protected override void OnStart(string[] args)
{
_hours = (24 - (DateTime.Now.Hour + 1)) + _runAt;
_timer = new Timer();
_timer.Interval = _hours * 60 * 60 * 1000;
_timer.Elapsed += new ElapsedEventHandler(Tick);
_timer.Start();
}
void Tick(object sender, ElapsedEventArgs e)
{
if (_hours != 24)
{
_hours = 24;
_timer.Interval = _hours * 60 * 60 * 1000;
}
RunImport();
}

Categories