How to implement a lazy stream chunk enumerator? - c#

I'm trying to split a byte stream into chunks of increasing size.
The source stream contains an unknown number of bytes and is expensive to read. The output of the enumerator should be byte arrays of increasing size, starting at 8KB up to 1MB.
This is very simple to do by simply reading the whole stream, storing it in an array and taking the relevant pieces out. However, since the stream may be very large, reading it at once is unfeasible. Also, while performance is not the main concern, it is important to keep system load very low.
While implementing this I noticed that it's relatively difficult to keep the code short and maintainable. There are a few stream related issues to keep in mind, too (for instance, Stream.Read might not fill the buffer even though it succeeded).
I did not find any existing classes that help for my case, nor could I find something close on the net. How would you implement such a class?

public IEnumerable<BufferWrapper> getBytes(Stream stream)
{
List<int> bufferSizes = new List<int>() { 8192, 65536, 220160, 1048576 };
int count = 0;
int bufferSizePostion = 0;
byte[] buffer = new byte[bufferSizes[0]];
bool done = false;
while (!done)
{
BufferWrapper nextResult = new BufferWrapper();
nextResult.bytesRead = stream.Read(buffer, 0, buffer.Length);
nextResult.buffer = buffer;
done = nextResult.bytesRead == 0;
if (!done)
{
yield return nextResult;
count++;
if (count > 10 && bufferSizePostion < bufferSizes.Count)
{
count = 0;
bufferSizePostion++;
buffer = new byte[bufferSizes[bufferSizePostion]];
}
}
}
}
public class BufferWrapper
{
public byte[] buffer { get; set; }
public int bytesRead { get; set; }
}
Obviously the logic for when to move up in buffer size, and how to choose what that size is could be altered.
Someone could also probably find a better way of handling the last buffer to be sent, as this isn't the most efficient way.

For reference, the implementation I currently use, already with improvements as per the answer by #Servy
private const int InitialBlockSize = 8 * 1024;
private const int MaximumBlockSize = 1024 * 1024;
private Stream _Stream;
private int _Size = InitialBlockSize;
public byte[] Current
{
get;
private set;
}
public bool MoveNext ()
{
if (_Size < 0) {
return false;
}
var buf = new byte[_Size];
int count = 0;
while (count < _Size) {
int read = _Stream.Read (buf, count, _Size - count);
if (read == 0) {
break;
}
count += read;
}
if (count == _Size) {
Current = buf;
if (_Size <= MaximumBlockSize / 2) {
_Size *= 2;
}
}
else {
Current = new byte[count];
Array.Copy (buf, Current, count);
_Size = -1;
}
return true;
}

Related

Read binary objects from a file in C# written out by a C++ program

I am trying to read objects from very large files containing padded structs that were written into it by a C++ process. I was using an example to memory map the large file and try to deserialize the data into an object but I now can see that it won't work this way.
How can I extract all the objects from the files to use in C#? I'm probably way off but I've provided the code. The objects have a 8 byte milliseconds member followed by 21 16bit integers, which needs 6bytes of padding to align to a 8byte boundary.
[Serializable]
unsafe public struct DataStruct
{
public UInt64 milliseconds;
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 21)]
public fixed Int16 data[21];
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 3)]
public fixed Int16 padding[3];
};
[Serializable]
public class DataArray
{
public DataStruct[] samples;
}
public static class Helper
{
public static Int16[] GetData(this DataStruct data)
{
unsafe
{
Int16[] output = new Int16[21];
for (int index = 0; index < 21; ++index)
output[index] = data.data[index];
return output;
}
}
}
class FileThreadSupport
{
struct DataFileInfo
{
public string path;
public UInt64 start;
public UInt64 stop;
public UInt64 elements;
};
// Create our epoch timestamp
private static readonly DateTime epoch = new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);
// Output TCP client
private Support.AsyncTcpClient output;
// Directory which contains our data
private string replay_directory;
// Files to be read from
private DataFileInfo[] file_infos;
// Current timestamp of when the process was started
UInt64 process_start = 0;
// Object from current file
DataArray current_file_data;
// Offset into current files
UInt64 current_file_index = 0;
// Offset into current files
UInt64 current_file_offset = 0;
// Run flag
bool run = true;
public FileThreadSupport(ref Support.AsyncTcpClient output, ref Engine.A.Information info, ref Support.Configuration configuration)
{
// Set our output directory
replay_directory = configuration.getString("replay_directory");
if (replay_directory.Length == 0)
{
Console.WriteLine("Configuration does not provide a replay directory");
return;
}
// Check the directory for playable files
if(!loadDataDirectory(replay_directory))
{
Console.WriteLine("Replay directory {} did not have any valid files", replay_directory);
}
// Set the output TCP client
this.output = output;
}
private bool loadDataDirectory(string directory)
{
string[] files = Directory.GetFiles(directory, "*.*", SearchOption.TopDirectoryOnly);
file_infos = new DataFileInfo[files.Length];
int index = 0;
foreach (string file in files)
{
string[] parts = file.Split('\\');
string name = parts.Last();
parts = name.Split('.');
if (parts.Length != 2)
continue;
UInt64 start, stop = 0;
if (!UInt64.TryParse(parts[0], out start) || !UInt64.TryParse(parts[1], out stop))
continue;
long size = new System.IO.FileInfo(file).Length;
// Add to our file info array
file_infos[index] = new DataFileInfo
{
path = file,
start = start,
stop = stop,
elements = (ulong)(new System.IO.FileInfo(file).Length / 56
/*System.Runtime.InteropServices.Marshal.SizeOf(typeof(DataStruct))*/)
};
++index;
}
// Sort the array
Array.Sort(file_infos, delegate (DataFileInfo x, DataFileInfo y) { return x.start.CompareTo(y.start); });
// Return whether or not there were files found
return (files.Length > 0);
}
public void start()
{
process_start = (ulong)DateTime.Now.ToUniversalTime().Subtract(epoch).TotalMilliseconds;
UInt64 num_samples = 0;
while(run)
{
// Get our samples and add it to the sample
DataStruct[] result = getData(100);
Engine.A.A message = new Engine.A.A();
for (int i = 0; i < result.Length; ++i)
{
Engine.A.Data sample = new Engine.A.Data();
sample.Time = process_start + num_samples * 4;
Int16[] signal_data = Helper.GetData(result[i]);
for(int e = 0; e < signal_data.Length; ++e)
sample.Value[e] = signal_data[e];
message.Signal.Add(sample);
++num_samples;
}
// Send out the websocket
this.output.SendAsync(message.ToByteArray());
// Sleep 100 milliseconds
Thread.Sleep(100);
}
}
public void stop()
{
run = false;
}
private DataStruct[] getData(UInt64 milliseconds)
{
if (file_infos.Length == 0)
return new DataStruct[0];
if (current_file_data == null)
{
current_file_data = ReadObjectFromMMF(file_infos[current_file_index].path) as DataArray;
if(current_file_data.samples.Length == 0)
return new DataStruct[0];
}
UInt64 elements_to_read = (UInt64) milliseconds / 4;
DataStruct[] result = new DataStruct[elements_to_read];
Array.Copy(current_file_data.samples, (int)current_file_offset, result, 0, (int) Math.Min(elements_to_read, file_infos[current_file_index].elements - current_file_offset));
while((UInt64) result.Length != elements_to_read)
{
current_file_index = (current_file_index + 1) % (ulong) file_infos.Length;
current_file_data = ReadObjectFromMMF(file_infos[current_file_index].path) as DataArray;
if (current_file_data.samples.Length == 0)
return new DataStruct[0];
current_file_offset = 0;
Array.Copy(current_file_data.samples, (int)current_file_offset, result, result.Length, (int)Math.Min(elements_to_read, file_infos[current_file_index].elements - current_file_offset));
}
return result;
}
private object ByteArrayToObject(byte[] buffer)
{
BinaryFormatter binaryFormatter = new BinaryFormatter(); // Create new BinaryFormatter
MemoryStream memoryStream = new MemoryStream(buffer); // Convert buffer to memorystream
return binaryFormatter.Deserialize(memoryStream); // Deserialize stream to an object
}
private object ReadObjectFromMMF(string file)
{
// Get a handle to an existing memory mapped file
using (MemoryMappedFile mmf = MemoryMappedFile.CreateFromFile(file, FileMode.Open))
{
// Create a view accessor from which to read the data
using (MemoryMappedViewAccessor mmfReader = mmf.CreateViewAccessor())
{
// Create a data buffer and read entire MMF view into buffer
byte[] buffer = new byte[mmfReader.Capacity];
mmfReader.ReadArray<byte>(0, buffer, 0, buffer.Length);
// Convert the buffer to a .NET object
return ByteArrayToObject(buffer);
}
}
}
Well for one thing you're not using that memory mapped file well at all, you're just sequentially reading it all in a buffer, which is both needlessly inefficient and much slower than if you simply opened the file to read normally. The selling point of memory mapped files is repeated random access and random updates backed by the OS's virtual memory paging.
And you definitely don't need to read the entire file in memory, since your data is so strongly structured. You know exactly how many bytes to read for a record: Marshal.SizeOf<DataStruct>().
Then you need to get rid of all that serialization noise. Again your data is strongly typed, just read it. Get rid of those fixed arrays and use regular arrays, you're already instructing the marshaller how to read them with MarshalAs attributes (good). That also gets rid of that helper function that just copies an array for some unknown reason.
Your reading loop is very simple: read the correct number of bytes for one entry, use Marshal.PtrToStructure to convert it to a readable structure and add it to a list to return at the end. Bonus points if you can use .Net Core and Unsafe.As or Unsafe.Cast.
Edit: and don't use object returns, you know exactly what you're returning, write it down.

Read a fixed number of bytes when reading file using StreamReader

I'm using this port of the Mozilla character set detector to determine a file's encoding and then using that to construct a StreamReader. So far, so good.
However, the file format I am reading is an odd one and from time to time it is necessary to skip a number of bytes. That is, a file that is otherwise text, in one or other encoding, will have some raw bytes embedded in it.
I would like to read the stream as text, up to the point that I hit some text that indicates a byte stream follows, then I would like to read the byte stream, then resume reading as text. What is the best way of doing this (balance of simplicity and performance)?
I can't rely on seeking against the FileStream underlying the the StreamReader (and then discarding the buffered data in the latter) because I don't know how many bytes were used in reading the characters up to that point. I might abandon using StreamReader and switch to a bespoke class that uses parallel arrays of bytes and chars, populates the latter from the former using a decoder, and tracks the position in the byte array every time a character is read by using the encoding to calculate the number of bytes used for the character. Yuk.
To further clarify, the file has this format:
[encoded chars][embedded bytes indicator + len][len bytes][encoded chars]...
Where there many be zero one or many blocks of embedded bytes and the blocks of embedded chars may be any length.
So, for example:
ABC:123:DEF:456:$0099[0x00,0x01,0x02,... x 99]GHI:789:JKL:...
There are no line delimiters. I may have any number of fields (ABC, 123, ...) delimited by some character (in this case a colon). These fields may be in various codepages, including UTF-8 (not guaranteed to be single byte). When I hit a $ I know that the next 4 bytes contain a length (call it n), the next n bytes are to be read raw, and byte n + 1 will be another text field (GHI).
Proof of concept. This class works with UTF-16 string data, and ':' delimiters per OP. It expects binary length as a 4-byte, little-endian binary integer. It should be easy to adjust to more specific details of your (odd) file format. For example, any Decoder class should drop in to ReadString() and "just work".
To use it, construct it with a Stream class. For each individual data element, call ReportNextData(), which will tell you what kind of data is next, and then call the appropriate Read*() method. For binary data, call ReadBinaryLength() and then ReadBinaryData().
Note that ReadBinaryData() follows the stream contract; it is not guaranteed to return as many bytes as you asked for, so you may need to call it several times. However, if you ask for too many bytes, it will throw EndOfStreamException.
I tested it with this data (hex format):
410042004300240A0000000102030405060708090024050000000504030201580059005A003A310032003300
Which is:
ABC$[10][1234567890]$[5][54321]XYZ:123
Scan the data like so:
OddFileReader.NextData nextData;
while ((nextData = reader.ReportNextData()) != OddFileReader.NextData.Eof)
{
// Call appropriate Read*() here.
}
public class OddFileReader : IDisposable
{
public enum NextData
{
Unknown,
Eof,
String,
BinaryLength,
BinaryData
}
private Stream source;
private byte[] byteBuffer;
private int bufferOffset;
private int bufferEnd;
private NextData nextData;
private int binaryOffset;
private int binaryEnd;
private char[] characterBuffer;
public OddFileReader(Stream source)
{
this.source = source;
}
public NextData ReportNextData()
{
if (nextData != NextData.Unknown)
{
return nextData;
}
if (!PopulateBufferIfNeeded(1))
{
return (nextData = NextData.Eof);
}
if (byteBuffer[bufferOffset] == '$')
{
return (nextData = NextData.BinaryLength);
}
else
{
return (nextData = NextData.String);
}
}
public string ReadString()
{
ReportNextData();
if (nextData == NextData.Eof)
{
throw new EndOfStreamException();
}
else if (nextData != NextData.String)
{
throw new InvalidOperationException("Attempt to read non-string data as string");
}
if (characterBuffer == null)
{
characterBuffer = new char[1];
}
StringBuilder stringBuilder = new StringBuilder();
Decoder decoder = Encoding.Unicode.GetDecoder();
while (nextData == NextData.String)
{
byte b = byteBuffer[bufferOffset];
if (b == '$')
{
nextData = NextData.BinaryLength;
break;
}
else if (b == ':')
{
nextData = NextData.Unknown;
bufferOffset++;
break;
}
else
{
if (decoder.GetChars(byteBuffer, bufferOffset++, 1, characterBuffer, 0) == 1)
{
stringBuilder.Append(characterBuffer[0]);
}
if (bufferOffset == bufferEnd && !PopulateBufferIfNeeded(1))
{
nextData = NextData.Eof;
break;
}
}
}
return stringBuilder.ToString();
}
public int ReadBinaryLength()
{
ReportNextData();
if (nextData == NextData.Eof)
{
throw new EndOfStreamException();
}
else if (nextData != NextData.BinaryLength)
{
throw new InvalidOperationException("Attempt to read non-binary-length data as binary length");
}
bufferOffset++;
if (!PopulateBufferIfNeeded(sizeof(Int32)))
{
nextData = NextData.Eof;
throw new EndOfStreamException();
}
binaryEnd = BitConverter.ToInt32(byteBuffer, bufferOffset);
binaryOffset = 0;
bufferOffset += sizeof(Int32);
nextData = NextData.BinaryData;
return binaryEnd;
}
public int ReadBinaryData(byte[] buffer, int offset, int count)
{
ReportNextData();
if (nextData == NextData.Eof)
{
throw new EndOfStreamException();
}
else if (nextData != NextData.BinaryData)
{
throw new InvalidOperationException("Attempt to read non-binary data as binary data");
}
if (count > binaryEnd - binaryOffset)
{
throw new EndOfStreamException();
}
int bytesRead;
if (bufferOffset < bufferEnd)
{
bytesRead = Math.Min(count, bufferEnd - bufferOffset);
Array.Copy(byteBuffer, bufferOffset, buffer, offset, bytesRead);
bufferOffset += bytesRead;
}
else if (count < byteBuffer.Length)
{
if (!PopulateBufferIfNeeded(1))
{
throw new EndOfStreamException();
}
bytesRead = Math.Min(count, bufferEnd - bufferOffset);
Array.Copy(byteBuffer, bufferOffset, buffer, offset, bytesRead);
bufferOffset += bytesRead;
}
else
{
bytesRead = source.Read(buffer, offset, count);
}
binaryOffset += bytesRead;
if (binaryOffset == binaryEnd)
{
nextData = NextData.Unknown;
}
return bytesRead;
}
private bool PopulateBufferIfNeeded(int minimumBytes)
{
if (byteBuffer == null)
{
byteBuffer = new byte[8192];
}
if (bufferEnd - bufferOffset < minimumBytes)
{
int shiftCount = bufferEnd - bufferOffset;
if (shiftCount > 0)
{
Array.Copy(byteBuffer, bufferOffset, byteBuffer, 0, shiftCount);
}
bufferOffset = 0;
bufferEnd = shiftCount;
while (bufferEnd - bufferOffset < minimumBytes)
{
int bytesRead = source.Read(byteBuffer, bufferEnd, byteBuffer.Length - bufferEnd);
if (bytesRead == 0)
{
return false;
}
bufferEnd += bytesRead;
}
}
return true;
}
public void Dispose()
{
Stream source = this.source;
this.source = null;
if (source != null)
{
source.Dispose();
}
}
}

How to write from MemoryStream into DataWriter into disk

I have DataWriter that has file storage stream already attached. how ever in particular case I want to first write data in memory so I can know size of bytes, and store size with data in writer.
How can I do that without creating two in memory buffers?
DataWriter writer; // writer is parameter passed from somewhere else.
using (var inMemory = new InMemoryRandomAccessStream())
{
// fill inMemory with data.
// ***Here*** How can I avoid this?
var buffer = new byte[checked((int)inMemory.Position)].AsBuffer();
inMemory.Seek(0);
await inMemory.ReadAsync(buffer, buffer.Length, InputStreamOptions.ReadAhead);
writer.WriteUInt32(buffer.Length); // write size
writer.WriteBuffer(buffer); // write data
}
As you can see I'm using two buffers, one is for memory stream, the other is ibuffer.
I don't know how to directly write inMemory contents into DataWriter which has filestorage stream already attached.
I had to write my own buffer stream in order to prevent duplicate buffer creation. though stream buffer internally works like list but it has benefits when list grows large.
internal sealed class BufferStream : IDisposable
{
private byte[] _array = Array.Empty<byte>();
private int _index = -1;
private const int MaxArrayLength = 0X7FEFFFFF;
public int Capacity => _array.Length;
public int Length => _index + 1;
public void WriteIntoDataWriterStreamAsync(IDataWriter writer)
{
// AsBuffer wont cause copy, its just wrapper around array.
if(_index >= 0) writer.WriteBuffer(_array.AsBuffer(0, _index));
}
public void WriteBuffer(IBuffer buffer)
{
EnsureSize(checked((int) buffer.Length));
for (uint i = 0; i < buffer.Length; i++)
{
_array[++_index] = buffer.GetByte(i);
}
}
public void Flush()
{
Array.Clear(_array, 0, _index);
_index = -1;
}
// list like resizing.
private void EnsureSize(int additionSize)
{
var min = additionSize + _index;
if (_array.Length <= min)
{
var newsize = (int) Math.Min((uint) _array.Length * 2, MaxArrayLength);
if (newsize <= min) newsize = min + 1;
Array.Resize(ref _array, newsize);
}
}
public void Dispose()
{
_array = null;
}
}
Then I can easily do this.
using (var buffer = new BufferStream())
{
// fill buffer
writer.WriteInt32(buffer.Length); // write size
buffer.WriteIntoDataWriterStream(writer); // write data
}

Encrypt file but can decrypt from any point

Basically i need to encrypt a file and then be able to decrypt the file from almost any point in the file. The reason i need this is i would like to use this for files like Video etc and still be able to jump though the file or video. Also the file would be served over the web so not needing to download the whole file is important. Where i am storing the file supports partial downloads so i can request any part of the file i need and this works for an un encrypted file. The question is how could i make this work for an encrypted file. I need to encrypt and decrypt the file in C# but don't really have any other restrictions than that. Symmetric keys are preferred but if that wont work it is not a deal breaker.
Another example of where i only want to download part of a file and decrypt is where i have joined multiple files together but just need to retrieve one of them. This would generally be used for files smaller than 50MB like pictures and info files.
--- EDIT ---
To be clear i am looking for a working implementation or library that does not increase the size of the source file. Stream cipher seems ideal but i have not seen one in c# that works for any point in the stream or anything apart from the start of the stream. Would consider block based implementation if it works form set blocks in stream. Basically i want to pass a raw stream though this and have unencrypted come out other side of the stream. Happy to set the starting offset it represents in the whole file/stream. Looking for something than works as i am not encryption expert. At the minute i get the parts of the file from a data source in 512kb to 5mb blocks depending on client config and i use streams CopyTo method to write it out to a file on disk. I don't get these parts in order. I am looking for a stream wrapper that i could use to pass into the CopyTo method on stream.
Your best best is probably to treat the file as a list of chunks (of whatever size is convenient for your application; let's say 50 kB) and encrypt each separately. This would allow you to decrypt each chunk independently of the others.
For each chunk, derive new keys from your master key, generate a new IV, and encrypt-then-MAC the chunk.
This method has higher storage overhead than encrypting the entire file at once and takes a bit more computation as well due to the key regeneration that it requires.
If you use a stream cipher instead of a block cipher, you'd be able to start decrypting at any byte offset, as long as the decryptor was able to get the current IV from somewhere.
For those interested i managed to work it out based on a number of examples i found plus some of my own code. It uses bouncycastle but should also work with dotnet AES with a few tweaks. This allows the decryption/encryption from any point in the stream.
using System;
using System.IO;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
namespace StreamHelpers
{
public class StreamEncryptDecrypt : Stream
{
private readonly Stream _streamToWrap;
private readonly IBlockCipher _cipher;
private readonly ICipherParameters _key;
private readonly byte[] _iv;
private readonly byte[] _counter;
private readonly byte[] _counterOut;
private readonly byte[] _output;
private long currentBlockCount;
public StreamEncryptDecrypt(Stream streamToWrap, IBlockCipher cipher, ParametersWithIV keyAndIv)
{
_streamToWrap = streamToWrap;
_cipher = cipher;
_key = keyAndIv.Parameters;
_cipher.Init(true, _key);
_iv = keyAndIv.GetIV();
_counter = new byte[_cipher.GetBlockSize()];
_counterOut = new byte[_cipher.GetBlockSize()];
_output = new byte[_cipher.GetBlockSize()];
if (_iv.Length != _cipher.GetBlockSize())
{
throw new Exception("IV must be the same size as the cipher block size");
}
InitCipher();
}
private void InitCipher()
{
long position = _streamToWrap.Position;
Array.Copy(_iv, 0, _counter, 0, _counter.Length);
currentBlockCount = 0;
var targetBlock = position/_cipher.GetBlockSize();
while (currentBlockCount < targetBlock)
{
IncrementCounter(false);
}
_cipher.ProcessBlock(_counter, 0, _counterOut, 0);
}
private void IncrementCounter(bool updateCounterOut = true)
{
currentBlockCount++;
// Increment the counter
int j = _counter.Length;
while (--j >= 0 && ++_counter[j] == 0)
{
}
_cipher.ProcessBlock(_counter, 0, _counterOut, 0);
}
public override long Position
{
get { return _streamToWrap.Position; }
set
{
_streamToWrap.Position = value;
InitCipher();
}
}
public override long Seek(long offset, SeekOrigin origin)
{
var result = _streamToWrap.Seek(offset, origin);
InitCipher();
return result;
}
public void ProcessBlock(
byte[] input,
int offset,
int length, long streamPosition)
{
if (input.Length < offset+length)
throw new ArgumentException("input does not match offset and length");
var blockSize = _cipher.GetBlockSize();
var startingBlock = streamPosition / blockSize;
var blockOffset = (int)(streamPosition - (startingBlock * blockSize));
while (currentBlockCount < streamPosition / blockSize)
{
IncrementCounter();
}
//process the left over from current block
if (blockOffset !=0)
{
var blockLength = blockSize - blockOffset;
blockLength = blockLength > length ? length : blockLength;
//
// XOR the counterOut with the plaintext producing the cipher text
//
for (int i = 0; i < blockLength; i++)
{
input[offset + i] = (byte)(_counterOut[blockOffset + i] ^ input[offset + i]);
}
offset += blockLength;
length -= blockLength;
blockOffset = 0;
if (length > 0)
{
IncrementCounter();
}
}
//need to loop though the rest of the data and increament counter when needed
while (length > 0)
{
var blockLength = blockSize > length ? length : blockSize;
//
// XOR the counterOut with the plaintext producing the cipher text
//
for (int i = 0; i < blockLength; i++)
{
input[offset + i] = (byte)(_counterOut[i] ^ input[offset + i]);
}
offset += blockLength;
length -= blockLength;
if (length > 0)
{
IncrementCounter();
}
}
}
public override int Read(byte[] buffer, int offset, int count)
{
var pos = _streamToWrap.Position;
var result = _streamToWrap.Read(buffer, offset, count);
ProcessBlock(buffer, offset, result, pos);
return result;
}
public override void Write(byte[] buffer, int offset, int count)
{
var input = new byte[count];
Array.Copy(buffer, offset, input, 0, count);
ProcessBlock(input, 0, count, _streamToWrap.Position);
_streamToWrap.Write(input, offset, count);
}
public override void Flush()
{
_streamToWrap.Flush();
}
public override void SetLength(long value)
{
_streamToWrap.SetLength(value);
}
public override bool CanRead
{
get { return _streamToWrap.CanRead; }
}
public override bool CanSeek
{
get { return true; }
}
public override bool CanWrite
{
get { return _streamToWrap.CanWrite; }
}
public override long Length
{
get { return _streamToWrap.Length; }
}
protected override void Dispose(bool disposing)
{
if (_streamToWrap != null)
{
_streamToWrap.Dispose();
}
base.Dispose(disposing);
}
}
}

How to compare 2 files fast using .NET?

Typical approaches recommend reading the binary via FileStream and comparing it byte-by-byte.
Would a checksum comparison such as CRC be faster?
Are there any .NET libraries that can generate a checksum for a file?
The slowest possible method is to compare two files byte by byte. The fastest I've been able to come up with is a similar comparison, but instead of one byte at a time, you would use an array of bytes sized to Int64, and then compare the resulting numbers.
Here's what I came up with:
const int BYTES_TO_READ = sizeof(Int64);
static bool FilesAreEqual(FileInfo first, FileInfo second)
{
if (first.Length != second.Length)
return false;
if (string.Equals(first.FullName, second.FullName, StringComparison.OrdinalIgnoreCase))
return true;
int iterations = (int)Math.Ceiling((double)first.Length / BYTES_TO_READ);
using (FileStream fs1 = first.OpenRead())
using (FileStream fs2 = second.OpenRead())
{
byte[] one = new byte[BYTES_TO_READ];
byte[] two = new byte[BYTES_TO_READ];
for (int i = 0; i < iterations; i++)
{
fs1.Read(one, 0, BYTES_TO_READ);
fs2.Read(two, 0, BYTES_TO_READ);
if (BitConverter.ToInt64(one,0) != BitConverter.ToInt64(two,0))
return false;
}
}
return true;
}
In my testing, I was able to see this outperform a straightforward ReadByte() scenario by almost 3:1. Averaged over 1000 runs, I got this method at 1063ms, and the method below (straightforward byte by byte comparison) at 3031ms. Hashing always came back sub-second at around an average of 865ms. This testing was with an ~100MB video file.
Here's the ReadByte and hashing methods I used, for comparison purposes:
static bool FilesAreEqual_OneByte(FileInfo first, FileInfo second)
{
if (first.Length != second.Length)
return false;
if (string.Equals(first.FullName, second.FullName, StringComparison.OrdinalIgnoreCase))
return true;
using (FileStream fs1 = first.OpenRead())
using (FileStream fs2 = second.OpenRead())
{
for (int i = 0; i < first.Length; i++)
{
if (fs1.ReadByte() != fs2.ReadByte())
return false;
}
}
return true;
}
static bool FilesAreEqual_Hash(FileInfo first, FileInfo second)
{
byte[] firstHash = MD5.Create().ComputeHash(first.OpenRead());
byte[] secondHash = MD5.Create().ComputeHash(second.OpenRead());
for (int i=0; i<firstHash.Length; i++)
{
if (firstHash[i] != secondHash[i])
return false;
}
return true;
}
A checksum comparison will most likely be slower than a byte-by-byte comparison.
In order to generate a checksum, you'll need to load each byte of the file, and perform processing on it. You'll then have to do this on the second file. The processing will almost definitely be slower than the comparison check.
As for generating a checksum: You can do this easily with the cryptography classes. Here's a short example of generating an MD5 checksum with C#.
However, a checksum may be faster and make more sense if you can pre-compute the checksum of the "test" or "base" case. If you have an existing file, and you're checking to see if a new file is the same as the existing one, pre-computing the checksum on your "existing" file would mean only needing to do the DiskIO one time, on the new file. This would likely be faster than a byte-by-byte comparison.
If you d̲o̲ decide you truly need a full byte-by-byte comparison (see other answers for discussion of hashing), then the easiest solution is:
• for `System.String` path names:
public static bool AreFileContentsEqual(String path1, String path2) =>
File.ReadAllBytes(path1).SequenceEqual(File.ReadAllBytes(path2));
• for `System.IO.FileInfo` instances:
public static bool AreFileContentsEqual(FileInfo fi1, FileInfo fi2) =>
fi1.Length == fi2.Length &&
(fi1.Length == 0L || File.ReadAllBytes(fi1.FullName).SequenceEqual(
File.ReadAllBytes(fi2.FullName)));
Unlike some other posted answers, this is conclusively correct for any kind of file: binary, text, media, executable, etc., but as a full binary comparison, files that that differ only in "unimportant" ways (such as BOM, line-ending, character encoding, media metadata, whitespace, padding, source code comments, etc.note 1) will always be considered not-equal.
This code loads both files into memory entirely, so it should not be used for comparing truly gigantic files. Beyond that important caveat, full loading isn't really a penalty given the design of the .NET GC (because it's fundamentally optimized to keep small, short-lived allocations extremely cheap), and in fact could even be optimal when file sizes are expected to be less than 85K, because using a minimum of user code (as shown here) implies maximally delegating file performance issues to the CLR, BCL, and JIT to benefit from (e.g.) the latest design technology, system code, and adaptive runtime optimizations.
Furthermore, for such workaday scenarios, concerns about the performance of byte-by-byte comparison via LINQ enumerators (as shown here) are moot, since hitting the disk a̲t̲ a̲l̲l̲ for file I/O will dwarf, by several orders of magnitude, the benefits of the various memory-comparing alternatives. For example, even though SequenceEqual does in fact give us the "optimization" of abandoning on first mismatch, this hardly matters after having already fetched the files' contents, each fully necessary for any true-positive cases.1. An obscure exception: NTFS alternate data streams are not examined by any of the answers discussed on this page, so such streams may be different for files otherwise reported as the "same."
In addition to Reed Copsey's answer:
The worst case is where the two files are identical. In this case it's best to compare the files byte-by-byte.
If if the two files are not identical, you can speed things up a bit by detecting sooner that they're not identical.
For example, if the two files are of different length then you know they cannot be identical, and you don't even have to compare their actual content.
It's getting even faster if you don't read in small 8 byte chunks but put a loop around, reading a larger chunk. I reduced the average comparison time to 1/4.
public static bool FilesContentsAreEqual(FileInfo fileInfo1, FileInfo fileInfo2)
{
bool result;
if (fileInfo1.Length != fileInfo2.Length)
{
result = false;
}
else
{
using (var file1 = fileInfo1.OpenRead())
{
using (var file2 = fileInfo2.OpenRead())
{
result = StreamsContentsAreEqual(file1, file2);
}
}
}
return result;
}
private static bool StreamsContentsAreEqual(Stream stream1, Stream stream2)
{
const int bufferSize = 1024 * sizeof(Int64);
var buffer1 = new byte[bufferSize];
var buffer2 = new byte[bufferSize];
while (true)
{
int count1 = stream1.Read(buffer1, 0, bufferSize);
int count2 = stream2.Read(buffer2, 0, bufferSize);
if (count1 != count2)
{
return false;
}
if (count1 == 0)
{
return true;
}
int iterations = (int)Math.Ceiling((double)count1 / sizeof(Int64));
for (int i = 0; i < iterations; i++)
{
if (BitConverter.ToInt64(buffer1, i * sizeof(Int64)) != BitConverter.ToInt64(buffer2, i * sizeof(Int64)))
{
return false;
}
}
}
}
}
Edit: This method would not work for comparing binary files!
In .NET 4.0, the File class has the following two new methods:
public static IEnumerable<string> ReadLines(string path)
public static IEnumerable<string> ReadLines(string path, Encoding encoding)
Which means you could use:
bool same = File.ReadLines(path1).SequenceEqual(File.ReadLines(path2));
The only thing that might make a checksum comparison slightly faster than a byte-by-byte comparison is the fact that you are reading one file at a time, somewhat reducing the seek time for the disk head. That slight gain may however very well be eaten up by the added time of calculating the hash.
Also, a checksum comparison of course only has any chance of being faster if the files are identical. If they are not, a byte-by-byte comparison would end at the first difference, making it a lot faster.
You should also consider that a hash code comparison only tells you that it's very likely that the files are identical. To be 100% certain you need to do a byte-by-byte comparison.
If the hash code for example is 32 bits, you are about 99.99999998% certain that the files are identical if the hash codes match. That is close to 100%, but if you truly need 100% certainty, that's not it.
My answer is a derivative of #lars but fixes the bug in the call to Stream.Read. I also add some fast path checking that other answers had, and input validation. In short, this should be the answer:
using System;
using System.IO;
namespace ConsoleApp4
{
class Program
{
static void Main(string[] args)
{
var fi1 = new FileInfo(args[0]);
var fi2 = new FileInfo(args[1]);
Console.WriteLine(FilesContentsAreEqual(fi1, fi2));
}
public static bool FilesContentsAreEqual(FileInfo fileInfo1, FileInfo fileInfo2)
{
if (fileInfo1 == null)
{
throw new ArgumentNullException(nameof(fileInfo1));
}
if (fileInfo2 == null)
{
throw new ArgumentNullException(nameof(fileInfo2));
}
if (string.Equals(fileInfo1.FullName, fileInfo2.FullName, StringComparison.OrdinalIgnoreCase))
{
return true;
}
if (fileInfo1.Length != fileInfo2.Length)
{
return false;
}
else
{
using (var file1 = fileInfo1.OpenRead())
{
using (var file2 = fileInfo2.OpenRead())
{
return StreamsContentsAreEqual(file1, file2);
}
}
}
}
private static int ReadFullBuffer(Stream stream, byte[] buffer)
{
int bytesRead = 0;
while (bytesRead < buffer.Length)
{
int read = stream.Read(buffer, bytesRead, buffer.Length - bytesRead);
if (read == 0)
{
// Reached end of stream.
return bytesRead;
}
bytesRead += read;
}
return bytesRead;
}
private static bool StreamsContentsAreEqual(Stream stream1, Stream stream2)
{
const int bufferSize = 1024 * sizeof(Int64);
var buffer1 = new byte[bufferSize];
var buffer2 = new byte[bufferSize];
while (true)
{
int count1 = ReadFullBuffer(stream1, buffer1);
int count2 = ReadFullBuffer(stream2, buffer2);
if (count1 != count2)
{
return false;
}
if (count1 == 0)
{
return true;
}
int iterations = (int)Math.Ceiling((double)count1 / sizeof(Int64));
for (int i = 0; i < iterations; i++)
{
if (BitConverter.ToInt64(buffer1, i * sizeof(Int64)) != BitConverter.ToInt64(buffer2, i * sizeof(Int64)))
{
return false;
}
}
}
}
}
}
Or if you want to be super-awesome, you can use the async variant:
using System;
using System.IO;
using System.Threading.Tasks;
namespace ConsoleApp4
{
class Program
{
static void Main(string[] args)
{
var fi1 = new FileInfo(args[0]);
var fi2 = new FileInfo(args[1]);
Console.WriteLine(FilesContentsAreEqualAsync(fi1, fi2).GetAwaiter().GetResult());
}
public static async Task<bool> FilesContentsAreEqualAsync(FileInfo fileInfo1, FileInfo fileInfo2)
{
if (fileInfo1 == null)
{
throw new ArgumentNullException(nameof(fileInfo1));
}
if (fileInfo2 == null)
{
throw new ArgumentNullException(nameof(fileInfo2));
}
if (string.Equals(fileInfo1.FullName, fileInfo2.FullName, StringComparison.OrdinalIgnoreCase))
{
return true;
}
if (fileInfo1.Length != fileInfo2.Length)
{
return false;
}
else
{
using (var file1 = fileInfo1.OpenRead())
{
using (var file2 = fileInfo2.OpenRead())
{
return await StreamsContentsAreEqualAsync(file1, file2).ConfigureAwait(false);
}
}
}
}
private static async Task<int> ReadFullBufferAsync(Stream stream, byte[] buffer)
{
int bytesRead = 0;
while (bytesRead < buffer.Length)
{
int read = await stream.ReadAsync(buffer, bytesRead, buffer.Length - bytesRead).ConfigureAwait(false);
if (read == 0)
{
// Reached end of stream.
return bytesRead;
}
bytesRead += read;
}
return bytesRead;
}
private static async Task<bool> StreamsContentsAreEqualAsync(Stream stream1, Stream stream2)
{
const int bufferSize = 1024 * sizeof(Int64);
var buffer1 = new byte[bufferSize];
var buffer2 = new byte[bufferSize];
while (true)
{
int count1 = await ReadFullBufferAsync(stream1, buffer1).ConfigureAwait(false);
int count2 = await ReadFullBufferAsync(stream2, buffer2).ConfigureAwait(false);
if (count1 != count2)
{
return false;
}
if (count1 == 0)
{
return true;
}
int iterations = (int)Math.Ceiling((double)count1 / sizeof(Int64));
for (int i = 0; i < iterations; i++)
{
if (BitConverter.ToInt64(buffer1, i * sizeof(Int64)) != BitConverter.ToInt64(buffer2, i * sizeof(Int64)))
{
return false;
}
}
}
}
}
}
Honestly, I think you need to prune your search tree down as much as possible.
Things to check before going byte-by-byte:
Are sizes the same?
Is the last byte in file A different than file B
Also, reading large blocks at a time will be more efficient since drives read sequential bytes more quickly. Going byte-by-byte causes not only far more system calls, but it causes the read head of a traditional hard drive to seek back and forth more often if both files are on the same drive.
Read chunk A and chunk B into a byte buffer, and compare them (do NOT use Array.Equals, see comments). Tune the size of the blocks until you hit what you feel is a good trade off between memory and performance. You could also multi-thread the comparison, but don't multi-thread the disk reads.
Inspired from https://dev.to/emrahsungu/how-to-compare-two-files-using-net-really-really-fast-2pd9
Here is a proposal to do it with AVX2 SIMD instructions:
using System.Buffers;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
namespace FileCompare;
public static class FastFileCompare
{
public static bool AreFilesEqual(FileInfo fileInfo1, FileInfo fileInfo2, int bufferSize = 4096 * 32)
{
if (fileInfo1.Exists == false)
{
throw new FileNotFoundException(nameof(fileInfo1), fileInfo1.FullName);
}
if (fileInfo2.Exists == false)
{
throw new FileNotFoundException(nameof(fileInfo2), fileInfo2.FullName);
}
if (fileInfo1.Length != fileInfo2.Length)
{
return false;
}
if (string.Equals(fileInfo1.FullName, fileInfo2.FullName, StringComparison.OrdinalIgnoreCase))
{
return true;
}
using FileStream fileStream01 = fileInfo1.OpenRead();
using FileStream fileStream02 = fileInfo2.OpenRead();
ArrayPool<byte> sharedArrayPool = ArrayPool<byte>.Shared;
byte[] buffer1 = sharedArrayPool.Rent(bufferSize);
byte[] buffer2 = sharedArrayPool.Rent(bufferSize);
Array.Fill<byte>(buffer1, 0);
Array.Fill<byte>(buffer2, 0);
try
{
while (true)
{
int len1 = 0;
for (int read;
len1 < buffer1.Length &&
(read = fileStream01.Read(buffer1, len1, buffer1.Length - len1)) != 0;
len1 += read)
{
}
int len2 = 0;
for (int read;
len2 < buffer1.Length &&
(read = fileStream02.Read(buffer2, len2, buffer2.Length - len2)) != 0;
len2 += read)
{
}
if (len1 != len2)
{
return false;
}
if (len1 == 0)
{
return true;
}
unsafe
{
fixed (byte* pb1 = buffer1)
{
fixed (byte* pb2 = buffer2)
{
int vectorSize = Vector256<byte>.Count;
for (int processed = 0; processed < len1; processed += vectorSize)
{
Vector256<byte> result = Avx2.CompareEqual(Avx.LoadVector256(pb1 + processed), Avx.LoadVector256(pb2 + processed));
if (Avx2.MoveMask(result) != -1)
{
return false;
}
}
}
}
}
}
}
finally
{
sharedArrayPool.Return(buffer1);
sharedArrayPool.Return(buffer2);
}
}
}
If the files are not too big, you can use:
public static byte[] ComputeFileHash(string fileName)
{
using (var stream = File.OpenRead(fileName))
return System.Security.Cryptography.MD5.Create().ComputeHash(stream);
}
It will only be feasible to compare hashes if the hashes are useful to store.
(Edited the code to something much cleaner.)
My experiments show that it definitely helps to call Stream.ReadByte() fewer times, but using BitConverter to package bytes does not make much difference against comparing bytes in a byte array.
So it is possible to replace that "Math.Ceiling and iterations" loop in the comment above with the simplest one:
for (int i = 0; i < count1; i++)
{
if (buffer1[i] != buffer2[i])
return false;
}
I guess it has to do with the fact that BitConverter.ToInt64 needs to do a bit of work (check arguments and then perform the bit shifting) before you compare and that ends up being the same amount of work as compare 8 bytes in two arrays.
Another improvement on large files with identical length, might be to not read the files sequentially, but rather compare more or less random blocks.
You can use multiple threads, starting on different positions in the file and comparing either forward or backwards.
This way you can detect changes at the middle/end of the file, faster than you would get there using a sequential approach.
If you only need to compare two files, I guess the fastest way would be (in C, I don't know if it's applicable to .NET)
open both files f1, f2
get the respective file length l1, l2
if l1 != l2 the files are different; stop
mmap() both files
use memcmp() on the mmap()ed files
OTOH, if you need to find if there are duplicate files in a set of N files, then the fastest way is undoubtedly using a hash to avoid N-way bit-by-bit comparisons.
Something (hopefully) reasonably efficient:
public class FileCompare
{
public static bool FilesEqual(string fileName1, string fileName2)
{
return FilesEqual(new FileInfo(fileName1), new FileInfo(fileName2));
}
/// <summary>
///
/// </summary>
/// <param name="file1"></param>
/// <param name="file2"></param>
/// <param name="bufferSize">8kb seemed like a good default</param>
/// <returns></returns>
public static bool FilesEqual(FileInfo file1, FileInfo file2, int bufferSize = 8192)
{
if (!file1.Exists || !file2.Exists || file1.Length != file2.Length) return false;
var buffer1 = new byte[bufferSize];
var buffer2 = new byte[bufferSize];
using (var stream1 = file1.Open(FileMode.Open, FileAccess.Read, FileShare.Read))
{
using (var stream2 = file2.Open(FileMode.Open, FileAccess.Read, FileShare.Read))
{
while (true)
{
var bytesRead1 = stream1.Read(buffer1, 0, bufferSize);
var bytesRead2 = stream2.Read(buffer2, 0, bufferSize);
if (bytesRead1 != bytesRead2) return false;
if (bytesRead1 == 0) return true;
if (!ArraysEqual(buffer1, buffer2, bytesRead1)) return false;
}
}
}
}
/// <summary>
///
/// </summary>
/// <param name="array1"></param>
/// <param name="array2"></param>
/// <param name="bytesToCompare"> 0 means compare entire arrays</param>
/// <returns></returns>
public static bool ArraysEqual(byte[] array1, byte[] array2, int bytesToCompare = 0)
{
if (array1.Length != array2.Length) return false;
var length = (bytesToCompare == 0) ? array1.Length : bytesToCompare;
var tailIdx = length - length % sizeof(Int64);
//check in 8 byte chunks
for (var i = 0; i < tailIdx; i += sizeof(Int64))
{
if (BitConverter.ToInt64(array1, i) != BitConverter.ToInt64(array2, i)) return false;
}
//check the remainder of the array, always shorter than 8 bytes
for (var i = tailIdx; i < length; i++)
{
if (array1[i] != array2[i]) return false;
}
return true;
}
}
Here are some utility functions that allow you to determine if two files (or two streams) contain identical data.
I have provided a "fast" version that is multi-threaded as it compares byte arrays (each buffer filled from what's been read in each file) in different threads using Tasks.
As expected, it's much faster (around 3x faster) but it consumes more CPU (because it's multi threaded) and more memory (because it needs two byte array buffers per comparison thread).
public static bool AreFilesIdenticalFast(string path1, string path2)
{
return AreFilesIdentical(path1, path2, AreStreamsIdenticalFast);
}
public static bool AreFilesIdentical(string path1, string path2)
{
return AreFilesIdentical(path1, path2, AreStreamsIdentical);
}
public static bool AreFilesIdentical(string path1, string path2, Func<Stream, Stream, bool> areStreamsIdentical)
{
if (path1 == null)
throw new ArgumentNullException(nameof(path1));
if (path2 == null)
throw new ArgumentNullException(nameof(path2));
if (areStreamsIdentical == null)
throw new ArgumentNullException(nameof(path2));
if (!File.Exists(path1) || !File.Exists(path2))
return false;
using (var thisFile = new FileStream(path1, FileMode.Open, FileAccess.Read, FileShare.ReadWrite))
{
using (var valueFile = new FileStream(path2, FileMode.Open, FileAccess.Read, FileShare.ReadWrite))
{
if (valueFile.Length != thisFile.Length)
return false;
if (!areStreamsIdentical(thisFile, valueFile))
return false;
}
}
return true;
}
public static bool AreStreamsIdenticalFast(Stream stream1, Stream stream2)
{
if (stream1 == null)
throw new ArgumentNullException(nameof(stream1));
if (stream2 == null)
throw new ArgumentNullException(nameof(stream2));
const int bufsize = 80000; // 80000 is below LOH (85000)
var tasks = new List<Task<bool>>();
do
{
// consumes more memory (two buffers for each tasks)
var buffer1 = new byte[bufsize];
var buffer2 = new byte[bufsize];
int read1 = stream1.Read(buffer1, 0, buffer1.Length);
if (read1 == 0)
{
int read3 = stream2.Read(buffer2, 0, 1);
if (read3 != 0) // not eof
return false;
break;
}
// both stream read could return different counts
int read2 = 0;
do
{
int read3 = stream2.Read(buffer2, read2, read1 - read2);
if (read3 == 0)
return false;
read2 += read3;
}
while (read2 < read1);
// consumes more cpu
var task = Task.Run(() =>
{
return IsSame(buffer1, buffer2);
});
tasks.Add(task);
}
while (true);
Task.WaitAll(tasks.ToArray());
return !tasks.Any(t => !t.Result);
}
public static bool AreStreamsIdentical(Stream stream1, Stream stream2)
{
if (stream1 == null)
throw new ArgumentNullException(nameof(stream1));
if (stream2 == null)
throw new ArgumentNullException(nameof(stream2));
const int bufsize = 80000; // 80000 is below LOH (85000)
var buffer1 = new byte[bufsize];
var buffer2 = new byte[bufsize];
var tasks = new List<Task<bool>>();
do
{
int read1 = stream1.Read(buffer1, 0, buffer1.Length);
if (read1 == 0)
return stream2.Read(buffer2, 0, 1) == 0; // check not eof
// both stream read could return different counts
int read2 = 0;
do
{
int read3 = stream2.Read(buffer2, read2, read1 - read2);
if (read3 == 0)
return false;
read2 += read3;
}
while (read2 < read1);
if (!IsSame(buffer1, buffer2))
return false;
}
while (true);
}
public static bool IsSame(byte[] bytes1, byte[] bytes2)
{
if (bytes1 == null)
throw new ArgumentNullException(nameof(bytes1));
if (bytes2 == null)
throw new ArgumentNullException(nameof(bytes2));
if (bytes1.Length != bytes2.Length)
return false;
for (int i = 0; i < bytes1.Length; i++)
{
if (bytes1[i] != bytes2[i])
return false;
}
return true;
}
I think there are applications where "hash" is faster than comparing byte by byte.
If you need to compare a file with others or have a thumbnail of a photo that can change.
It depends on where and how it is using.
private bool CompareFilesByte(string file1, string file2)
{
using (var fs1 = new FileStream(file1, FileMode.Open))
using (var fs2 = new FileStream(file2, FileMode.Open))
{
if (fs1.Length != fs2.Length) return false;
int b1, b2;
do
{
b1 = fs1.ReadByte();
b2 = fs2.ReadByte();
if (b1 != b2 || b1 < 0) return false;
}
while (b1 >= 0);
}
return true;
}
private string HashFile(string file)
{
using (var fs = new FileStream(file, FileMode.Open))
using (var reader = new BinaryReader(fs))
{
var hash = new SHA512CryptoServiceProvider();
hash.ComputeHash(reader.ReadBytes((int)file.Length));
return Convert.ToBase64String(hash.Hash);
}
}
private bool CompareFilesWithHash(string file1, string file2)
{
var str1 = HashFile(file1);
var str2 = HashFile(file2);
return str1 == str2;
}
Here, you can get what is the fastest.
var sw = new Stopwatch();
sw.Start();
var compare1 = CompareFilesWithHash(receiveLogPath, logPath);
sw.Stop();
Debug.WriteLine(string.Format("Compare using Hash {0}", sw.ElapsedTicks));
sw.Reset();
sw.Start();
var compare2 = CompareFilesByte(receiveLogPath, logPath);
sw.Stop();
Debug.WriteLine(string.Format("Compare byte-byte {0}", sw.ElapsedTicks));
Optionally, we can save the hash in a database.
Hope this can help
This I have found works well comparing first the length without reading data and then comparing the read byte sequence
private static bool IsFileIdentical(string a, string b)
{
if (new FileInfo(a).Length != new FileInfo(b).Length) return false;
return (File.ReadAllBytes(a).SequenceEqual(File.ReadAllBytes(b)));
}
Yet another answer, derived from #chsh. MD5 with usings and shortcuts for file same, file not exists and differing lengths:
/// <summary>
/// Performs an md5 on the content of both files and returns true if
/// they match
/// </summary>
/// <param name="file1">first file</param>
/// <param name="file2">second file</param>
/// <returns>true if the contents of the two files is the same, false otherwise</returns>
public static bool IsSameContent(string file1, string file2)
{
if (file1 == file2)
return true;
FileInfo file1Info = new FileInfo(file1);
FileInfo file2Info = new FileInfo(file2);
if (!file1Info.Exists && !file2Info.Exists)
return true;
if (!file1Info.Exists && file2Info.Exists)
return false;
if (file1Info.Exists && !file2Info.Exists)
return false;
if (file1Info.Length != file2Info.Length)
return false;
using (FileStream file1Stream = file1Info.OpenRead())
using (FileStream file2Stream = file2Info.OpenRead())
{
byte[] firstHash = MD5.Create().ComputeHash(file1Stream);
byte[] secondHash = MD5.Create().ComputeHash(file2Stream);
for (int i = 0; i < firstHash.Length; i++)
{
if (i>=secondHash.Length||firstHash[i] != secondHash[i])
return false;
}
return true;
}
}
Not really an answer, but kinda funny.
This is what github's CoPilot (AI) suggested :-)
public static void CompareFiles(FileInfo actualFile, FileInfo expectedFile) {
if (actualFile.Length != expectedFile.Length) {
throw new Exception($"File {actualFile.Name} has different length in actual and expected directories.");
}
// compare the files on a byte level
using var actualStream = actualFile.OpenRead();
using var expectedStream = expectedFile.OpenRead();
var actualBuffer = new byte[1024];
var expectedBuffer = new byte[1024];
int actualBytesRead;
int expectedBytesRead;
do {
actualBytesRead = actualStream.Read(actualBuffer, 0, actualBuffer.Length);
expectedBytesRead = expectedStream.Read(expectedBuffer, 0, expectedBuffer.Length);
if (actualBytesRead != expectedBytesRead) {
throw new Exception($"File {actualFile.Name} has different content in actual and expected directories.");
}
if (!actualBuffer.SequenceEqual(expectedBuffer)) {
throw new Exception($"File {actualFile.Name} has different content in actual and expected directories.");
}
} while (actualBytesRead > 0);
}
I find the usage of SequenceEqual particular interesting.

Categories