Storing rounded doubles results in un-intuitive results [duplicate] - c#

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Why is floating point arithmetic in C# imprecise?
If I loop through numerous random doubles, and "round" them to two fractional digit places, each individual round appears to be correct (0.02, 0.01, 0.00, etc).
However, there appears to be a very small fractional part that is kept along with the round.
double total = 0;
for (int i = 0; i < 10000; i++)
{
total += Math.Round(random.NextDouble() * 0.02, 2);
}
Console.WriteLine(total);
Sample Outputs:
100.600000000006
99.7400000000059
Anyone care to explain why this happens is a more intuitive way?

System.Double and System.Float are base 2 floating point types. There are many finite decimal values that have an infinite representation in base 2, much as 1/3 has an infinite representation in base 10. Therefore, when you round to such a value, the binary representation is approximate. To avoid this problem, use the decimal type, which is a base 10 floating point type.
There must be 100 duplicates of this question on stackoverflow, but I am on my phone, which makes it inconvenient to find them and link to them.
For more information, look at the wikipedia article for IEEE double.
Many will say that doubles are "not exact", which is false. Every double value represents an exact value that can be represented exactly in base 10 (except NaN and infinity, of course). That's because 2 is one of the prime factors of 10. The only approximation is when you try to represent certain decimal fractions (or other rational numbers whose denominator has at least one prime factor other than 2).
The best way to understand this, for me at least, is to work out, on paper, the binary representations of a few fractions. For example, try 0.5, 0.625, 3.25, 5/16, 1/3, 0.2, and 0.3.

Doubles do not store base 10 numbers- they store a value in base 2, and so when storing fractional numbers they can exhibit small differences from the expected decimal value. For what it's worth, this is not unique to base 2. Base 10 (and really all base-N systems) has the same problem- take for example 1/3. In base 10 you end up representing this as something like 0.3333333(...), but there is no way to perfectly represent 1/3 in base 10.
In your example, you can experience small errors in the representation of the fractional portion of the number, and because you are adding these together you may see these small errors accumulate. Using my example above, if you round .333333(...) to 2 decimal places, you get .33, but that has a fairly substantial inaccuracy relative to the actual value of 1/3. Accumulating these inaccuracies is a common mistake when doing floating point math.
As #Phoog writes, there are many explanations of this on SO. Here's one: Why is floating point arithmetic in C# imprecise?

Related

Why "float.TryParse("51778365".ToString(), out x)" return 51778364 in C#? [duplicate]

Why does the following program print what it prints?
class Program
{
static void Main(string[] args)
{
float f1 = 0.09f*100f;
float f2 = 0.09f*99.999999f;
Console.WriteLine(f1 > f2);
}
}
Output is
false
Floating point only has so many digits of precision. If you're seeing f1 == f2, it is because any difference requires more precision than a 32-bit float can represent.
I recommend reading What Every Computer Scientist Should Read About Floating Point
The main thing is this isn't just .Net: it's a limitation of the underlying system most every language will use to represent a float in memory. The precision only goes so far.
You can also have some fun with relatively simple numbers, when you take into account that it's not even base ten. 0.1 (1/10th), for example, is a repeating decimal when represented in binary, just as 1/3rd is when represented in decimal.
In this particular case, it’s because .09 and .999999 cannot be represented with exact precision in binary (similarly, 1/3 cannot be represented with exact precision in decimal). For example, 0.111111111111111111101111 base 2 is 0.999998986721038818359375 base 10. Adding 1 to the previous binary value, 0.11111111111111111111 base 2 is 0.99999904632568359375 base 10. There isn’t a binary value for exactly 0.999999. Floating point precision is also limited by the space allocated for storing the exponent and the fractional part of the mantissa. Also, like integer types, floating point can overflow its range, although its range is larger than integer ranges.
Running this bit of C++ code in the Xcode debugger,
float myFloat = 0.1;
shows that myFloat gets the value 0.100000001. It is off by 0.000000001. Not a lot, but if the computation has several arithmetic operations, the imprecision can be compounded.
imho a very good explanation of floating point is in Chapter 14 of Introduction to Computer Organization with x86-64 Assembly Language & GNU/Linux by Bob Plantz of California State University at Sonoma (retired) http://bob.cs.sonoma.edu/getting_book.html. The following is based on that chapter.
Floating point is like scientific notation, where a value is stored as a mixed number greater than or equal to 1.0 and less than 2.0 (the mantissa), times another number to some power (the exponent). Floating point uses base 2 rather than base 10, but in the simple model Plantz gives, he uses base 10 for clarity’s sake. Imagine a system where two positions of storage are used for the mantissa, one position is used for the sign of the exponent* (0 representing + and 1 representing -), and one position is used for the exponent. Now add 0.93 and 0.91. The answer is 1.8, not 1.84.
9311 represents 0.93, or 9.3 times 10 to the -1.
9111 represents 0.91, or 9.1 times 10 to the -1.
The exact answer is 1.84, or 1.84 times 10 to the 0, which would be 18400 if we had 5 positions, but, having only four positions, the answer is 1800, or 1.8 times 10 to the zero, or 1.8. Of course, floating point data types can use more than four positions of storage, but the number of positions is still limited.
Not only is precision limited by space, but “an exact representation of fractional values in binary is limited to sums of inverse powers of two.” (Plantz, op. cit.).
0.11100110 (binary) = 0.89843750 (decimal)
0.11100111 (binary) = 0.90234375 (decimal)
There is no exact representation of 0.9 decimal in binary. Even carrying the fraction out more places doesn’t work, as you get into repeating 1100 forever on the right.
Beginning programmers often see floating point arithmetic as more
accurate than integer. It is true that even adding two very large
integers can cause overflow. Multiplication makes it even more likely
that the result will be very large and, thus, overflow. And when used
with two integers, the / operator in C/C++ causes the fractional part
to be lost. However, ... floating point representations have their own
set of inaccuracies. (Plantz, op. cit.)
*In floating point, both the sign of the number and the sign of the exponent are represented.

C# - Possible to restore double precision from a text input?

I have a class that does some length calculations based on a height on a ticket. It's been in place for years and working quite well... Until we got a unique ticket size.
They are entered by sales people in inches and are normally nice numbers like 3, 4 or 3.5 and store in a database - This one is however 3.66666 recurring (or 11/3) But it is being entered as 3.666 and causing the calculation to fail due to lost precision.
I have thought of a bit of a hack to restore precision for certain numbers, but thought maybe someone knows of a better way of getting a 3.666 or a 93.1333 back to it's number + two thirds status?
Thanks,
Mick.
As you explained in comments I see your point now. I've checked the numbers:
168000 / 3.666 = 45826.5139
168000 / 3.666666 = 45818.1901488
168000 * 3 / 11 = 45818.1818182
It makes a difference of 8 tickets. I have a feeling that your issue can be solved in many ways. On the side of user input for example. Or on the side of database. But back to your question:
How do I convert 3.666 or a 93.1333 back to it's number + two thirds
status?
You are looking for converting decimal (or double) to fraction.
There is already a question on SO: Algorithm for simplifying decimal to fractions which has many answeres. I've tested some of them, and none of them were satisfying. Some of them don't even hanlde recurrence. Perhaps I've missed the correct one, you can look by yourself.
Anyway, I believe you don't need to fully implement a conversion from 1.666 to 3/2, since it's not easy and you have a real-world sizes. You've said, that most of the time numbers are aroung 3, 3.5, 4 etc. So I suggest you to take a look at a question I've linked above and search for an algorythm of detecting the recurrence number. It was also discussed here How to know the repeating decimal in a fraction?
After what just convert 1.666 to 1.666666, since 1/1000000 of inch won't mess your calculations, as numbers above show.
It would be difficult to get the accurate value of double as double is floating point.
The MSDN says:
Remember that a floating-point number
can only approximate a decimal number,
and that the precision of a
floating-point number determines how
accurately that number approximates a
decimal number. By default, a Double
value contains 15 decimal digits of
precision, although a maximum of 17
digits is maintained internally. The
precision of a floating-point number
has several consequences:
Two floating-point numbers that appear equal for a particular
precision might not compare equal
because their least significant digits
are different.
A mathematical or comparison operation that uses a floating-point
number might not yield the same result
if a decimal number is used because
the floating-point number might not
exactly approximate the decimal
number.

Float value retrieved wrong from database [duplicate]

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
How do you explain floating point inaccuracy to fresh programmers and laymen who still think computers are infinitely wise and accurate?
Do you have a favourite example or anecdote which seems to get the idea across much better than an precise, but dry, explanation?
How is this taught in Computer Science classes?
There are basically two major pitfalls people stumble in with floating-point numbers.
The problem of scale. Each FP number has an exponent which determines the overall “scale” of the number so you can represent either really small values or really larges ones, though the number of digits you can devote for that is limited. Adding two numbers of different scale will sometimes result in the smaller one being “eaten” since there is no way to fit it into the larger scale.
PS> $a = 1; $b = 0.0000000000000000000000001
PS> Write-Host a=$a b=$b
a=1 b=1E-25
PS> $a + $b
1
As an analogy for this case you could picture a large swimming pool and a teaspoon of water. Both are of very different sizes, but individually you can easily grasp how much they roughly are. Pouring the teaspoon into the swimming pool, however, will leave you still with roughly a swimming pool full of water.
(If the people learning this have trouble with exponential notation, one can also use the values 1 and 100000000000000000000 or so.)
Then there is the problem of binary vs. decimal representation. A number like 0.1 can't be represented exactly with a limited amount of binary digits. Some languages mask this, though:
PS> "{0:N50}" -f 0.1
0.10000000000000000000000000000000000000000000000000
But you can “amplify” the representation error by repeatedly adding the numbers together:
PS> $sum = 0; for ($i = 0; $i -lt 100; $i++) { $sum += 0.1 }; $sum
9,99999999999998
I can't think of a nice analogy to properly explain this, though. It's basically the same problem why you can represent 1/3 only approximately in decimal because to get the exact value you need to repeat the 3 indefinitely at the end of the decimal fraction.
Similarly, binary fractions are good for representing halves, quarters, eighths, etc. but things like a tenth will yield an infinitely repeating stream of binary digits.
Then there is another problem, though most people don't stumble into that, unless they're doing huge amounts of numerical stuff. But then, those already know about the problem. Since many floating-point numbers are merely approximations of the exact value this means that for a given approximation f of a real number r there can be infinitely many more real numbers r1, r2, ... which map to exactly the same approximation. Those numbers lie in a certain interval. Let's say that rmin is the minimum possible value of r that results in f and rmax the maximum possible value of r for which this holds, then you got an interval [rmin, rmax] where any number in that interval can be your actual number r.
Now, if you perform calculations on that number—adding, subtracting, multiplying, etc.—you lose precision. Every number is just an approximation, therefore you're actually performing calculations with intervals. The result is an interval too and the approximation error only ever gets larger, thereby widening the interval. You may get back a single number from that calculation. But that's merely one number from the interval of possible results, taking into account precision of your original operands and the precision loss due to the calculation.
That sort of thing is called Interval arithmetic and at least for me it was part of our math course at the university.
Show them that the base-10 system suffers from exactly the same problem.
Try to represent 1/3 as a decimal representation in base 10. You won't be able to do it exactly.
So if you write "0.3333", you will have a reasonably exact representation for many use cases.
But if you move that back to a fraction, you will get "3333/10000", which is not the same as "1/3".
Other fractions, such as 1/2 can easily be represented by a finite decimal representation in base-10: "0.5"
Now base-2 and base-10 suffer from essentially the same problem: both have some numbers that they can't represent exactly.
While base-10 has no problem representing 1/10 as "0.1" in base-2 you'd need an infinite representation starting with "0.000110011..".
How's this for an explantation to the layman. One way computers represent numbers is by counting discrete units. These are digital computers. For whole numbers, those without a fractional part, modern digital computers count powers of two: 1, 2, 4, 8. ,,, Place value, binary digits, blah , blah, blah. For fractions, digital computers count inverse powers of two: 1/2, 1/4, 1/8, ... The problem is that many numbers can't be represented by a sum of a finite number of those inverse powers. Using more place values (more bits) will increase the precision of the representation of those 'problem' numbers, but never get it exactly because it only has a limited number of bits. Some numbers can't be represented with an infinite number of bits.
Snooze...
OK, you want to measure the volume of water in a container, and you only have 3 measuring cups: full cup, half cup, and quarter cup. After counting the last full cup, let's say there is one third of a cup remaining. Yet you can't measure that because it doesn't exactly fill any combination of available cups. It doesn't fill the half cup, and the overflow from the quarter cup is too small to fill anything. So you have an error - the difference between 1/3 and 1/4. This error is compounded when you combine it with errors from other measurements.
In python:
>>> 1.0 / 10
0.10000000000000001
Explain how some fractions cannot be represented precisely in binary. Just like some fractions (like 1/3) cannot be represented precisely in base 10.
Another example, in C
printf (" %.20f \n", 3.6);
incredibly gives
3.60000000000000008882
Here is my simple understanding.
Problem:
The value 0.45 cannot be accurately be represented by a float and is rounded up to 0.450000018. Why is that?
Answer:
An int value of 45 is represented by the binary value 101101.
In order to make the value 0.45 it would be accurate if it you could take 45 x 10^-2 (= 45 / 10^2.)
But that’s impossible because you must use the base 2 instead of 10.
So the closest to 10^2 = 100 would be 128 = 2^7. The total number of bits you need is 9 : 6 for the value 45 (101101) + 3 bits for the value 7 (111).
Then the value 45 x 2^-7 = 0.3515625. Now you have a serious inaccuracy problem. 0.3515625 is not nearly close to 0.45.
How do we improve this inaccuracy? Well we could change the value 45 and 7 to something else.
How about 460 x 2^-10 = 0.44921875. You are now using 9 bits for 460 and 4 bits for 10. Then it’s a bit closer but still not that close. However if your initial desired value was 0.44921875 then you would get an exact match with no approximation.
So the formula for your value would be X = A x 2^B. Where A and B are integer values positive or negative.
Obviously the higher the numbers can be the higher would your accuracy become however as you know the number of bits to represent the values A and B are limited. For float you have a total number of 32. Double has 64 and Decimal has 128.
A cute piece of numerical weirdness may be observed if one converts 9999999.4999999999 to a float and back to a double. The result is reported as 10000000, even though that value is obviously closer to 9999999, and even though 9999999.499999999 correctly rounds to 9999999.

How does decimal work?

I looked at decimal in C# but I wasnt 100% sure what it did.
Is it lossy? in C# writing 1.0000000000001f+1.0000000000001f results in 2 when using float (double gets you 2.0000000000002 which is correct) is it possible to add two things with decimal and not get the correct answer?
How many decimal places can I use? I see the MaxValue is 79228162514264337593543950335 but if i subtract 1 how many decimal places can I use?
Are there quirks I should know of? In C# its 128bits, in other language how many bits is it and will it work the same way as C# decimal does? (when adding, dividing, multiplication)
What you're showing isn't decimal - it's float. They're very different types. f is the suffix for float, aka System.Single. m is the suffix for decimal, aka System.Decimal. It's not clear from your question whether you thought this was actually using decimal, or whether you were just using float to demonstrate your fears.
If you use 1.0000000000001m + 1.0000000000001m you'll get exactly the right value. Note that the double version wasn't able to express either of the individual values exactly, by the way.
I have articles on both kinds of floating point in .NET, and you should read them thoroughly, along other resources:
Binary floating point (float/double)
Decimal floating point (decimal)
All floating point types have their limits of course, but in particular you should not expect binary floating point to accurately represent decimal values such as 0.1. It still can't represent anything that isn't exactly representable in 28/29 decimal digits though - so if you divide 1 by 3, you won't get the exact answer of course.
You should also note that the range of decimal is considerably smaller than that of double. So while it can have 28-29 decimal digits of precision, you can't represent truly huge numbers (e.g. 10200) or miniscule numbers (e.g. 10-200).
Decimals in programming are (almost) never 100% accurate. Sometimes it's even better to multiply the decimal value with a very high number and then calculate, but that's only if you're for example sure that the value is always between 0 and 100(so it won't get out of range of the maxvalue)
Floting point is inherently imprecise. Some numbers can't be represented faithfully. Decimal is a large floating point with high precision. If you look on the page at msdn you can see there are "28-29 significant digits." The .net framework classes are language agnostic. they will work the same in every language that uses .net.
edit (in response to Jon Skeet): If you initialize the Decimal class with the numbers above, which are less than 28 digits each after the decimal point, the number will be stored faithfully as long as the binary representation is exact. Since it works in 64-bit format, I assume the 128-bit will handle it perfectly fine. Some numbers, such as 0.1, will never be exactly representable because they are a repeating sequence in binary.

Weird outcome when subtracting doubles [duplicate]

This question already has answers here:
Closed 13 years ago.
Possible Duplicate:
Why is floating point arithmetic in C# imprecise?
I have been dealing with some numbers and C#, and the following line of code results in a different number than one would expect:
double num = (3600.2 - 3600.0);
I expected num to be 0.2, however, it turned out to be 0.1999999999998181. Is there any reason why it is producing a close, but still different decimal?
This is because double is a floating point datatype.
If you want greater accuracy you could switch to using decimal instead.
The literal suffix for decimal is m, so to use decimal arithmetic (and produce a decimal result) you could write your code as
var num = (3600.2m - 3600.0m);
Note that there are disadvantages to using a decimal. It is a 128 bit datatype as opposed to 64 bit which is the size of a double. This makes it more expensive both in terms of memory and processing. It also has a much smaller range than double.
There is a reason.
The reason is, that the way the number is stored in memory, in case of the double data type, doesn't allow for an exact representation of the number 3600.2. It also doesn't allow for an exact representation of the number 0.2.
0.2 has an infinite representation in binary. If You want to store it in memory or processor registers, to perform some calculations, some number close to 0.2 with finite representation is stored instead. It may not be apparent if You run code like this.
double num = (0.2 - 0.0);
This is because in this case, all binary digits available for representing numbers in double data type are used to represent the fractional part of the number (there is only the fractional part) and the precision is higher. If You store the number 3600.2 in an object of type double, some digits are used to represent the integer part - 3600 and there is less digits representing fractional part. The precision is lower and fractional part that is in fact stored in memory differs from 0.2 enough, that it becomes apparent after conversion from double to string
Change your type to decimal:
decimal num = (3600.2m - 3600.0m);
You should also read this.
See Wikipedia
Can't explain it better. I can also suggest reading What Every Computer Scientist Should Know About Floating-Point Arithmetic. Or see related questions on StackOverflow.

Categories