Related
What is a closure? Do we have them in .NET?
If they do exist in .NET, could you please provide a code snippet (preferably in C#) explaining it?
I have an article on this very topic. (It has lots of examples.)
In essence, a closure is a block of code which can be executed at a later time, but which maintains the environment in which it was first created - i.e. it can still use the local variables etc of the method which created it, even after that method has finished executing.
The general feature of closures is implemented in C# by anonymous methods and lambda expressions.
Here's an example using an anonymous method:
using System;
class Test
{
static void Main()
{
Action action = CreateAction();
action();
action();
}
static Action CreateAction()
{
int counter = 0;
return delegate
{
// Yes, it could be done in one statement;
// but it is clearer like this.
counter++;
Console.WriteLine("counter={0}", counter);
};
}
}
Output:
counter=1
counter=2
Here we can see that the action returned by CreateAction still has access to the counter variable, and can indeed increment it, even though CreateAction itself has finished.
If you are interested in seeing how C# implements Closure read "I know the answer (its 42) blog"
The compiler generates a class in the background to encapsulate the anoymous method and the variable j
[CompilerGenerated]
private sealed class <>c__DisplayClass2
{
public <>c__DisplayClass2();
public void <fillFunc>b__0()
{
Console.Write("{0} ", this.j);
}
public int j;
}
for the function:
static void fillFunc(int count) {
for (int i = 0; i < count; i++)
{
int j = i;
funcArr[i] = delegate()
{
Console.Write("{0} ", j);
};
}
}
Turning it into:
private static void fillFunc(int count)
{
for (int i = 0; i < count; i++)
{
Program.<>c__DisplayClass1 class1 = new Program.<>c__DisplayClass1();
class1.j = i;
Program.funcArr[i] = new Func(class1.<fillFunc>b__0);
}
}
Closures are functional values that hold onto variable values from their original scope. C# can use them in the form of anonymous delegates.
For a very simple example, take this C# code:
delegate int testDel();
static void Main(string[] args)
{
int foo = 4;
testDel myClosure = delegate()
{
return foo;
};
int bar = myClosure();
}
At the end of it, bar will be set to 4, and the myClosure delegate can be passed around to be used elsewhere in the program.
Closures can be used for a lot of useful things, like delayed execution or to simplify interfaces - LINQ is mainly built using closures. The most immediate way it comes in handy for most developers is adding event handlers to dynamically created controls - you can use closures to add behavior when the control is instantiated, rather than storing data elsewhere.
Func<int, int> GetMultiplier(int a)
{
return delegate(int b) { return a * b; } ;
}
//...
var fn2 = GetMultiplier(2);
var fn3 = GetMultiplier(3);
Console.WriteLine(fn2(2)); //outputs 4
Console.WriteLine(fn2(3)); //outputs 6
Console.WriteLine(fn3(2)); //outputs 6
Console.WriteLine(fn3(3)); //outputs 9
A closure is an anonymous function passed outside of the function in which it is created.
It maintains any variables from the function in which it is created that it uses.
A closure is when a function is defined inside another function (or method) and it uses the variables from the parent method. This use of variables which are located in a method and wrapped in a function defined within it, is called a closure.
Mark Seemann has some interesting examples of closures in his blog post where he does a parallel between oop and functional programming.
And to make it more detailed
var workingDirectory = new DirectoryInfo(Environment.CurrentDirectory);//when this variable
Func<int, string> read = id =>
{
var path = Path.Combine(workingDirectory.FullName, id + ".txt");//is used inside this function
return File.ReadAllText(path);
};//the entire process is called a closure.
Here is a contrived example for C# which I created from similar code in JavaScript:
public delegate T Iterator<T>() where T : class;
public Iterator<T> CreateIterator<T>(IList<T> x) where T : class
{
var i = 0;
return delegate { return (i < x.Count) ? x[i++] : null; };
}
So, here is some code that shows how to use the above code...
var iterator = CreateIterator(new string[3] { "Foo", "Bar", "Baz"});
// So, although CreateIterator() has been called and returned, the variable
// "i" within CreateIterator() will live on because of a closure created
// within that method, so that every time the anonymous delegate returned
// from it is called (by calling iterator()) it's value will increment.
string currentString;
currentString = iterator(); // currentString is now "Foo"
currentString = iterator(); // currentString is now "Bar"
currentString = iterator(); // currentString is now "Baz"
currentString = iterator(); // currentString is now null
Hope that is somewhat helpful.
Closures are chunks of code that reference a variable outside themselves, (from below them on the stack), that might be called or executed later, (like when an event or delegate is defined, and could get called at some indefinite future point in time)... Because the outside variable that the chunk of code references may gone out of scope (and would otherwise have been lost), the fact that it is referenced by the chunk of code (called a closure) tells the runtime to "hold" that variable in scope until it is no longer needed by the closure chunk of code...
Basically closure is a block of code that you can pass as an argument to a function. C# supports closures in form of anonymous delegates.
Here is a simple example:
List.Find method can accept and execute piece of code (closure) to find list's item.
// Passing a block of code as a function argument
List<int> ints = new List<int> {1, 2, 3};
ints.Find(delegate(int value) { return value == 1; });
Using C#3.0 syntax we can write this as:
ints.Find(value => value == 1);
If you write an inline anonymous method (C#2) or (preferably) a Lambda expression (C#3+), an actual method is still being created. If that code is using an outer-scope local variable - you still need to pass that variable to the method somehow.
e.g. take this Linq Where clause (which is a simple extension method which passes a lambda expression):
var i = 0;
var items = new List<string>
{
"Hello","World"
};
var filtered = items.Where(x =>
// this is a predicate, i.e. a Func<T, bool> written as a lambda expression
// which is still a method actually being created for you in compile time
{
i++;
return true;
});
if you want to use i in that lambda expression, you have to pass it to that created method.
So the first question that arises is: should it be passed by value or reference?
Pass by reference is (I guess) more preferable as you get read/write access to that variable (and this is what C# does; I guess the team in Microsoft weighed the pros and cons and went with by-reference; According to Jon Skeet's article, Java went with by-value).
But then another question arises: Where to allocate that i?
Should it actually/naturally be allocated on the stack?
Well, if you allocate it on the stack and pass it by reference, there can be situations where it outlives it's own stack frame. Take this example:
static void Main(string[] args)
{
Outlive();
var list = whereItems.ToList();
Console.ReadLine();
}
static IEnumerable<string> whereItems;
static void Outlive()
{
var i = 0;
var items = new List<string>
{
"Hello","World"
};
whereItems = items.Where(x =>
{
i++;
Console.WriteLine(i);
return true;
});
}
The lambda expression (in the Where clause) again creates a method which refers to an i. If i is allocated on the stack of Outlive, then by the time you enumerate the whereItems, the i used in the generated method will point to the i of Outlive, i.e. to a place in the stack that is no longer accessible.
Ok, so we need it on the heap then.
So what the C# compiler does to support this inline anonymous/lambda, is use what is called "Closures": It creates a class on the Heap called (rather poorly) DisplayClass which has a field containing the i, and the Function that actually uses it.
Something that would be equivalent to this (you can see the IL generated using ILSpy or ILDASM):
class <>c_DisplayClass1
{
public int i;
public bool <GetFunc>b__0()
{
this.i++;
Console.WriteLine(i);
return true;
}
}
It instantiates that class in your local scope, and replaces any code relating to i or the lambda expression with that closure instance. So - anytime you are using the i in your "local scope" code where i was defined, you are actually using that DisplayClass instance field.
So if I would change the "local" i in the main method, it will actually change _DisplayClass.i ;
i.e.
var i = 0;
var items = new List<string>
{
"Hello","World"
};
var filtered = items.Where(x =>
{
i++;
return true;
});
filtered.ToList(); // will enumerate filtered, i = 2
i = 10; // i will be overwriten with 10
filtered.ToList(); // will enumerate filtered again, i = 12
Console.WriteLine(i); // should print out 12
it will print out 12, as "i = 10" goes to that dispalyclass field and changes it just before the 2nd enumeration.
A good source on the topic is this Bart De Smet Pluralsight module (requires registration) (also ignore his erroneous use of the term "Hoisting" - what (I think) he means is that the local variable (i.e. i) is changed to refer to the the new DisplayClass field).
In other news, there seems to be some misconception that "Closures" are related to loops - as I understand "Closures" are NOT a concept related to loops, but rather to anonymous methods / lambda expressions use of local scoped variables - although some trick questions use loops to demonstrate it.
A closure aims to simplify functional thinking, and it allows the runtime to manage
state, releasing extra complexity for the developer. A closure is a first-class function
with free variables that are bound in the lexical environment. Behind these buzzwords
hides a simple concept: closures are a more convenient way to give functions access
to local state and to pass data into background operations. They are special functions
that carry an implicit binding to all the nonlocal variables (also called free variables or
up-values) referenced. Moreover, a closure allows a function to access one or more nonlocal variables even when invoked outside its immediate lexical scope, and the body
of this special function can transport these free variables as a single entity, defined in
its enclosing scope. More importantly, a closure encapsulates behavior and passes it
around like any other object, granting access to the context in which the closure was
created, reading, and updating these values.
Just out of the blue,a simple and more understanding answer from the book C# 7.0 nutshell.
Pre-requisit you should know :A lambda expression can reference the local variables and parameters of the method
in which it’s defined (outer variables).
static void Main()
{
int factor = 2;
//Here factor is the variable that takes part in lambda expression.
Func<int, int> multiplier = n => n * factor;
Console.WriteLine (multiplier (3)); // 6
}
Real part:Outer variables referenced by a lambda expression are called captured variables. A lambda expression that captures variables is called a closure.
Last Point to be noted:Captured variables are evaluated when the delegate is actually invoked, not when the variables were captured:
int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3)); // 30
A closure is a function, defined within a function, that can access the local variables of it as well as its parent.
public string GetByName(string name)
{
List<things> theThings = new List<things>();
return theThings.Find<things>(t => t.Name == name)[0];
}
so the function inside the find method.
t => t.Name == name
can access the variables inside its scope, t, and the variable name which is in its parents scope. Even though it is executed by the find method as a delegate, from another scope all together.
If I have a method that is called many times, such as:
public int CalledManyTimes(int a, int b)
{
MyObject myObject = new myObject();
int c = a + b + myObject.GetSomeValue();
return c;
}
Is there a performance boost by putting MyObject myObject; outside of the method, so it's only declared once, or will the compiler do this automatically?
How exactly are structs passed around?
I'm passing in a Point struct to a method (Point contains only int x, int y), and that method is altering the value and returning a new Point(newX, newY); Is it better to alter the Point that was passed into the method and return that? Or can I create a Point point; outside the method as proposed in my first question and use that?
myObject appears to have no useful state; so: make that a static method - problem solved; no allocation, no virtual call:
public int CalledManyTimes(int a, int b)
{
int c = a + b + MyObject.GetSomeValue(); // static method
return c;
}
For anything else: profile.
Looking at your specific questions:
Is there a performance boost by putting MyObject myObject; outside of the method, so it's only declared once, or will the compiler do this automatically?
Initializing it zero times is even faster. However, if there is some state that isn't obvious in the question, then yes, I would expect it to be more efficient to reuse a single instance - however, that changes the semantic (in the original the state is not shared between iterations).
How exactly are structs passed around?
By default, they are copied on the stack as soon as you so much as glance in their direction. You can use ref to avoid the copy, which may be useful if the struct is massively overweight, or need to be updated (ideally with reassignment, rather than mutability).
I'm looking for the C# equivalent of Java's final. Does it exist?
Does C# have anything like the following:
public Foo(final int bar);
In the above example, bar is a read only variable and cannot be changed by Foo(). Is there any way to do this in C#?
For instance, maybe I have a long method that will be working with x, y, and z coordinates of some object (ints). I want to be absolutely certain that the function doesn't alter these values in any way, thereby corrupting the data. Thus, I would like to declare them readonly.
public Foo(int x, int y, int z) {
// do stuff
x++; // oops. This corrupts the data. Can this be caught at compile time?
// do more stuff, assuming x is still the original value.
}
Unfortunately you cannot do this in C#.
The const keyword can only be used for local variables and fields.
The readonly keyword can only be used on fields.
NOTE: The Java language also supports having final parameters to a method. This functionality is non-existent in C#.
from http://www.25hoursaday.com/CsharpVsJava.html
EDIT (2019/08/13):
I'm throwing this in for visibility since this is accepted and highest on the list. It's now kind of possible with in parameters. See the answer below this one for details.
This is now possible in C# version 7.2:
You can use the in keyword in the method signature. MSDN documentation.
The in keyword should be added before specifying a method's argument.
Example, a valid method in C# 7.2:
public long Add(in long x, in long y)
{
return x + y;
}
While the following is not allowed:
public long Add(in long x, in long y)
{
x = 10; // It is not allowed to modify an in-argument.
return x + y;
}
Following error will be shown when trying to modify either x or y since they are marked with in:
Cannot assign to variable 'in long' because it is a readonly variable
Marking an argument with in means:
This method does not modify the value of the argument used as this parameter.
The answer: C# doesn't have the const functionality like C++.
I agree with Bennett Dill.
The const keyword is very useful. In the example, you used an int and people don't get your point. But, why if you parameter is an user huge and complex object that can't be changed inside that function? That's the use of const keyword: parameter can't change inside that method because [whatever reason here] that doesn't matters for that method. Const keyword is very powerful and I really miss it in C#.
Here's a short and sweet answer that will probably get a lot of down votes. I haven't read all of the posts and comments, so please forgive me if this has been previously suggested.
Why not take your parameters and pass them into an object that exposes them as immutable and then use that object in your method?
I realize this is probably a very obvious work around that has already been considered and the OP is trying to avoid doing this by asking this question, but I felt it should be here none-the-less...
Good luck :-)
I'll start with the int portion. int is a value type, and in .Net that means you really are dealing with a copy. It's a really weird design constraint to tell a method "You can have a copy of this value. It's your copy, not mine; I'll never see it again. But you can't change the copy." It's implicit in the method call that copying this value is okay, otherwise we couldn't have safely called the method. If the method needs the original, leave it to the implementer to make a copy to save it. Either give the method the value or do not give the method the value. Don't go all wishy-washy in between.
Let's move on to reference types. Now it gets a little confusing. Do you mean a constant reference, where the reference itself cannot be changed, or a completely locked, unchangeable object? If the former, references in .Net by default are passed by value. That is, you get a copy of the reference. So we have essentially the same situation as for value types. If the implementor will need the original reference they can keep it themselves.
That just leaves us with constant (locked/immutable) object. This might seem okay from a runtime perspective, but how is the compiler to enforce it? Since properties and methods can all have side effects, you'd essentially be limited to read-only field access. Such an object isn't likely to be very interesting.
Create an interface for your class that has only readonly property accessors. Then have your parameter be of that interface rather than the class itself. Example:
public interface IExample
{
int ReadonlyValue { get; }
}
public class Example : IExample
{
public int Value { get; set; }
public int ReadonlyValue { get { return this.Value; } }
}
public void Foo(IExample example)
{
// Now only has access to the get accessors for the properties
}
For structs, create a generic const wrapper.
public struct Const<T>
{
public T Value { get; private set; }
public Const(T value)
{
this.Value = value;
}
}
public Foo(Const<float> X, Const<float> Y, Const<float> Z)
{
// Can only read these values
}
Its worth noting though, that its strange that you want to do what you're asking to do regarding structs, as the writer of the method you should expect to know whats going on in that method. It won't affect the values passed in to modify them within the method, so your only concern is making sure you behave yourself in the method you're writing. There comes a point where vigilance and clean code are the key, over enforcing const and other such rules.
I know this might be little late.
But for people that are still searching other ways for this, there might be another way around this limitation of C# standard.
We could write wrapper class ReadOnly<T> where T : struct.
With implicit conversion to base type T.
But only explicit conversion to wrapper<T> class.
Which will enforce compiler errors if developer tries implicit set to value of ReadOnly<T> type.
As I will demonstrate two possible uses below.
USAGE 1 required caller definition to change. This usage will have only use in testing for correctness of your "TestCalled" functions code. While on release level/builds you shouldn't use it. Since in large scale mathematical operations might overkill in conversions, and make your code slow. I wouldn't use it, but for demonstration purpose only I have posted it.
USAGE 2 which I would suggest, has Debug vs Release use demonstrated in TestCalled2 function. Also there would be no conversion in TestCaller function when using this approach, but it requires a little more of coding of TestCaller2 definitions using compiler conditioning. You can notice compiler errors in debug configuration, while on release configuration all code in TestCalled2 function will compile successfully.
using System;
using System.Collections.Generic;
public class ReadOnly<VT>
where VT : struct
{
private VT value;
public ReadOnly(VT value)
{
this.value = value;
}
public static implicit operator VT(ReadOnly<VT> rvalue)
{
return rvalue.value;
}
public static explicit operator ReadOnly<VT>(VT rvalue)
{
return new ReadOnly<VT>(rvalue);
}
}
public static class TestFunctionArguments
{
static void TestCall()
{
long a = 0;
// CALL USAGE 1.
// explicite cast must exist in call to this function
// and clearly states it will be readonly inside TestCalled function.
TestCalled(a); // invalid call, we must explicit cast to ReadOnly<T>
TestCalled((ReadOnly<long>)a); // explicit cast to ReadOnly<T>
// CALL USAGE 2.
// Debug vs Release call has no difference - no compiler errors
TestCalled2(a);
}
// ARG USAGE 1.
static void TestCalled(ReadOnly<long> a)
{
// invalid operations, compiler errors
a = 10L;
a += 2L;
a -= 2L;
a *= 2L;
a /= 2L;
a++;
a--;
// valid operations
long l;
l = a + 2;
l = a - 2;
l = a * 2;
l = a / 2;
l = a ^ 2;
l = a | 2;
l = a & 2;
l = a << 2;
l = a >> 2;
l = ~a;
}
// ARG USAGE 2.
#if DEBUG
static void TestCalled2(long a2_writable)
{
ReadOnly<long> a = new ReadOnly<long>(a2_writable);
#else
static void TestCalled2(long a)
{
#endif
// invalid operations
// compiler will have errors in debug configuration
// compiler will compile in release
a = 10L;
a += 2L;
a -= 2L;
a *= 2L;
a /= 2L;
a++;
a--;
// valid operations
// compiler will compile in both, debug and release configurations
long l;
l = a + 2;
l = a - 2;
l = a * 2;
l = a / 2;
l = a ^ 2;
l = a | 2;
l = a & 2;
l = a << 2;
l = a >> 2;
l = ~a;
}
}
If you often run into trouble like this then you should consider "apps hungarian". The good kind, as opposed to the bad kind. While this doesn't normally tries to express constant-ness of a method parameter (that's just too unusual), there is certainly nothing that stops you from tacking an extra "c" before the identifier name.
To all those aching to slam the downvote button now, please read the opinions of these luminaries on the topic:
Eric Lippert
Larry Osterman
Joel Spolsky
If struct is passed into a method, unless it's passed by ref, it will not be changed by the method it's passed into. So in that sense, yes.
Can you create a parameter whose value can't be assigned within the method or whose properties cannot be set while within the method? No. You cannot prevent the value from being assigned within the method, but you can prevent it's properties from being set by creating an immutable type.
The question isn't whether the parameter or it's properties can be assigned to within the method. The question is what it will be when the method exits.
The only time any outside data is going to be altered is if you pass a class in and change one of it's properties, or if you pass a value by using the ref keyword. The situation you've outlined does neither.
The recommended (well, by me) is to use an interface that provides read only access to the members. Remembering that if the "real" member is a reference type, then only provide access to an interface supporting read operations for that type -- recursing down the entire object hierarchy.
I find myself doing the following a lot, and i don't know if there is any side effects or not but consider the following in a WinForms C# app.
(please excuse any errors as i am typing the code in, not copy pasting anything)
int a = 1;
int b = 2;
int c = 3;
this.Invoke((MethodInvoker)delegate()
{
int lol = a + b + c;
});
Is there anything wrong with that? Or should i be doing the long way >_<
int a = 1;
int b = 2;
int c = 3;
TrippleIntDelegate ffs = new TrippleIntDelegate(delegate(int a_, int b_, int c_)
{
int lol = a_ + b_ + c_;
});
this.Invoke(ffs);
The difference being the parameters are passed in instead of using the local variables, some pretty sweet .net magic. I think i looked at reflector on it once and it created an entirely new class to hold those variables.
So does it matter? Can i be lazy?
Edit: Note, do not care about the return value obviously. Otherwise i'd have to use my own typed delegate, albeit i could still use the local variables without passing it in!
The way you use it, it doesn't really make a difference. However, in the first case, your anonymous method is capturing the variables, which can have pretty big side effects if you don't know what your doing. For instance :
// No capture :
int a = 1;
Action<int> action = delegate(int a)
{
a = 42; // method parameter a
});
action(a);
Console.WriteLine(a); // 1
// Capture of local variable a :
int a = 1;
Action action = delegate()
{
a = 42; // captured local variable a
};
action();
Console.WriteLine(a); // 42
There's nothing wrong with passing in local variables as long as you understand that you're getting deferred execution. If you write this:
int a = 1;
int b = 2;
int c = 3;
Action action = () => Console.WriteLine(a + b + c);
c = 10;
action(); // Or Invoke(action), etc.
The output of this will be 13, not 6. I suppose this would be the counterpart to what Thomas said; if you read locals in a delegate, it will use whatever values the variables hold when the action is actually executed, not when it is declared. This can produce some interesting results if the variables hold reference types and you invoke the delegate asynchronously.
Other than that, there are lots of good reasons to pass local variables into a delegate; among other things, it can be used to simplify threading code. It's perfectly fine to do as long as you don't get sloppy with it.
Well, all of the other answers seem to ignore the multi-threading context and the issues that arise in that case. If you are indeed using this from WinForms, your first example could throw exceptions. Depending on the actual data you are trying to reference from your delegate, the thread that code is actually invoked on may or may not have the right to access the data you close around.
On the other hand, your second example actually passes the data via parameters. That allows the Invoke method to properly marshal data across thread boundaries and avoid those nasty threading issues. If you are calling Invoke from, say, a background worker, then then you should use something like your second example (although I would opt to use the Action<T, ...> and Func<T, ...> delegates whenever possible rather than creating new ones).
From a style perspective I'd choose the paramater passing variant. It's expresses the intent much easier to pass args instad of take ambients of any sort (and also makes it easier to test). I mean, you could do this:
public void Int32 Add()
{
return this.Number1 + this.Number2
}
but it's neither testable or clear. The sig taking params is much clearer to others what the method is doing... it's adding two numbers: not an arbatrary set of numbers or whatever.
I regularly do this with parms like collections which are used via ref anyway and don't need to be explicitlly 'returned':
public List<string> AddNames(List<String> names)
{
names.Add("kevin");
return names;
}
Even though the names collection is passed by ref and thus does not need to be explicitly returned, it is to me much clearer that the method takes the list and adds to it, then returns it back. In this case, there is no technical reason to write the sig this way, but, to me, good reasons as far as clarity and therefore maintainablity are concerned.
If you have two threads invoking a static function at the same moment in time, is there a concurrency risk? And if that function uses a static member of the class, is there even a bigger problem?
Are the two calls seperated from each other? (the function is like copied for the two threads?)
Are they automatically queued?
For instance in next example, is there a risk?
private static int a = 5;
public static int Sum()
{
int b = 4;
a = 9;
int c = a + b;
return c;
}
And next example, is there a risk?
public static int Sum2()
{
int a = 5;
int b = 4;
int c = a + b;
return c;
}
Update: And indeed, if both functions are in the same class, what is the risk then?
thx, Lieven Cardoen
Yes, there is a concurrency risk when you modify a static variable in static methods.
The static functions themselves have distinct sets of local variables, but any static variables are shared.
In your specific samples you're not being exposed, but that's just because you're using constants (and assigning the same values to them). Change the code sample slightly and you'll be exposed.
Edit:
If you call both Sum1() AND Sum2() from different threads you're in trouble, there's no way to guarantee the value of a and b in this statement: int c = a + b;
private static int a = 5;
public static int Sum1()
{
int b = 4;
a = 9;
int c = a + b;
return c;
}
public static int Sum2()
{
int b = 4;
int c = a + b;
return c;
}
You can also achieve concurrency problems with multiple invocations of a single method like this:
public static int Sum3(int currentA)
{
a = currentA;
int b = 4;
int c = a + b;
int d = a * b; // a may have changed here
return c + d;
}
The issue here is that the value of a may change mid-method due to other invocations changing it.
See here for a discussion on local variables. before your edit neither of the above methods themselves presented a concurrency risk; the local variables are all independent per call; the shared state (static int a) is visible to multiple threads, but you don't mutate it, and you only read it once.
If you did something like:
if(a > 5) {
Console.WriteLine(a + " is greater than 5");
} // could write "1 is greater than 5"
it would (in theory) not be safe, as the value of a could be changed by another thread - you would typically either synchronize access (via lock etc), or take a snapshot:
int tmp = a;
if(tmp > 5) {
Console.WriteLine(tmp + " is greater than 5");
}
If you are editing the value, you would almost certainly require synchronization.
Yes, there is a risk. That's why you'll see in MSDN doc, it will often say "This class is threadsafe for static members" (or something like that). It means when MS wrote the code, they intentionally used synchronization primitives to make the static members threadsafe. This is common when writing libraries and frameworks, because it is easier to make static members threadsafe than instance members, because you don't know what the library user is going to want to do with instances. If they made instance members threadsafe for many of the library classes, they would put too many restrictions on you ... so often they let you handle it.
So you likewise need to make your static members threadsafe (or document that they aren't).
By the way, static constructors are threadsafe in a sense. The CLR will make sure they are called only once and will prevent 2 threads from getting into a static constructor.
EDIT: Marc pointed out in the comments an edge case in which static constructors are not threadsafe. If you use reflection to explicitly call a static constructor, apparently you can call it more than once. So I revise the statement as follows: as long as you are relying on the CLR to decide when to call your static constructor, then the CLR will prevent it from being called more than once, and it will also prevent the static ctor from being called re-entrantly.
In your two examples, there is no thread safety issues because each call to the function will have it's own copy of the local variables on the stack, and in your first example with 'a' being a static variable, you never change 'a', so there is no problem.
If you change the value in 'a' in your first example you will have a potential concurrency problem.
If the scope of the variables is contained within the static function then there is no risk, but variables outside of the function scope (static / shared) DEFINITLY pose a concurrency risk
Static methods in OO are no difference from "just" functions in procedural programming. Unless you store some state inside static variable there is no risk at all.
You put "ASP.NET" in the question title, this blog post is a good summary of the problems when using the ThreadStatic keyword in ASP.NET :
http://piers7.blogspot.com/2005/11/threadstatic-callcontext-and_02.html