Multi-Threading Cross-Class Cancellation with TPL - c#

All, I have a long running process that I run on a background thread (with cancellation support) using the Task Paralell Library (TPL). The code for this long running taks is contained within Class Validation, and when the method
public bool AsyncRunValidationProcess(TaskScheduler _uiScheduler,
CancellationToken _token, dynamic _dynamic = null)
{
try
{
// Note: _uiScheduler is used to update the UI thread with progress infor etc.
for (int i = 0; i < someLargeLoopNumber; i++)
{
// Cancellation requested from UI Thread.
if (_token.IsCancellationRequested)
_token.ThrowIfCancellationRequested();
}
return true;
}
catch (Exception eX)
{
// Do stuff. Display `eX` if cancellation requested.
return false;
}
}
is run from Class Validation I can cancel the process fine. The cancellation request is handled by the appropriate delegate (shown below) and this works fine (I don't belive this is the cause of my problem).
When I run this method from another class, Class Batch, I do this via a "controller" method
asyncTask = Task.Factory.StartNew<bool>(() => asyncControlMethod(), token);
which in turn invokes the method
valForm.AsyncRunValidationProcess(uiScheduler, token,
new List<string>() { strCurrentSiteRelPath }));
where valForm is my accessor to Class Validation, the method runs fine, but when I attempt a cancellation the delegate
cancelHandler = delegate
{
UtilsTPL.CancelRunningProcess(asyncTask, cancelSource);
};
where
public static void CancelRunningProcess(Task _task,
CancellationTokenSource _cancelSource)
{
try
{
_cancelSource.Cancel();
_task.Wait(); // On cross-class call it freezes here.
}
catch (AggregateException aggEx)
{
if (aggEx.InnerException is OperationCanceledException)
Utils.InfoMsg("Operation cancelled at users request.");
if (aggEx.InnerException is SqlException)
Utils.ErrMsg(aggEx.Message);
}
}
freezes/hangs (with no unhandled exception etc.) on _task.Wait(). This (I belive - through testing) is to do with the fact that I am cancelling asyncControlMethod() which has called valForm.AsyncRunValidationProcess(...), so it is cancelling asyncControlMethod() which is causing the current process to hang. The problem seems to be with passing the CancellationTokenSource etc. to the child method. The IsCancellationPending event fires and kills the controlling method, which causes the child method to hang.
Can anyone tell me what I am doing wrong or (more pertinently), what should I be doing to allow such a cancellation procedure?
Note: I have tried to spawn a child task to run valForm.AsyncRunValidationProcess(...), with its own CancellationToken but this has not worked.
Thanks for your time.

The answer to this problem (helped massively by Jiaji Wu's comment and link) was that you cannot declare the CancellationToken as a global variable that is passed to the cascading methods; that is, you cannot have
public class MainClass
{
private CancellationTokenSource = source;
private CancellationToken token;
public MainClass()
{
source = new CancellationtokenSource();
token = source.Token;
}
private void buttonProcessSel_Click(object sender, EventArgs e)
{
// Spin-off MyMethod on background thread.
Task<bool> asyncControllerTask = null;
TaskSpin(asyncControllerTask, cancelSource, token, MyMethod);
}
private void method()
{
// Use the global token DOES NOT work!
if (token.IsCancellationRequested)
token.ThrowIfCancellationRequested();
}
private void TaskSpin(Task<bool> asyncTask, CancellationTokenSource cancelSource,
CancellationToken token, Func<bool> asyncMethod)
{
try
{
token = cancelSource.Token;
asyncTask = Task.Factory.StartNew<bool>(() => asyncMethod(token), token);
// To facilitate multitasking the cancelTask ToolStripButton
EventHandler cancelHandler = null;
if (cancelSource != null)
{
cancelHandler = delegate
{
UtilsTPL.CancelRunningProcess(mainForm, uiScheduler, asyncTask, cancelSource, true);
};
}
// Callback for finish/cancellation.
asyncTask.ContinueWith(task =>
{
// Handle cancellation etc.
}
// Other stuff...
}
}
}
Use of the global token in the maethod run on the background thread doen NOT work! The method must be explicitly passed the token for it to be able to register it. I am not sure of the exact reason why this is the case, but I will know in future, now you need to pass the token to MyMethod() like this
private void method(CancellationToken token)
{
// Use the global token DOES NOT work!
if (token.IsCancellationRequested)
token.ThrowIfCancellationRequested();
}
I hope this helps someone else.

Related

Using cancellation token properly in c#

I was recently exposed to C# language and was working on getting data out of cassandra so I was working with below code which gets data from Cassandra and it works fine.
Only problem I have is in my ProcessCassQuery method - I am passing CancellationToken.None to my requestExecuter Function which might not be the right thing to do. What should be the right way to handle that case and what should I do to handle it correctly?
/**
*
* Below method does multiple async calls on each table for their corresponding id's by limiting it down using Semaphore.
*
*/
private async Task<List<T>> ProcessCassQueries<T>(IList<int> ids, Func<CancellationToken, int, Task<T>> mapperFunc, string msg) where T : class
{
var tasks = ids.Select(async id =>
{
await semaphore.WaitAsync();
try
{
ProcessCassQuery(ct => mapperFunc(ct, id), msg);
}
finally
{
semaphore.Release();
}
});
return (await Task.WhenAll(tasks)).Where(e => e != null).ToList();
}
// this might not be good idea to do it. how can I improve below method?
private Task<T> ProcessCassQuery<T>(Func<CancellationToken, Task<T>> requestExecuter, string msg) where T : class
{
return requestExecuter(CancellationToken.None);
}
As said in the official documentation, the cancellation token allows propagating a cancellation signal. This can be useful for example, to cancel long-running operations that for some reason do not make sense anymore or that are simply taking too long.
The CancelationTokenSource will allow you to get a custom token that you can pass to the requestExecutor. It will also provide the means for cancelling a running Task.
private CancellationTokenSource cts = new CancellationTokenSource();
// ...
private Task<T> ProcessCassQuery<T>(Func<CancellationToken, Task<T>> requestExecuter, string msg) where T : class
{
return requestExecuter(cts.Token);
}
Example
Let's take a look at a different minimal/dummy example so we can look at the inside of it.
Consider the following method, GetSomethingAsync that will yield return an incrementing integer every second.
The call to token.ThrowIfCancellationRequested will make sure a TaskCanceledException is thrown if this process is cancelled by an outside action. Other approaches can be taken, for example, check if token.IsCancellationRequested is true and do something about it.
private static async IAsyncEnumerable<int> GetSomethingAsync(CancellationToken token)
{
Console.WriteLine("starting to get something");
token.ThrowIfCancellationRequested();
for (var i = 0; i < 100; i++)
{
await Task.Delay(1000, token);
yield return i;
}
Console.WriteLine("finished getting something");
}
Now let's build the main method to call the above method.
public static async Task Main()
{
var cts = new CancellationTokenSource();
// cancel it after 3 seconds, just for demo purposes
cts.CancelAfter(3000);
// or: Task.Delay(3000).ContinueWith(_ => { cts.Cancel(); });
await foreach (var i in GetSomethingAsync(cts.Token))
{
Console.WriteLine(i);
}
}
If we run this, we will get an output that should look like:
starting to get something
0
1
Unhandled exception. System.Threading.Tasks.TaskCanceledException: A task was canceled.
Of course, this is just a dummy example, the cancellation could be triggered by a user action, or some event that happens, it does not have to be a timer.

Task doesn't stop [duplicate]

In a thread, I create some System.Threading.Task and start each task.
When I do a .Abort() to kill the thread, the tasks are not aborted.
How can I transmit the .Abort() to my tasks ?
You can't. Tasks use background threads from the thread pool. Also canceling threads using the Abort method is not recommended. You may take a look at the following blog post which explains a proper way of canceling tasks using cancellation tokens. Here's an example:
class Program
{
static void Main()
{
var ts = new CancellationTokenSource();
CancellationToken ct = ts.Token;
Task.Factory.StartNew(() =>
{
while (true)
{
// do some heavy work here
Thread.Sleep(100);
if (ct.IsCancellationRequested)
{
// another thread decided to cancel
Console.WriteLine("task canceled");
break;
}
}
}, ct);
// Simulate waiting 3s for the task to complete
Thread.Sleep(3000);
// Can't wait anymore => cancel this task
ts.Cancel();
Console.ReadLine();
}
}
Like this post suggests, this can be done in the following way:
int Foo(CancellationToken token)
{
Thread t = Thread.CurrentThread;
using (token.Register(t.Abort))
{
// compute-bound work here
}
}
Although it works, it's not recommended to use such approach. If you can control the code that executes in task, you'd better go with proper handling of cancellation.
Aborting a Task is easily possible if you capture the thread in which the task is running in. Here is an example code to demonstrate this:
void Main()
{
Thread thread = null;
Task t = Task.Run(() =>
{
//Capture the thread
thread = Thread.CurrentThread;
//Simulate work (usually from 3rd party code)
Thread.Sleep(1000);
//If you comment out thread.Abort(), then this will be displayed
Console.WriteLine("Task finished!");
});
//This is needed in the example to avoid thread being still NULL
Thread.Sleep(10);
//Cancel the task by aborting the thread
thread.Abort();
}
I used Task.Run() to show the most common use-case for this - using the comfort of Tasks with old single-threaded code, which does not use the CancellationTokenSource class to determine if it should be canceled or not.
This sort of thing is one of the logistical reasons why Abort is deprecated. First and foremost, do not use Thread.Abort() to cancel or stop a thread if at all possible. Abort() should only be used to forcefully kill a thread that is not responding to more peaceful requests to stop in a timely fashion.
That being said, you need to provide a shared cancellation indicator that one thread sets and waits while the other thread periodically checks and gracefully exits. .NET 4 includes a structure designed specifically for this purpose, the CancellationToken.
I use a mixed approach to cancel a task.
Firstly, I'm trying to Cancel it politely with using the Cancellation.
If it's still running (e.g. due to a developer's mistake), then misbehave and kill it using an old-school Abort method.
Checkout an example below:
private CancellationTokenSource taskToken;
private AutoResetEvent awaitReplyOnRequestEvent = new AutoResetEvent(false);
void Main()
{
// Start a task which is doing nothing but sleeps 1s
LaunchTaskAsync();
Thread.Sleep(100);
// Stop the task
StopTask();
}
/// <summary>
/// Launch task in a new thread
/// </summary>
void LaunchTaskAsync()
{
taskToken = new CancellationTokenSource();
Task.Factory.StartNew(() =>
{
try
{ //Capture the thread
runningTaskThread = Thread.CurrentThread;
// Run the task
if (taskToken.IsCancellationRequested || !awaitReplyOnRequestEvent.WaitOne(10000))
return;
Console.WriteLine("Task finished!");
}
catch (Exception exc)
{
// Handle exception
}
}, taskToken.Token);
}
/// <summary>
/// Stop running task
/// </summary>
void StopTask()
{
// Attempt to cancel the task politely
if (taskToken != null)
{
if (taskToken.IsCancellationRequested)
return;
else
taskToken.Cancel();
}
// Notify a waiting thread that an event has occurred
if (awaitReplyOnRequestEvent != null)
awaitReplyOnRequestEvent.Set();
// If 1 sec later the task is still running, kill it cruelly
if (runningTaskThread != null)
{
try
{
runningTaskThread.Join(TimeSpan.FromSeconds(1));
}
catch (Exception ex)
{
runningTaskThread.Abort();
}
}
}
To answer Prerak K's question about how to use CancellationTokens when not using an anonymous method in Task.Factory.StartNew(), you pass the CancellationToken as a parameter into the method you're starting with StartNew(), as shown in the MSDN example here.
e.g.
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
Task.Factory.StartNew( () => DoSomeWork(1, token), token);
static void DoSomeWork(int taskNum, CancellationToken ct)
{
// Do work here, checking and acting on ct.IsCancellationRequested where applicable,
}
You should not try to do this directly. Design your tasks to work with a CancellationToken, and cancel them this way.
In addition, I would recommend changing your main thread to function via a CancellationToken as well. Calling Thread.Abort() is a bad idea - it can lead to various problems that are very difficult to diagnose. Instead, that thread can use the same Cancellation that your tasks use - and the same CancellationTokenSource can be used to trigger the cancellation of all of your tasks and your main thread.
This will lead to a far simpler, and safer, design.
Tasks have first class support for cancellation via cancellation tokens. Create your tasks with cancellation tokens, and cancel the tasks via these explicitly.
You can use a CancellationToken to control whether the task gets cancelled. Are you talking about aborting it before it's started ("nevermind, I already did this"), or actually interrupting it in middle? If the former, the CancellationToken can be helpful; if the latter, you will probably need to implement your own "bail out" mechanism and check at appropriate points in the task execution whether you should fail fast (you can still use the CancellationToken to help you, but it's a little more manual).
MSDN has an article about cancelling Tasks:
http://msdn.microsoft.com/en-us/library/dd997396.aspx
Task are being executed on the ThreadPool (at least, if you are using the default factory), so aborting the thread cannot affect the tasks. For aborting tasks, see Task Cancellation on msdn.
I tried CancellationTokenSource but i can't do this. And i did do this with my own way. And it works.
namespace Blokick.Provider
{
public class SignalRConnectProvider
{
public SignalRConnectProvider()
{
}
public bool IsStopRequested { get; set; } = false; //1-)This is important and default `false`.
public async Task<string> ConnectTab()
{
string messageText = "";
for (int count = 1; count < 20; count++)
{
if (count == 1)
{
//Do stuff.
}
try
{
//Do stuff.
}
catch (Exception ex)
{
//Do stuff.
}
if (IsStopRequested) //3-)This is important. The control of the task stopping request. Must be true and in inside.
{
return messageText = "Task stopped."; //4-) And so return and exit the code and task.
}
if (Connected)
{
//Do stuff.
}
if (count == 19)
{
//Do stuff.
}
}
return messageText;
}
}
}
And another class of the calling the method:
namespace Blokick.Views
{
[XamlCompilation(XamlCompilationOptions.Compile)]
public partial class MessagePerson : ContentPage
{
SignalRConnectProvider signalR = new SignalRConnectProvider();
public MessagePerson()
{
InitializeComponent();
signalR.IsStopRequested = true; // 2-) And this. Make true if running the task and go inside if statement of the IsStopRequested property.
if (signalR.ChatHubProxy != null)
{
signalR.Disconnect();
}
LoadSignalRMessage();
}
}
}
You can abort a task like a thread if you can cause the task to be created on its own thread and call Abort on its Thread object. By default, a task runs on a thread pool thread or the calling thread - neither of which you typically want to abort.
To ensure the task gets its own thread, create a custom scheduler derived from TaskScheduler. In your implementation of QueueTask, create a new thread and use it to execute the task. Later, you can abort the thread, which will cause the task to complete in a faulted state with a ThreadAbortException.
Use this task scheduler:
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException(); // Unused
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException(); // Unused
}
Start your task like this:
var scheduler = new SingleThreadTaskScheduler();
var task = Task.Factory.StartNew(action, cancellationToken, TaskCreationOptions.LongRunning, scheduler);
Later, you can abort with:
scheduler.TaskThread.Abort();
Note that the caveat about aborting a thread still applies:
The Thread.Abort method should be used with caution. Particularly when you call it to abort a thread other than the current thread, you do not know what code has executed or failed to execute when the ThreadAbortException is thrown, nor can you be certain of the state of your application or any application and user state that it is responsible for preserving. For example, calling Thread.Abort may prevent static constructors from executing or prevent the release of unmanaged resources.
You can use this class..:
It works for all typs of returned Values..
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace CarNUChargeTester
{
public class TimeOutTaskRunner<T>
{
private Func<T> func;
private int sec;
private T result;
public TimeOutTaskRunner(Func<T> func, int sec)
{
this.func = func;
this.sec = sec;
}
public bool run()
{
var scheduler = new SingleThreadTaskScheduler();
Task<T> task = Task<T>.Factory.StartNew(func, (new CancellationTokenSource()).Token, TaskCreationOptions.LongRunning, scheduler);
if (!task.Wait(TimeSpan.FromSeconds(sec)))
{
scheduler.TaskThread.Abort();
return false;
}
result = task.Result;
return true;
}
public T getResult() { return result; }
}
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException();
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException();
}
}
To use it you can write:
TimeOutTaskRunner<string> tr = new TimeOutTaskRunner<string>(f, 10); // 10 sec to run f
if (!tr.run())
errorMsg("TimeOut"); !! My func
tr.getResult() // get the results if it done without timeout..

How Do I Create a Looping Service inside an C# Async/Await application?

I have written a class with a method that runs as a long-running Task in the thread pool. The method is a monitoring service to periodically make a REST request to check on the status of another system. It's just a while() loop with a try()catch() inside so that it can handle its own exceptions and and gracefully continuing if something unexpected happens.
Here's an example:
public void LaunchMonitorThread()
{
Task.Run(() =>
{
while (true)
{
try
{
//Check system status
Thread.Sleep(5000);
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
});
}
It works fine, but I want to know if there's another pattern I could use that would allow the Monitor method to run as regular part of a standard Async/Await application, instead of launching it with Task.Run() -- basically I'm trying to avoid fire-and-forget pattern.
So I tried refactoring the code to this:
public async Task LaunchMonitorThread()
{
while (true)
{
try
{
//Check system status
//Use task.delay instead of thread.sleep:
await Task.Delay(5000);
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
}
But when I try to call the method in another async method, I get the fun compiler warning:
"Because this call is not awaited, execution of the current method continues before the call is completed."
Now I think this is correct and what I want. But I have doubts because I'm new to async/await. Is this code going to run the way I expect or is it going to DEADLOCK or do something else fatal?
What you are really looking for is the use of a Timer. Use the one in the System.Threading namespace. There is no need to use Task or any other variation thereof (for the code sample you have shown).
private System.Threading.Timer timer;
void StartTimer()
{
timer = new System.Threading.Timer(TimerExecution, null, TimeSpan.FromSeconds(5), TimeSpan.FromSeconds(5));
}
void TimerExecution(object state)
{
try
{
//Check system status
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
From the documentation
Provides a mechanism for executing a method on a thread pool thread at specified intervals
You could also use System.Timers.Timer but you might not need it. For a comparison between the 2 Timers see also System.Timers.Timer vs System.Threading.Timer.
If you need fire-and-forget operation, it is fine. I'd suggest to improve it with CancellationToken
public async Task LaunchMonitorThread(CancellationToken token)
{
while (!token.IsCancellationRequested)
{
try
{
//Check system status
//Use task.delay instead of thread.sleep:
await Task.Delay(5000, token);
}
catch (Exception e)
{
Console.WriteLine("An error occurred. Resuming on next loop...");
}
}
}
besides that, you can use it like
var cancellationToken = new CancellationToken();
var monitorTask = LaunchMonitorThread(cancellationToken);
and save task and/or cancellationToken to interrupt monitor wherever you want
The method Task.Run that you use to fire is perfect to start long-running async functions from a non-async method.
You are right: the forget part is not correct. If for instance your process is going to close, it would be neater if you kindly asked the started thread to finish its task.
The proper way to do this would be to use a CancellationTokenSource. If you order the CancellationTokenSource to Cancel, then all procedures that were started using Tokens from this CancellationTokenSource will stop neatly within reasonable time.
So let's create a class LongRunningTask, that will create a long running Task upon construction and Cancel this task using the CancellationTokenSource upon Dispose().
As both the CancellationTokenSource as the Task implement IDisposable the neat way would be to Dispose these two when the LongRunningTask object is disposed
class LongRunningTask : IDisposable
{
public LongRunningTask(Action<CancellationToken> action)
{ // Starts a Task that will perform the action
this.cancellationTokenSource = new CancellationTokenSource();
this.longRunningTask = Task.Run( () => action (this.cancellationTokenSource.Token));
}
private readonly CancellationTokenSource cancellationTokenSource;
private readonly Task longRunningTask;
private bool isDisposed = false;
public async Task CancelAsync()
{ // cancel the task and wait until the task is completed:
if (this.isDisposed) throw new ObjectDisposedException();
this.cancellationTokenSource.Cancel();
await this.longRunningTask;
}
// for completeness a non-async version:
public void Cancel()
{ // cancel the task and wait until the task is completed:
if (this.isDisposed) throw new ObjectDisposedException();
this.cancellationTokenSource.Cancel();
this.longRunningTask.Wait;
}
}
Add a standard Dispose Pattern
public void Dispose()
{
this.Dispose(true);
GC.SuppressFinalize(this);
}
protected void Dispose(bool disposing)
{
if (disposing && !this.isDisposed)
{ // cancel the task, and wait until task completed:
this.Cancel();
this.IsDisposed = true;
}
}
Usage:
var longRunningTask = new LongRunningTask( (token) => MyFunction(token)
...
// when application closes:
await longRunningTask.CancelAsync(); // not necessary but the neat way to do
longRunningTask.Dispose();
The Action {...} has a CancellationToken as input parameter, your function should regularly check it
async Task MyFunction(CancellationToken token)
{
while (!token.IsCancellationrequested)
{
// do what you have to do, make sure to regularly (every second?) check the token
// when calling other tasks: pass the token
await Task.Delay(TimeSpan.FromSeconds(5), token);
}
}
Instead of checking for Token, you could call token.ThrowIfCancellationRequested. This will throw an exception that you'll have to catch

C# How to handle cancel task with eventhandler inside

I have requirement to update ui control when status of dependent service will change. I have this sample code, which polling service api to get status and sends result to recalculate and update ui by main thread:
public void StartObserving() {
this.cts = new CancellationTokenSource();
this.cts.Token.ThrowIfCancellationRequested();
this.isRunning = true;
var token = this.cts.Token;
Task.Run(async () =>
{
try
{
while (this.isRunning)
{
var result = this.serviceAPI.GetStatus();
this.OnServiceStatusChanged(result);
await Task.Delay(3000);
}
}
catch (OperationCanceledException)
{
this.isRunning = false;
}
catch (Exception ex)
{
this.isRunning = false;
this.logger.LogError(ex);
}
}, token);
}
And the problem is when I want to cancel above Task. When I call this.cts.Cancel() in another method in this class, I get Exception 'A task was canceled' on dispatcher which was triggered by EventHandler: OnServiceStatusChanged
How I should properly implement this scenario?
I would simply check whether the token in cancelled in the inner loop, and exit the loop if it is. No need to pass the token to the Task.Run() method.
public void StartObserving()
{
this.cts = new CancellationTokenSource();
var token = this.cts.Token;
Task.Run(async () =>
{
try
{
while (!token.IsCancellationRequested)
{
var result = this.serviceAPI.GetStatus();
this.OnServiceStatusChanged(result);
await Task.Delay(3000);
}
}
catch
{
}
});
}
Tried to simulate this behavior in a console app. Task started, but after calling cts.Cancel(), the task continues to execute... Very strange.
However, I could cancel the task by simply setting this.isRunning to false (instead of calling cts.Cancel()). But I am not sure if this is the solution you want.
If serviceAPI.GetStatus() is a blocking call that waits indeffinitly, then you cannot properly cancel this task.
Proper cancellation of async methods involves marking safe cancellation points with CancellationToken.ThrowIfCancellationRequested().
You would have to rewrite serviceAPI.GetStatus() as an async method that you await the result of. It should contain calls to CancellationToken.ThrowIfCancellationRequested() at points where it can be safely cancelled. You would want to pass the cancellation token in to both that method, and the call to Task.Delay() for optimal performance.

How do I abort/cancel TPL Tasks?

In a thread, I create some System.Threading.Task and start each task.
When I do a .Abort() to kill the thread, the tasks are not aborted.
How can I transmit the .Abort() to my tasks ?
You can't. Tasks use background threads from the thread pool. Also canceling threads using the Abort method is not recommended. You may take a look at the following blog post which explains a proper way of canceling tasks using cancellation tokens. Here's an example:
class Program
{
static void Main()
{
var ts = new CancellationTokenSource();
CancellationToken ct = ts.Token;
Task.Factory.StartNew(() =>
{
while (true)
{
// do some heavy work here
Thread.Sleep(100);
if (ct.IsCancellationRequested)
{
// another thread decided to cancel
Console.WriteLine("task canceled");
break;
}
}
}, ct);
// Simulate waiting 3s for the task to complete
Thread.Sleep(3000);
// Can't wait anymore => cancel this task
ts.Cancel();
Console.ReadLine();
}
}
Like this post suggests, this can be done in the following way:
int Foo(CancellationToken token)
{
Thread t = Thread.CurrentThread;
using (token.Register(t.Abort))
{
// compute-bound work here
}
}
Although it works, it's not recommended to use such approach. If you can control the code that executes in task, you'd better go with proper handling of cancellation.
Aborting a Task is easily possible if you capture the thread in which the task is running in. Here is an example code to demonstrate this:
void Main()
{
Thread thread = null;
Task t = Task.Run(() =>
{
//Capture the thread
thread = Thread.CurrentThread;
//Simulate work (usually from 3rd party code)
Thread.Sleep(1000);
//If you comment out thread.Abort(), then this will be displayed
Console.WriteLine("Task finished!");
});
//This is needed in the example to avoid thread being still NULL
Thread.Sleep(10);
//Cancel the task by aborting the thread
thread.Abort();
}
I used Task.Run() to show the most common use-case for this - using the comfort of Tasks with old single-threaded code, which does not use the CancellationTokenSource class to determine if it should be canceled or not.
This sort of thing is one of the logistical reasons why Abort is deprecated. First and foremost, do not use Thread.Abort() to cancel or stop a thread if at all possible. Abort() should only be used to forcefully kill a thread that is not responding to more peaceful requests to stop in a timely fashion.
That being said, you need to provide a shared cancellation indicator that one thread sets and waits while the other thread periodically checks and gracefully exits. .NET 4 includes a structure designed specifically for this purpose, the CancellationToken.
I use a mixed approach to cancel a task.
Firstly, I'm trying to Cancel it politely with using the Cancellation.
If it's still running (e.g. due to a developer's mistake), then misbehave and kill it using an old-school Abort method.
Checkout an example below:
private CancellationTokenSource taskToken;
private AutoResetEvent awaitReplyOnRequestEvent = new AutoResetEvent(false);
void Main()
{
// Start a task which is doing nothing but sleeps 1s
LaunchTaskAsync();
Thread.Sleep(100);
// Stop the task
StopTask();
}
/// <summary>
/// Launch task in a new thread
/// </summary>
void LaunchTaskAsync()
{
taskToken = new CancellationTokenSource();
Task.Factory.StartNew(() =>
{
try
{ //Capture the thread
runningTaskThread = Thread.CurrentThread;
// Run the task
if (taskToken.IsCancellationRequested || !awaitReplyOnRequestEvent.WaitOne(10000))
return;
Console.WriteLine("Task finished!");
}
catch (Exception exc)
{
// Handle exception
}
}, taskToken.Token);
}
/// <summary>
/// Stop running task
/// </summary>
void StopTask()
{
// Attempt to cancel the task politely
if (taskToken != null)
{
if (taskToken.IsCancellationRequested)
return;
else
taskToken.Cancel();
}
// Notify a waiting thread that an event has occurred
if (awaitReplyOnRequestEvent != null)
awaitReplyOnRequestEvent.Set();
// If 1 sec later the task is still running, kill it cruelly
if (runningTaskThread != null)
{
try
{
runningTaskThread.Join(TimeSpan.FromSeconds(1));
}
catch (Exception ex)
{
runningTaskThread.Abort();
}
}
}
To answer Prerak K's question about how to use CancellationTokens when not using an anonymous method in Task.Factory.StartNew(), you pass the CancellationToken as a parameter into the method you're starting with StartNew(), as shown in the MSDN example here.
e.g.
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
Task.Factory.StartNew( () => DoSomeWork(1, token), token);
static void DoSomeWork(int taskNum, CancellationToken ct)
{
// Do work here, checking and acting on ct.IsCancellationRequested where applicable,
}
You should not try to do this directly. Design your tasks to work with a CancellationToken, and cancel them this way.
In addition, I would recommend changing your main thread to function via a CancellationToken as well. Calling Thread.Abort() is a bad idea - it can lead to various problems that are very difficult to diagnose. Instead, that thread can use the same Cancellation that your tasks use - and the same CancellationTokenSource can be used to trigger the cancellation of all of your tasks and your main thread.
This will lead to a far simpler, and safer, design.
Tasks have first class support for cancellation via cancellation tokens. Create your tasks with cancellation tokens, and cancel the tasks via these explicitly.
You can use a CancellationToken to control whether the task gets cancelled. Are you talking about aborting it before it's started ("nevermind, I already did this"), or actually interrupting it in middle? If the former, the CancellationToken can be helpful; if the latter, you will probably need to implement your own "bail out" mechanism and check at appropriate points in the task execution whether you should fail fast (you can still use the CancellationToken to help you, but it's a little more manual).
MSDN has an article about cancelling Tasks:
http://msdn.microsoft.com/en-us/library/dd997396.aspx
Task are being executed on the ThreadPool (at least, if you are using the default factory), so aborting the thread cannot affect the tasks. For aborting tasks, see Task Cancellation on msdn.
I tried CancellationTokenSource but i can't do this. And i did do this with my own way. And it works.
namespace Blokick.Provider
{
public class SignalRConnectProvider
{
public SignalRConnectProvider()
{
}
public bool IsStopRequested { get; set; } = false; //1-)This is important and default `false`.
public async Task<string> ConnectTab()
{
string messageText = "";
for (int count = 1; count < 20; count++)
{
if (count == 1)
{
//Do stuff.
}
try
{
//Do stuff.
}
catch (Exception ex)
{
//Do stuff.
}
if (IsStopRequested) //3-)This is important. The control of the task stopping request. Must be true and in inside.
{
return messageText = "Task stopped."; //4-) And so return and exit the code and task.
}
if (Connected)
{
//Do stuff.
}
if (count == 19)
{
//Do stuff.
}
}
return messageText;
}
}
}
And another class of the calling the method:
namespace Blokick.Views
{
[XamlCompilation(XamlCompilationOptions.Compile)]
public partial class MessagePerson : ContentPage
{
SignalRConnectProvider signalR = new SignalRConnectProvider();
public MessagePerson()
{
InitializeComponent();
signalR.IsStopRequested = true; // 2-) And this. Make true if running the task and go inside if statement of the IsStopRequested property.
if (signalR.ChatHubProxy != null)
{
signalR.Disconnect();
}
LoadSignalRMessage();
}
}
}
You can abort a task like a thread if you can cause the task to be created on its own thread and call Abort on its Thread object. By default, a task runs on a thread pool thread or the calling thread - neither of which you typically want to abort.
To ensure the task gets its own thread, create a custom scheduler derived from TaskScheduler. In your implementation of QueueTask, create a new thread and use it to execute the task. Later, you can abort the thread, which will cause the task to complete in a faulted state with a ThreadAbortException.
Use this task scheduler:
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException(); // Unused
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException(); // Unused
}
Start your task like this:
var scheduler = new SingleThreadTaskScheduler();
var task = Task.Factory.StartNew(action, cancellationToken, TaskCreationOptions.LongRunning, scheduler);
Later, you can abort with:
scheduler.TaskThread.Abort();
Note that the caveat about aborting a thread still applies:
The Thread.Abort method should be used with caution. Particularly when you call it to abort a thread other than the current thread, you do not know what code has executed or failed to execute when the ThreadAbortException is thrown, nor can you be certain of the state of your application or any application and user state that it is responsible for preserving. For example, calling Thread.Abort may prevent static constructors from executing or prevent the release of unmanaged resources.
You can use this class..:
It works for all typs of returned Values..
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace CarNUChargeTester
{
public class TimeOutTaskRunner<T>
{
private Func<T> func;
private int sec;
private T result;
public TimeOutTaskRunner(Func<T> func, int sec)
{
this.func = func;
this.sec = sec;
}
public bool run()
{
var scheduler = new SingleThreadTaskScheduler();
Task<T> task = Task<T>.Factory.StartNew(func, (new CancellationTokenSource()).Token, TaskCreationOptions.LongRunning, scheduler);
if (!task.Wait(TimeSpan.FromSeconds(sec)))
{
scheduler.TaskThread.Abort();
return false;
}
result = task.Result;
return true;
}
public T getResult() { return result; }
}
class SingleThreadTaskScheduler : TaskScheduler
{
public Thread TaskThread { get; private set; }
protected override void QueueTask(Task task)
{
TaskThread = new Thread(() => TryExecuteTask(task));
TaskThread.Start();
}
protected override IEnumerable<Task> GetScheduledTasks() => throw new NotSupportedException();
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) => throw new NotSupportedException();
}
}
To use it you can write:
TimeOutTaskRunner<string> tr = new TimeOutTaskRunner<string>(f, 10); // 10 sec to run f
if (!tr.run())
errorMsg("TimeOut"); !! My func
tr.getResult() // get the results if it done without timeout..

Categories