I have a list of methods that do pretty much the same thing, except a few differences:
void DoWork(string parameter1, string parameter2)
{
//Common code
...
//Custom code
...
//Common code
...
}
I want to streamline the solution with reusing the common code by passing custom code from another method.
I assume I have to use an action with parameters to accomplish this, but can't figure out how.
You could try the Template method pattern
Which basically states soemthing like this
abstract class Parent
{
public virtual void DoWork(...common arguments...)
{
// ...common flow
this.CustomWork();
// ...more common flow
}
// the Customwork method must be overridden
protected abstract void CustomWork();
}
In a child class
class Child : Parent
{
protected override void CustomWork()
{
// do you specialized work
}
}
The other answers are great, but you may need to return something from the custom code, so you would need to use Func instead.
void Something(int p1, int p2, Func<string, int> fn)
{
var num = p1 + p2 + fn("whatever");
// . . .
}
Call it like this:
Something(1,2, x => { ...; return 1; });
Or:
int MyFunc(string x)
{
return 1;
}
Something(1,2 MyFunc);
You would use delegates to handle this. It would likely look something like:
void DoWork(string parameter1, string parameter2, Action<string,string> customCode)
{
// ... Common code
customCode(parameter1, parameter2);
// ... Common code
customCode(parameter1, parameter2);
// ... Common code
}
If the custom code doesn't have to interact with the common code, it's easy:
void DoWork(..., Action custom)
{
... Common Code ...
custom();
... Common Code ...
}
Assuming you need to use the two string parameters in the custom code, the following should get the job done. If you don't actually care about the results of the custom code, you can replace Func<string, string, TResult> with Action<string, string>. Additionally, if your custom code needs to process results from the common code above it, you can adjust the parameter types that your Func<> (or Action<>) takes in and then pass in the appropriate values.
void DoWork(string parameter1, string parameter2, Func<string, string, TResult> customCode) {
//Common code
var customResult = customCode(parameter1, parameter2);
//Common code
}
Using Func<T, TResult>: http://msdn.microsoft.com/en-us/library/bb534960
Using Action<T>: http://msdn.microsoft.com/en-us/library/018hxwa8
Related
I have several methods all with the same parameter types and return values but different names and blocks. I want to pass the name of the method to run to another method that will invoke the passed method.
public int Method1(string)
{
// Do something
return myInt;
}
public int Method2(string)
{
// Do something different
return myInt;
}
public bool RunTheMethod([Method Name passed in here] myMethodName)
{
// Do stuff
int i = myMethodName("My String");
// Do more stuff
return true;
}
public bool Test()
{
return RunTheMethod(Method1);
}
This code does not work but this is what I am trying to do. What I don't understand is how to write the RunTheMethod code since I need to define the parameter.
You can use the Func delegate in .NET 3.5 as the parameter in your RunTheMethod method. The Func delegate allows you to specify a method that takes a number of parameters of a specific type and returns a single argument of a specific type. Here is an example that should work:
public class Class1
{
public int Method1(string input)
{
//... do something
return 0;
}
public int Method2(string input)
{
//... do something different
return 1;
}
public bool RunTheMethod(Func<string, int> myMethodName)
{
//... do stuff
int i = myMethodName("My String");
//... do more stuff
return true;
}
public bool Test()
{
return RunTheMethod(Method1);
}
}
You need to use a delegate. In this case all your methods take a string parameter and return an int - this is most simply represented by the Func<string, int> delegate1. So your code can become correct with as simple a change as this:
public bool RunTheMethod(Func<string, int> myMethodName)
{
// ... do stuff
int i = myMethodName("My String");
// ... do more stuff
return true;
}
Delegates have a lot more power than this, admittedly. For example, with C# you can create a delegate from a lambda expression, so you could invoke your method this way:
RunTheMethod(x => x.Length);
That will create an anonymous function like this:
// The <> in the name make it "unspeakable" - you can't refer to this method directly
// in your own code.
private static int <>_HiddenMethod_<>(string x)
{
return x.Length;
}
and then pass that delegate to the RunTheMethod method.
You can use delegates for event subscriptions, asynchronous execution, callbacks - all kinds of things. It's well worth reading up on them, particularly if you want to use LINQ. I have an article which is mostly about the differences between delegates and events, but you may find it useful anyway.
1 This is just based on the generic Func<T, TResult> delegate type in the framework; you could easily declare your own:
public delegate int MyDelegateType(string value)
and then make the parameter be of type MyDelegateType instead.
From OP's example:
public static int Method1(string mystring)
{
return 1;
}
public static int Method2(string mystring)
{
return 2;
}
You can try Action Delegate! And then call your method using
public bool RunTheMethod(Action myMethodName)
{
myMethodName(); // note: the return value got discarded
return true;
}
RunTheMethod(() => Method1("MyString1"));
Or
public static object InvokeMethod(Delegate method, params object[] args)
{
return method.DynamicInvoke(args);
}
Then simply call method
Console.WriteLine(InvokeMethod(new Func<string,int>(Method1), "MyString1"));
Console.WriteLine(InvokeMethod(new Func<string, int>(Method2), "MyString2"));
In order to provide a clear and complete answer, I'm going to start from the very beginning before showing three possible solutions.
A brief introduction
All .NET languages (such as C#, F#, and Visual Basic) run on top of the Common Language Runtime (CLR), which is a VM that runs code in the Common Intermediate Language (CIL), which is way higher level than machine code. It follows that methods aren't Assembly subroutines, nor are they values, unlike functional languages and JavaScript; rather, they're symbols that CLR recognizes. Not being values, they cannot be passed as a parameter. That's why there's a special tool in .NET. That is, delegates.
What's a delegate?
A delegate represents a handle to a method (the term handle is to be preferred over pointer as the latter would be an implementation detail). Since a method is not a value, there has to be a special class in .NET, namely Delegate, which wraps up any method. What makes it special is that, like very few classes, it needs to be implemented by the CLR itself and couldn't be simply written as a class in a .NET language.
Three different solutions, the same underlying concept
The type–unsafe way
Using the Delegate special class directly.
Example:
static void MyMethod()
{
Console.WriteLine("I was called by the Delegate special class!");
}
static void CallAnyMethod(Delegate yourMethod)
{
yourMethod.DynamicInvoke(new object[] { /*Array of arguments to pass*/ });
}
static void Main()
{
CallAnyMethod(MyMethod);
}
The drawback here is your code being type–unsafe, allowing arguments to be passed dynamically, with no constraints.
The custom way
Besides the Delegate special class, the concept of delegates spreads to custom delegates, which are declarations of methods preceded by the delegate keyword. They are type–checked the same way as “normal” method invocations, making for type-safe code.
Example:
delegate void PrintDelegate(string prompt);
static void PrintSomewhere(PrintDelegate print, string prompt)
{
print(prompt);
}
static void PrintOnConsole(string prompt)
{
Console.WriteLine(prompt);
}
static void PrintOnScreen(string prompt)
{
MessageBox.Show(prompt);
}
static void Main()
{
PrintSomewhere(PrintOnConsole, "Press a key to get a message");
Console.Read();
PrintSomewhere(PrintOnScreen, "Hello world");
}
The standard library's way
Alternatively, you can stick with a delegate that's part of the .NET Standard:
Action wraps up a parameterless void method;
Action<T1> wraps up a void method with one parameter of type T1;
Action<T1, T2> wraps up a void method with two parameters of types T1 and T2, respectively,
and so forth;
Func<TR> wraps up a parameterless function with TR return type;
Func<T1, TR> wraps up a function with TR return type and with one parameter of type T1;
Func<T1, T2, TR> wraps up a function with TR return type and with two parameters of types T1 and T2, respectively;
and so forth.
However, bear in mind that by using predefined delegates like these, parameter names won't be self-describing, nor is the name of the delegate type meaningful as to what instances are supposed to do. Therefore, refrain from using them in contexts where their purpose is not absolutely self-evident.
The latter solution is the one most people posted. I'm also mentioning it in my answer for the sake of completeness.
The solution involves Delegates, which are used to store methods to call. Define a method taking a delegate as an argument,
public static T Runner<T>(Func<T> funcToRun)
{
// Do stuff before running function as normal
return funcToRun();
}
Then pass the delegate on the call site:
var returnValue = Runner(() => GetUser(99));
You should use a Func<string, int> delegate, that represents a function taking a string argument and returning an int value:
public bool RunTheMethod(Func<string, int> myMethod)
{
// Do stuff
myMethod.Invoke("My String");
// Do stuff
return true;
}
Then invoke it this way:
public bool Test()
{
return RunTheMethod(Method1);
}
While the accepted answer is absolutely correct, I would like to provide an additional method.
I ended up here after doing my own searching for a solution to a similar question.
I am building a plugin driven framework, and as part of it I wanted people to be able to add menu items to the applications menu to a generic list without exposing an actual Menu object because the framework may deploy on other platforms that don't have Menu UI objects. Adding general info about the menu is easy enough, but allowing the plugin developer enough liberty to create the callback for when the menu is clicked was proving to be a pain. Until it dawned on me that I was trying to re-invent the wheel and normal menus call and trigger the callback from events!
So the solution, as simple as it sounds once you realize it, eluded me until now.
Just create separate classes for each of your current methods, inherited from a base if you must, and just add an event handler to each.
Here is an example Which can help you better to understand how to pass a function as a parameter.
Suppose you have Parent page and you want to open a child popup window. In the parent page there is a textbox that should be filled basing on child popup textbox.
Here you need to create a delegate.
Parent.cs
// declaration of delegates
public delegate void FillName(String FirstName);
Now create a function which will fill your textbox and function should map delegates
//parameters
public void Getname(String ThisName)
{
txtname.Text=ThisName;
}
Now on button click you need to open a Child popup window.
private void button1_Click(object sender, RoutedEventArgs e)
{
ChildPopUp p = new ChildPopUp (Getname) //pass function name in its constructor
p.Show();
}
IN ChildPopUp constructor you need to create parameter of 'delegate type' of parent //page
ChildPopUp.cs
public Parent.FillName obj;
public PopUp(Parent.FillName objTMP)//parameter as deligate type
{
obj = objTMP;
InitializeComponent();
}
private void OKButton_Click(object sender, RoutedEventArgs e)
{
obj(txtFirstName.Text);
// Getname() function will call automatically here
this.DialogResult = true;
}
If you want to pass Method as parameter, use:
using System;
public void Method1()
{
CallingMethod(CalledMethod);
}
public void CallingMethod(Action method)
{
method(); // This will call the method that has been passed as parameter
}
public void CalledMethod()
{
Console.WriteLine("This method is called by passing it as a parameter");
}
If the method passed needs to take one argument and return a value, Func is the best way to go. Here is an example.
public int Method1(string)
{
// Do something
return 6;
}
public int Method2(string)
{
// Do something different
return 5;
}
public bool RunTheMethod(Func<string, int> myMethodName)
{
// Do stuff
int i = myMethodName("My String");
Console.WriteLine(i); // This is just in place of the "Do more stuff"
return true;
}
public bool Test()
{
return RunTheMethod(Method1);
}
Read the docs here
However, if your method that is passed as a parameter does not return anything, you can also use Action. It supports up to 16 paramaters for the passed method. Here is an example.
public int MethodToBeCalled(string name, int age)
{
Console.WriteLine(name + "'s age is" + age);
}
public bool RunTheMethod(Action<string, int> myMethodName)
{
// Do stuff
myMethodName("bob", 32); // Expected output: "bob's age is 32"
return true;
}
public bool Test()
{
return RunTheMethod(MethodToBeCalled);
}
Read the documentation here
Here is an example without a parameter:
http://en.csharp-online.net/CSharp_FAQ:_How_call_a_method_using_a_name_string
with params:
http://www.daniweb.com/forums/thread98148.html#
you basically pass in an array of objects along with name of method. you then use both with the Invoke method.
params Object[] parameters
class PersonDB
{
string[] list = { "John", "Sam", "Dave" };
public void Process(ProcessPersonDelegate f)
{
foreach(string s in list) f(s);
}
}
The second class is Client, which will use the storage class. It has a Main method that creates an instance of PersonDB, and it calls that object’s Process method with a method that is defined in the Client class.
class Client
{
static void Main()
{
PersonDB p = new PersonDB();
p.Process(PrintName);
}
static void PrintName(string name)
{
System.Console.WriteLine(name);
}
}
I don't know who might need this, but in case you're unsure how to send a lambda with a delegate, when the function using the delegate doesn't need to insert any params in there you just need the return value.
SO you can also do this:
public int DoStuff(string stuff)
{
Console.WriteLine(stuff);
}
public static bool MethodWithDelegate(Func<int> delegate)
{
///do stuff
int i = delegate();
return i!=0;
}
public static void Main(String[] args)
{
var answer = MethodWithDelegate(()=> DoStuff("On This random string that the MethodWithDelegate doesn't know about."));
}
I know a refactor safe way to get the name of a property with this answer. Is there a refactor safe way to get the name of a method?
I am using C# 5 and .Net 4.5.
To illustrate what I'm trying to do:
class MyClass
{
public void UnitTestOne() { /* impl */ }
public void UnitTestTwo() { /* impl */ }
public void UnitTestThree()
{
//I'd like to get the method names for UnitTestOne and UnitTestTwo here
//in such a way that this code will raise a compile time error if either
//the UnitTestOne or UnitTestTwo method names changes.
}
}
UPDATE: Here is a nice post that explains and provides a flexible utility method to access MethodInfos with refactor safe code. http://www.codeducky.org/10-utilities-c-developers-should-know-part-two/
I think Jon Skeet's answer is fine if you only want to cover void parameterless methods. A more general solution would look like this:
public class MyClass
{
public void UnitTestOne(int i) { /* impl */ }
public int UnitTestTwo() { /* impl */ }
public void UnitTestThree()
{
var methodCallExpressions = new Expression<Action<MyClass>>[] {
mc => mc.UnitTestOne(default(int)), //Note that a dummy argument is provided
mc => mc.UnitTestTwo()
};
var names = methodCallExpressions.Select(mce =>
((MethodCallExpression) mce.Body).Method.Name);
}
}
Note that we use an array of Expression<Action<MyClass>> in order to make a list of method calls on MyClass without knowing the return type and parameter types of each method call. Each method call expression is provided dummy variables to instantiate the expression.
Then the body of each expression is cast to a MethodCallExpression which, as the type name indicates, holds an expression which is just the calling of a method. That type has a Method property which is the MethodInfo of the method being called.
In the link you provided, a property name is extracted similarly using a MemberExpression. Using MethodCallExpression makes the examples quite similar.
By the way, you can also use Expression<Action> instead of Expression<Action<MyClass>> if you prefer. Replace the methodCallExpressions instantiation with:
var methodCallExpressions = new Expression<Action>[] {
() => this.UnitTestOne(default(int)),
() => this.UnitTestTwo()
};
I see this as mostly a stylistic decision, although it would also allow you to encapsulate method calls on a different class, using something like () => (new MyClass2()).UnitTestThree().
The simplest way is probably just to create a delegate for each method, and use the MulticastDelegate.Method property:
class MyClass
{
public void UnitTestOne() { /* impl */ }
public void UnitTestTwo() { /* impl */ }
public void UnitTestThree()
{
var actions = new Action[] { UnitTestOne, UnitTestTwo };
var names = actions.Select(x => x.Method.Name);
}
}
It is better to explain my intention with code. So right now I have the following code:
class A, IInterfaceUsedByB
{
}
class B
{
void func(A someObject)
{
func2(someObject, 1);
func3(someObject, "string");
func4(someObject, new MyObject());
var anotherObject = someObject.NewInstance;
func2(anotherObject, 1);
.......................
}
func2(A someObject, int val);
func3(A someObject, string val);
func4(A someObject, C val);
}
Where func2, func3, func4 do need references to someObject. I want to change this to
void func(A someObject)
{
with(someObject,
() =>
{
func2(1);
func3("string");
func4(new MyObject());
}
);
var anotherObject = someObject.NewInstance;
with(anotherObject,
() =>
{
func2(1);
.......................
}
);
}
Or even better to
void func(A someObject)
{
func2(1);
func3("string");
func4(new MyObject());
}
So that I don't have to drag this someObject around, but I should still be able to use it inside func2,3,4. In other words it's like setting some context object for a particular code block. I can use any of the three languages (C#, F# or IronPython) for this.
UPDATE In the ideal solution class B would be independent of A. func* functions only depend on a small interface of A consisting of 2 methods.
UPDATE2 The someObject can be different for different function calls.
UPDATE3 I don't think that there's a way to do this only with language primitives like classes, interfaces or extension methods. I think that the solution might be possible with more hackish tools, like attributes, reflection or F#'s computation workflow feature. Or maybe some dynamic features of IronPython. Essentially what I'm trying to do is to create a small embedded DSL.
Partial function application might work for you here.
// object for example first param
var objectInstance = new object();
// partial function application
var func2Partial = new Action<int>((i) => func2(objectInstance, i));
func2Partial(5);
If func2 returns something then you'll need to use Func<> rather than Action<>
Alternatively, as per my comment below an extension method may be an option also.
internal static class IInterfaceUsedByBExtender
{
internal static void Func2(this IInterfaceUsedByB obj, int value)
{
}
}
// caller
someObject.Func2(5);
Another option may be the pipe operator in F#. I have v. basic F# knowledge but I think you can define a function with two params and use the pipe operator to fill the value for the first param. So something like:
let printnums x y = printfn "%A - %A" x y;;
Can be called by
4 |> printnums 5;;
Which outputs:
4 - 5
With func2 you'd have something like
let func2 obj, num = ...;
someObject |> func2 1;;
More examples of this: stackoverflow: Piping F# Parameters
I hope this helps!
If all those functions operate on one object (sameObject), it looks like you should introduce a class and make them class methods. I don't know what type someObject is of, but here is an example in C#:
class Workflow<T>
where T: class
{
private readonly T _someObject;
public Workflow(T someObject)
{
_someObject = someObject;
}
public void func()
{
func2(1);
func3("string");
func4(new MyObject());
}
private void func2(int a)
{
// use _someObject here
}
private void func3(string s)
{
// ...
}
}
// usage
var flow = new Workflow(someObject);
flow.f();
class A, IInterfaceUsedByB
{
}
class B<T> where T : A
{
private T m_SomeObject;
public B(T someobject)
{
m_Someobject = someobject;
}
void func()
{
func2(1);
func3("string");
func4(new MyObject());
}
func2(int val) { //Do whatever with m_SomeObject }
func3(string val) { //Do whatever with m_SomeObject }
func4(C val){ //Do whatever with m_SomeObject }
}
You could write a function that takes a A and returns a func2 function.
For example, if the func2 return type is void (if not, then use Func < int, ReturnType>):
Action<int> func2Gen(A someObject)
{
return i => Console.WriteLine(i+someObject.ToString());
}
Then, whereever suited, you can declare
var func2=func2Gen(someObject);
and call it:
func2(1);
I have the following code:
public static MyMethod()
{
...Do something
ProtectedMethod(param1, param2);
...Do something
}
protected static void ProtectedMethod(IEnumerable<string> param1, string param2, int param3 = 1)
{
... Do something
}
Take notice of the optional param3 parameter.
Now for quite a few reasons I need to extract the code of the MyMethod method into its own class but I cannot extract ProtectedMethod with it because of all the classes that are inheriting from this one and I need to keep the changes small and isolated. So I figured I could have an Action<> delegate in the new class with the same signature as ProtectedMethod.
The problem is that if I declare the delegate like this:
protected readonly Action<IEnumerable<string>, string, int> m_ProtectedMethod;
The extracted code does not like it because it says the method is only being invoked with two parameters.
And if I declare the delegate like so:
protected readonly Action<IEnumerable<string>, string> m_ProtectedMethod;
When I send it as a parameter to the new class it does not like it either because the method is defined as having three parameters not two.
So far the only way I have thought of to solve this is to create an overloaded version of ProtectedMethod to eliminate the optional parameter.
Is this the only option or is there another way of doing it since now the preferred choice is to have optional parameters instead of overloaded methods?
Optional parameters are an attribute of a method or delegate parameter. When you call a signature (method or delegate) that has a known optional parameter at compile-time, the compiler will insert the optional parameter value at the callsite.
The runtime is not aware of optional parameters, so you can't make a delegate that inserts an optional parameter when it's called.
Instead, you need to declare a custom delegate type with an optional parameter:
public delegate void MyDelegate(IEnumerable<string> param1, string param2, int param3 = 1);
When calling this delegate, you will be able to omit the third parameter, regardless of the declaration of the method(s) it contains.
It would depend on how m_ProtectedMethod would be consumed, but I found a compromise in my own situation, where I use one overload more than the other.
Simply define a simpler (having less generic parameters) Action<> variable, which calls the more complex supplied Action variable method. This can be accomplished either in (i) local scope on use; or (ii) object scope upon assignment of Action property or object construction.
Because there is no such thing as variable/property overloading, you need two different names, for the resulting two related Action variables.
EG i: Local Scope (probably not the most suitable for your scenario)
public MyMethod(Action<IEnumerable<string>, string, int> m_ProtectedMethod2)
{
Action<IEnumerable<string>, string> m_ProtectedMethod = (p1,p2) => {
m_ProtectedMethod2(p1,p2,1); //The value 1 is the default 3rd parameter
}
...Do something
m_ProtectedMethod(param1, param2);
...Do something
...If something
m_ProtectedMethod2(param1, param2, param3); //Calling the more complex form directly
...Do something
}
EG ii: Object Scope
private Action<IEnumerable<string>, string, int> m_ProtectedMethod2 = null;
private Action<IEnumerable<string>, string> m_ProtectedMethod = null;
protected Action<IEnumerable<string>, string, int> ProtectedMethod
{
get { return m_ProtectedMethod2; }
set {
m_ProtectedMethod2 = value;
m_ProtectedMethod = (p1,p2) => {
m_ProtectedMethod2(p1,p2,1); //The value 1 is the default 3rd parameter
}
}
}
public MyMethod()
{
...Do something
m_ProtectedMethod(param1, param2);
...Do something
...If something
m_ProtectedMethod2(param1, param2, param3); //Calling the more complex form directly
...Do something
}
Note in both cases I designed the default setting value to be the more awkwardly named variable, having the 2 suffix, such that upon consumption the simpler overload has the more basic variable name.
Hoping to help others with what I find as being a more elegant implementation of overloading mixed with the (delegate-oriented) strategy pattern.
public class OverloadExample {
private Action<int, bool> _implementation;
public OverloadExample() {
_implementation = defaultImplementation;
}
public OverloadExample(Action<int, bool> implementation) {
_implementation = implementation;
}
protected void defaultImplementation(int aInt, bool aBool) {
//
}
public void Implementation(int someInt, bool someBool = true) {
_implementation(someInt, someBool);
}
}
Usage:
new OverloadExample().Implementation(9001);
new OverloadExample().Implementation(9001, false);
My question concerns c# and how to access Static members ... Well I don't really know how to explain it (which kind of is bad for a question isn't it?) I will just give you some sample code:
Class test<T>{
int method1(Obj Parameter1){
//in here I want to do something which I would explain as
T.TryParse(Parameter1);
//my problem is that it does not work ... I get an error.
//just to explain: if I declare test<int> (with type Integer)
//I want my sample code to call int.TryParse(). If it were String
//it should have been String.TryParse()
}
}
So thank you guys for your answers (By the way the question is: how would I solve this problem without getting an error). This probably quite an easy question for you!
Edit: Thank you all for your answers!
Though I think the try - catch phrase is the most elegant, I know from my experience with vb that it can really be a bummer. I used it once and it took about 30 minutes to run a program, which later on only took 2 minutes to compute just because I avoided try - catch.
This is why I chose the switch statement as the best answer. It makes the code more complicated but on the other hand I imagine it to be relatively fast and relatively easy to read. (Though I still think there should be a more elegant way ... maybe in the next language I learn)
Though if you have some other suggestion I am still waiting (and willing to participate)
The problem is that TryParse isn't defined on an interface or base class anywhere, so you can't make an assumption that the type passed into your class will have that function. Unless you can contrain T in some way, you'll run into this a lot.
Constraints on Type Parameters
Short answer, you can't.
Long answer, you can cheat:
public class Example
{
internal static class Support
{
private delegate bool GenericParser<T>(string s, out T o);
private static Dictionary<Type, object> parsers =
MakeStandardParsers();
private static Dictionary<Type, object> MakeStandardParsers()
{
Dictionary<Type, object> d = new Dictionary<Type, object>();
// You need to add an entry for every type you want to cope with.
d[typeof(int)] = new GenericParser<int>(int.TryParse);
d[typeof(long)] = new GenericParser<long>(long.TryParse);
d[typeof(float)] = new GenericParser<float>(float.TryParse);
return d;
}
public static bool TryParse<T>(string s, out T result)
{
return ((GenericParser<T>)parsers[typeof(T)])(s, out result);
}
}
public class Test<T>
{
public static T method1(string s)
{
T value;
bool success = Support.TryParse(s, out value);
return value;
}
}
public static void Main()
{
Console.WriteLine(Test<int>.method1("23"));
Console.WriteLine(Test<float>.method1("23.4"));
Console.WriteLine(Test<long>.method1("99999999999999"));
Console.ReadLine();
}
}
I made a static dictionary holding a delegate for the TryParse method of every type I might want to use. I then wrote a generic method to look up the dictionary and pass on the call to the appropriate delegate. Since every delegate has a different type, I just store them as object references and cast them back to the appropriate generic type when I retrieve them. Note that for the sake of a simple example I have omitted error checking, such as to check whether we have an entry in the dictionary for the given type.
To access a member of a specific class or interface you need to use the Where keyword and specify the interface or base class that has the method.
In the above instance TryParse does not come from an interface or base class, so what you are trying to do above is not possible. Best just use Convert.ChangeType and a try/catch statement.
class test<T>
{
T Method(object P)
{
try {
return (T)Convert.ChangeType(P, typeof(T));
} catch(Exception e) {
return null;
}
}
}
One more way to do it, this time some reflection in the mix:
static class Parser
{
public static bool TryParse<TType>( string str, out TType x )
{
// Get the type on that TryParse shall be called
Type objType = typeof( TType );
// Enumerate the methods of TType
foreach( MethodInfo mi in objType.GetMethods() )
{
if( mi.Name == "TryParse" )
{
// We found a TryParse method, check for the 2-parameter-signature
ParameterInfo[] pi = mi.GetParameters();
if( pi.Length == 2 ) // Find TryParse( String, TType )
{
// Build a parameter list for the call
object[] paramList = new object[2] { str, default( TType ) };
// Invoke the static method
object ret = objType.InvokeMember( "TryParse", BindingFlags.InvokeMethod, null, null, paramList );
// Get the output value from the parameter list
x = (TType)paramList[1];
return (bool)ret;
}
}
}
// Maybe we should throw an exception here, because we were unable to find the TryParse
// method; this is not just a unable-to-parse error.
x = default( TType );
return false;
}
}
The next step would be trying to implement
public static TRet CallStaticMethod<TRet>( object obj, string methodName, params object[] args );
With full parameter type matching etc.
This isn't really a solution, but in certain scenarios it could be a good alternative: We can pass an additional delegate to the generic method.
To clarify what I mean, let's use an example. Let's say we have some generic factory method, that should create an instance of T, and we want it to then call another method, for notification or additional initialization.
Consider the following simple class:
public class Example
{
// ...
public static void PostInitCallback(Example example)
{
// Do something with the object...
}
}
And the following static method:
public static T CreateAndInit<T>() where T : new()
{
var t = new T();
// Some initialization code...
return t;
}
So right now we would have to do:
var example = CreateAndInit<Example>();
Example.PostInitCallback(example);
However, we could change our method to take an additional delegate:
public delegate void PostInitCallback<T>(T t);
public static T CreateAndInit<T>(PostInitCallback<T> callback) where T : new()
{
var t = new T();
// Some initialization code...
callback(t);
return t;
}
And now we can change the call to:
var example = CreateAndInit<Example>(Example.PostInitCallback);
Obviously this is only useful in very specific scenarios. But this is the cleanest solution in the sense that we get compile time safety, there is no "hacking" involved, and the code is dead simple.
Do you mean to do something like this:
Class test<T>
{
T method1(object Parameter1){
if( Parameter1 is T )
{
T value = (T) Parameter1;
//do something with value
return value;
}
else
{
//Parameter1 is not a T
return default(T); //or throw exception
}
}
}
Unfortunately you can't check for the TryParse pattern as it is static - which unfortunately means that it isn't particularly well suited to generics.
The only way to do exactly what you're looking for would be to use reflection to check if the method exists for T.
Another option is to ensure that the object you send in is a convertible object by restraining the type to IConvertible (all primitive types implement IConvertible). This would allow you to convert your parameter to the given type very flexibly.
Class test<T>
{
int method1(IConvertible Parameter1){
IFormatProvider provider = System.Globalization.CultureInfo.CurrentCulture.GetFormat(typeof(T));
T temp = Parameter1.ToType(typeof(T), provider);
}
}
You could also do a variation on this by using an 'object' type instead like you had originally.
Class test<T>
{
int method1(object Parameter1){
if(Parameter1 is IConvertible) {
IFormatProvider provider = System.Globalization.CultureInfo.CurrentCulture.GetFormat(typeof(T));
T temp = Parameter1.ToType(typeof(T), provider);
} else {
// Do something else
}
}
}
Ok guys: Thanks for all the fish. Now with your answers and my research (especially the article on limiting generic types to primitives) I will present you my solution.
Class a<T>{
private void checkWetherTypeIsOK()
{
if (T is int || T is float //|| ... any other types you want to be allowed){
return true;
}
else {
throw new exception();
}
}
public static a(){
ccheckWetherTypeIsOK();
}
}
You probably cant do it.
First of all if it should be possible you would need a tighter bound on T so the typechecker could be sure that all possible substitutions for T actually had a static method called TryParse.
You may want to read my previous post on limiting generic types to primitives. This may give you some pointers in limiting the type that can be passed to the generic (since TypeParse is obviously only available to a set number of primitives ( string.TryParse obviously being the exception, which doesn't make sense).
Once you have more of a handle on the type, you can then work on trying to parse it. You may need a bit of an ugly switch in there (to call the correct TryParse ) but I think you can achieve the desired functionality.
If you need me to explain any of the above further, then please ask :)
Best code: restrict T to ValueType this way:
class test1<T> where T: struct
A "struct" here means a value type.
String is a class, not a value type.
int, float, Enums are all value types.
btw the compiler does not accept to call static methods or access static members on 'type parameters' like in the following example which will not compile :(
class MyStatic { public static int MyValue=0; }
class Test<T> where T: MyStatic
{
public void TheTest() { T.MyValue++; }
}
=> Error 1 'T' is a 'type parameter', which is not valid in the given context
SL.
That is not how statics work. You have to think of statics as sort of in a Global class even if they are are spread across a whole bunch of types. My recommendation is to make it a property inside the T instance that can access the necessary static method.
Also T is an actual instance of something, and just like any other instance you are not able to access the statics for that type, through the instantiated value. Here is an example of what to do:
class a {
static StaticMethod1 ()
virtual Method1 ()
}
class b : a {
override Method1 () return StaticMethod1()
}
class c : a {
override Method1 () return "XYZ"
}
class generic<T>
where T : a {
void DoSomething () T.Method1()
}