The method is:
List<Book> books = new List<Book>();
public List<Book> Shoot()
{
foreach(var b in books)
{
bool find = true;
foreach(var otherb in books)
{
if(otherb != b && otherb.Author == b.Author)
{
find = false;
}
}
if(find)
{
yield return b;
}
}
}
Normally, the time complexity will be O(books.Count^2), but there is a if(find)
statement in the outer loop and it may change the loop times.
So my questions are:
What is the time complexity of this method?
How did you calculate it?
I'm waiting online for your answer.
Thank you in advance.
You would go through each book in the outer loop (n) and for each outer book you would go through each otherb in the inner loop (n times) so the the time complexity would be O(n^2).
The yield return would not change the complexity of the algorithm, it creates an iterator pattern but if you traverse the whole list from the calling function, you go through all the iterations in your algo.
What is the yield keyword used for in C#?
To optimize the algorithm, as btilly mention, you could do two passes over the collection, on the first pass you store the number of books per author in a hash table and on the second pass you check if the author has more than one book using the hash table (assuming constant time for the lookup) and yield the book if it does:
public List<Book> Shoot()
{
var authors = new Dictionary<string, int>();
foreach(var b in books)
{
if(authors.ContainsKey(b.Author))
authors[b.Author] ++;
else
authors.Add(b.Author, 1);
}
foreach(var b in books)
{
if(authors[b.Author] == 1)
yield return b;
}
}
This way you have a linear time complexity of O(n), note that you would need O(n) extra space in this case.
Your worst case performance per yield is O(n * n). Your best case is O(n). If you assume that authors are randomly sorted, and a fixed portion only write one book, then the average case between yields is O(n) because the probability of getting to m iterations of the outer loop decreases exponentially as m increases. (Insert standard geometric series argument here.)
Generally (but not always!) people are most interested in the average case.
Incidentally the standard way of handling this problem would be to create a dictionary up front with all of the authors, and the count of how many books they wrote. That takes time O(n). And then your yields after that would just search through the keys of that dictionary looking for the next one with only 1 entry. The average time of subsequent yields would be O(1), the worst case O(n), and the amortized average time across all yields (assuming that a fixed proportion only wrote one book) will be O(1) per yield. As opposed to the current implementation which is O(n) per yield.
Related
In regards to the length of the list being the input (n), would the time complexity of this code be linear because there is only one loop or quadratic due to "any" technically looping through the new array -- but not through every item on every loop? Or would it be neither?
public static List<Item> RemoveDuplicated(List<Item> listToFilter)
{
var newItemList = new List<Item>();
foreach(var item in listToFilter)
{
if(!newItemList.Any( i => i.ItemId == item.ItemId))
{
newItemList.Add(item);
}
}
return newItemList;
}
Algorithm complexity is the asymptotic behaviour as n grows large.
If unspecified, we assume the worst-case behaviour.
Here, that worst case is where every item is new to the list, such that Any has to traverse the entire existing list.
You nailed those parts: the outer loop executes n times; the inner loop has to traverse that list until it finds the element (we might assume checking m elements, where m is the current list size) or doesn't find it (checking all m elements).
In the worst case, the Any 1+2+3+ ... +(n-1) times, adding each item to the list. I'm sure you recognize this as O(n^2).
Assuming that duplicates are some fixed or bounded proportion of the original list, that expression is dependent on n.
Does that help the understanding?
Clarification:
The sum of the sequence 1 .. n is n(n+1) / 2, or (n^2 + n) / 2. This is dominated by the n^2 term.
I'm using Breadth First Search to solve a rush hour game. It works fine, but it takes really long on difficult boards. I am using a taboo list to avoid states I already discovered, to avoid insane memory usage and improve the run time.
I think this taboo list is the main cause of the long run time. It does drastically improve the time compared to normal BFS, but it's still too slow. Currently I'm using a normal list (C#'s List and the List.Contains method). I'm sure there are better options.
I'm storing my boards as a list of Cars + a width, height and target point (where your car should end up). a Car is stored as 2 points (top-left and bottom-right) that completely describe the car (since they can only be placed horizontally or vertically).
Some things I can think of:
A trie
Something with hash codes
Huge Dictionaries (?)
What is a good/the best data structure for my problem? Thanks for the help.
Edit 1:
Pseudocode (X is the taboo list type):
void Solve(Board b)
Queue q = {b};
X taboo = {b};
while (q not empty)
Board next = q.Dequeue();
foreach (Board succ in next.Successors)
if (succ.IsSolved)
PrintSolution();
return;
if (!taboo.Contains(succ))
q.Enqueue(succ);
taboo.Add(succ);
WriteLine("No solution found");
Edit 2:
The solution was using a HashSet. (see below)
Found the answer (or at least AN answer) thanks to other people's comments. I used C#'s HashSet datastructure with the following hash function for boards:
public override int GetHashCode()
{
int hash = 0;
int mul = 1;
foreach (Car c in Cars.Values)
{
hash += (c.P1.X + c.P1.Y * W) * mul;
mul += W * H;
}
return hash;
}
This seems to work fine and give unique hash codes for every board (correct me if I'm wrong), assuming cars are always stored in the same order and P1 represents the car's top-left point.
With this solution, I can now solve Rush Hour boards that require 50 moves in less than 0.5s, with reasonable amounts of memory usage.
This one is inefficient but it works for me, since my RushHour overall is pretty fast.
public string HashCode()
{
StringBuilder str = new StringBuilder();
foreach (Car car in this.Positions)
{
//#yolo
str.Append(string.Format("#{0}({1},{2})#", car.Original, car.Vector.X, car.Vector.Y));
}
return str.ToString();
}
Say I have a sorted list of 1000 or so unique decimals, arranged by value.
List<decimal> decList
How can I get a random x number of decimals from a list of unique decimals that total up to y?
private List<decimal> getWinningValues(int xNumberToGet, decimal yTotalValue)
{
}
Is there any way to avoid a long processing time on this? My idea so far is to take xNumberToGet random numbers from the pool. Something like (cool way to get random selection from a list)
foreach (decimal d in decList.OrderBy(x => randomInstance.Next())Take(xNumberToGet))
{
}
Then I might check the total of those, and if total is less, i might shift the numbers up (to the next available number) slowly. If the total is more, I might shift the numbers down. I'm still now sure how to implement or if there is a better design readily available. Any help would be much appreciated.
Ok, start with a little extension I got from this answer,
public static IEnumerable<IEnumerable<T>> Combinations<T>(
this IEnumerable<T> source,
int k)
{
if (k == 0)
{
return new[] { Enumerable.Empty<T>() };
}
return source.SelectMany((e, i) =>
source.Skip(i + 1).Combinations(k - 1)
.Select(c => (new[] { e }).Concat(c)));
}
this gives you a pretty efficient method to yield all the combinations with k members, without repetition, from a given IEnumerable. You could make good use of this in your implementation.
Bear in mind, if the IEnumerable and k are sufficiently large this could take some time, i.e. much longer than you have. So, I've modified your function to take a CancellationToken.
private static IEnumerable<decimal> GetWinningValues(
IEnumerable<decimal> allValues,
int numberToGet,
decimal targetValue,
CancellationToken canceller)
{
IList<decimal> currentBest = null;
var currentBestGap = decimal.MaxValue;
var locker = new object();
allValues.Combinations(numberToGet)
.AsParallel()
.WithCancellation(canceller)
.TakeWhile(c => currentBestGap != decimal.Zero)
.ForAll(c =>
{
var gap = Math.Abs(c.Sum() - targetValue);
if (gap < currentBestGap)
{
lock (locker)
{
currentBestGap = gap;
currentBest = c.ToList();
}
}
}
return currentBest;
}
I've an idea that you could sort the initial list and quit iterating the combinations at a certain point, when the sum must exceed the target. After some consideration, its not trivial to identify that point and, the cost of checking may exceed the benefit. This benefit would have to be balanced agaist some function of the target value and mean of the set.
I still think further optimization is possible but I also think that this work has already been done and I'd just need to look it up in the right place.
There are k such subsets of decList (k might be 0).
Assuming that you want to select each one with uniform probability 1/k, I think you basically need to do the following:
iterate over all the matching subsets
select one
Step 1 is potentially a big task, you can look into the various ways of solving the "subset sum problem" for a fixed subset size, and adapt them to generate each solution in turn.
Step 2 can be done either by making a list of all the solutions and choosing one or (if that might take too much memory) by using the clever streaming random selection algorithm.
If your data is likely to have lots of such subsets, then generating them all might be incredibly slow. In that case you might try to identify groups of them at a time. You'd have to know the size of the group without visiting its members one by one, then you can choose which group to use weighted by its size, then you've reduced the problem to selecting one of that group at random.
If you don't need to select with uniform probability then the problem might become easier. At the best case, if you don't care about the distribution at all then you can return the first subset-sum solution you find -- whether you'd call that "at random" is another matter...
I'm calculating intersection of 2 sets of sorted numbers in a time-critical part of my application. This calculation is the biggest bottleneck of the whole application so I need to speed it up.
I've tried a bunch of simple options and am currently using this:
foreach (var index in firstSet)
{
if (secondSet.BinarySearch(index) < 0)
continue;
//do stuff
}
Both firstSet and secondSet are of type List.
I've also tried using LINQ:
var intersection = firstSet.Where(t => secondSet.BinarySearch(t) >= 0).ToList();
and then looping through intersection.
But as both of these sets are sorted I feel there's a better way to do it. Note that I can't remove items from sets to make them smaller. Both sets usually consist of about 50 items each.
Please help me guys as I don't have a lot of time to get this thing done. Thanks.
NOTE: I'm doing this about 5.3 million times. So every microsecond counts.
If you have two sets which are both sorted, you can implement a faster intersection than anything provided out of the box with LINQ.
Basically, keep two IEnumerator<T> cursors open, one for each set. At any point, advance whichever has the smaller value. If they match at any point, advance them both, and so on until you reach the end of either iterator.
The nice thing about this is that you only need to iterate over each set once, and you can do it in O(1) memory.
Here's a sample implementation - untested, but it does compile :) It assumes that both of the incoming sequences are duplicate-free and sorted, both according to the comparer provided (pass in Comparer<T>.Default):
(There's more text at the end of the answer!)
static IEnumerable<T> IntersectSorted<T>(this IEnumerable<T> sequence1,
IEnumerable<T> sequence2,
IComparer<T> comparer)
{
using (var cursor1 = sequence1.GetEnumerator())
using (var cursor2 = sequence2.GetEnumerator())
{
if (!cursor1.MoveNext() || !cursor2.MoveNext())
{
yield break;
}
var value1 = cursor1.Current;
var value2 = cursor2.Current;
while (true)
{
int comparison = comparer.Compare(value1, value2);
if (comparison < 0)
{
if (!cursor1.MoveNext())
{
yield break;
}
value1 = cursor1.Current;
}
else if (comparison > 0)
{
if (!cursor2.MoveNext())
{
yield break;
}
value2 = cursor2.Current;
}
else
{
yield return value1;
if (!cursor1.MoveNext() || !cursor2.MoveNext())
{
yield break;
}
value1 = cursor1.Current;
value2 = cursor2.Current;
}
}
}
}
EDIT: As noted in comments, in some cases you may have one input which is much larger than the other, in which case you could potentially save a lot of time using a binary search for each element from the smaller set within the larger set. This requires random access to the larger set, however (it's just a prerequisite of binary search). You can even make it slightly better than a naive binary search by using the match from the previous result to give a lower bound to the binary search. So suppose you were looking for values 1000, 2000 and 3000 in a set with every integer from 0 to 19,999. In the first iteration, you'd need to look across the whole set - your starting lower/upper indexes would be 0 and 19,999 respectively. After you'd found a match at index 1000, however, the next step (where you're looking for 2000) can start with a lower index of 2000. As you progress, the range in which you need to search gradually narrows. Whether or not this is worth the extra implementation cost or not is a different matter, however.
Since both lists are sorted, you can arrive at the solution by iterating over them at most once (you may also get to skip part of one list, depending on the actual values they contain).
This solution keeps a "pointer" to the part of list we have not yet examined, and compares the first not-examined number of each list between them. If one is smaller than the other, the pointer to the list it belongs to is incremented to point to the next number. If they are equal, the number is added to the intersection result and both pointers are incremented.
var firstCount = firstSet.Count;
var secondCount = secondSet.Count;
int firstIndex = 0, secondIndex = 0;
var intersection = new List<int>();
while (firstIndex < firstCount && secondIndex < secondCount)
{
var comp = firstSet[firstIndex].CompareTo(secondSet[secondIndex]);
if (comp < 0) {
++firstIndex;
}
else if (comp > 0) {
++secondIndex;
}
else {
intersection.Add(firstSet[firstIndex]);
++firstIndex;
++secondIndex;
}
}
The above is a textbook C-style approach of solving this particular problem, and given the simplicity of the code I would be surprised to see a faster solution.
You're using a rather inefficient Linq method for this sort of task, you should opt for Intersect as a starting point.
var intersection = firstSet.Intersect(secondSet);
Try this. If you measure it for performance and still find it unwieldy, cry for further help (or perhaps follow Jon Skeet's approach).
I was using Jon's approach but needed to execute this intersect hundreds of thousands of times for a bulk operation on very large sets and needed more performance. The case I was running in to was heavily imbalanced sizes of the lists (eg 5 and 80,000) and wanted to avoid iterating the entire large list.
I found that detecting the imbalance and changing to an alternate algorithm gave me huge benifits over specific data sets:
public static IEnumerable<T> IntersectSorted<T>(this List<T> sequence1,
List<T> sequence2,
IComparer<T> comparer)
{
List<T> smallList = null;
List<T> largeList = null;
if (sequence1.Count() < Math.Log(sequence2.Count(), 2))
{
smallList = sequence1;
largeList = sequence2;
}
else if (sequence2.Count() < Math.Log(sequence1.Count(), 2))
{
smallList = sequence2;
largeList = sequence1;
}
if (smallList != null)
{
foreach (var item in smallList)
{
if (largeList.BinarySearch(item, comparer) >= 0)
{
yield return item;
}
}
}
else
{
//Use Jon's method
}
}
I am still unsure about the point at which you break even, need to do some more testing
try
firstSet.InterSect (secondSet).ToList ()
or
firstSet.Join(secondSet, o => o, id => id, (o, id) => o)
Let's assume we have a large list of points List<Point> pointList (already stored in memory) where each Point contains X, Y, and Z coordinate.
Now, I would like to select for example N% of points with biggest Z-values of all points stored in pointList. Right now I'm doing it like that:
N = 0.05; // selecting only 5% of points
double cutoffValue = pointList
.OrderBy(p=> p.Z) // First bottleneck - creates sorted copy of all data
.ElementAt((int) pointList.Count * (1 - N)).Z;
List<Point> selectedPoints = pointList.Where(p => p.Z >= cutoffValue).ToList();
But I have here two memory usage bottlenecks: first during OrderBy (more important) and second during selecting the points (this is less important, because we usually want to select only small amount of points).
Is there any way of replacing OrderBy (or maybe other way of finding this cutoff point) with something that uses less memory?
The problem is quite important, because LINQ copies the whole dataset and for big files I'm processing it sometimes hits few hundreds of MBs.
Write a method that iterates through the list once and maintains a set of the M largest elements. Each step will only require O(log M) work to maintain the set, and you can have O(M) memory and O(N log M) running time.
public static IEnumerable<TSource> TakeLargest<TSource, TKey>
(this IEnumerable<TSource> items, Func<TSource, TKey> selector, int count)
{
var set = new SortedDictionary<TKey, List<TSource>>();
var resultCount = 0;
var first = default(KeyValuePair<TKey, List<TSource>>);
foreach (var item in items)
{
// If the key is already smaller than the smallest
// item in the set, we can ignore this item
var key = selector(item);
if (first.Value == null ||
resultCount < count ||
Comparer<TKey>.Default.Compare(key, first.Key) >= 0)
{
// Add next item to set
if (!set.ContainsKey(key))
{
set[key] = new List<TSource>();
}
set[key].Add(item);
if (first.Value == null)
{
first = set.First();
}
// Remove smallest item from set
resultCount++;
if (resultCount - first.Value.Count >= count)
{
set.Remove(first.Key);
resultCount -= first.Value.Count;
first = set.First();
}
}
}
return set.Values.SelectMany(values => values);
}
That will include more than count elements if there are ties, as your implementation does now.
You could sort the list in place, using List<T>.Sort, which uses the Quicksort algorithm. But of course, your original list would be sorted, which is perhaps not what you want...
pointList.Sort((a, b) => b.Z.CompareTo(a.Z));
var selectedPoints = pointList.Take((int)(pointList.Count * N)).ToList();
If you don't mind the original list being sorted, this is probably the best balance between memory usage and speed
You can use Indexed LINQ to put index on the data which you are processing. This can result in noticeable improvements in some cases.
If you combine the two there is a chance a little less work will be done:
List<Point> selectedPoints = pointList
.OrderByDescending(p=> p.Z) // First bottleneck - creates sorted copy of all data
.Take((int) pointList.Count * N);
But basically this kind of ranking requires sorting, your biggest cost.
A few more ideas:
if you use a class Point (instead of a struct Point) there will be much less copying.
you could write a custom sort that only bothers to move the top 5% up. Something like (don't laugh) BubbleSort.
If your list is in memory already, I would sort it in place instead of making a copy - unless you need it un-sorted again, that is, in which case you'll have to weigh having two copies in memory vs loading it again from storage):
pointList.Sort((x,y) => y.Z.CompareTo(x.Z)); //this should sort it in desc. order
Also, not sure how much it will help, but it looks like you're going through your list twice - once to find the cutoff value, and once again to select them. I assume you're doing that because you want to let all ties through, even if it means selecting more than 5% of the points. However, since they're already sorted, you can use that to your advantage and stop when you're finished.
double cutoffValue = pointlist[(int) pointList.Length * (1 - N)].Z;
List<point> selectedPoints = pointlist.TakeWhile(p => p.Z >= cutoffValue)
.ToList();
Unless your list is extremely large, it's much more likely to me that cpu time is your performance bottleneck. Yes, your OrderBy() might use a lot of memory, but it's generally memory that for the most part is otherwise sitting idle. The cpu time really is the bigger concern.
To improve cpu time, the most obvious thing here is to not use a list. Use an IEnumerable instead. You do this by simply not calling .ToList() at the end of your where query. This will allow the framework to combine everything into one iteration of the list that runs only as needed. It will also improve your memory use because it avoids loading the entire query into memory at once, and instead defers it to only load one item at a time as needed. Also, use .Take() rather than .ElementAt(). It's a lot more efficient.
double N = 0.05; // selecting only 5% of points
int count = (1-N) * pointList.Count;
var selectedPoints = pointList.OrderBy(p=>p.Z).Take(count);
That out of the way, there are three cases where memory use might actually be a problem:
Your collection really is so large as to fill up memory. For a simple Point structure on a modern system we're talking millions of items. This is really unlikely. On the off chance you have a system this large, your solution is to use a relational database, which can keep this items on disk relatively efficiently.
You have a moderate size collection, but there are external performance constraints, such as needing to share system resources with many other processes as you might find in an asp.net web site. In this case, the answer is either to 1) again put the points in a relational database or 2) offload the work to the client machines.
Your collection is just large enough to end up on the Large Object Heap, and the HashSet used in the OrderBy() call is also placed on the LOH. Now what happens is that the garbage collector will not properly compact memory after your OrderBy() call, and over time you get a lot of memory that is not used but still reserved by your program. In this case, the solution is, unfortunately, to break your collection up into multiple groups that are each individually small enough not to trigger use of the LOH.
Update:
Reading through your question again, I see you're reading very large files. In that case, the best performance can be obtained by writing your own code to parse the files. If the count of items is stored near the top of the file you can do much better, or even if you can estimate the number of records based on the size of the file (guess a little high to be sure, and then truncate any extras after finishing), you can then build your final collection as your read. This will greatly improve cpu performance and memory use.
I'd do it by implementing "half" a quicksort.
Consider your original set of points, P, where you are looking for the "top" N items by Z coordinate.
Choose a pivot x in P.
Partition P into L = {y in P | y < x} and U = {y in P | x <= y}.
If N = |U| then you're done.
If N < |U| then recurse with P := U.
Otherwise you need to add some items to U: recurse with N := N - |U|, P := L to add the remaining items.
If you choose your pivot wisely (e.g., median of, say, five random samples) then this will run in O(n log n) time.
Hmmmm, thinking some more, you may be able to avoid creating new sets altogether, since essentially you're just looking for an O(n log n) way of finding the Nth greatest item from the original set. Yes, I think this would work, so here's suggestion number 2:
Make a traversal of P, finding the least and greatest items, A and Z, respectively.
Let M be the mean of A and Z (remember, we're only considering Z coordinates here).
Count how many items there are in the range [M, Z], call this Q.
If Q < N then the Nth greatest item in P is somewhere in [A, M). Try M := (A + M)/2.
If N < Q then the Nth greatest item in P is somewhere in [M, Z]. Try M := (M + Z)/2.
Repeat until we find an M such that Q = N.
Now traverse P, removing all items greater than or equal to M.
That's definitely O(n log n) and creates no extra data structures (except for the result).
Howzat?
You might use something like this:
pointList.Sort(); // Use you own compare here if needed
// Skip OrderBy because the list is sorted (and not copied)
double cutoffValue = pointList.ElementAt((int) pointList.Length * (1 - N)).Z;
// Skip ToList to avoid another copy of the list
IEnumerable<Point> selectedPoints = pointList.Where(p => p.Z >= cutoffValue);
If you want a small percentage of points ordered by some criterion, you'll be better served using a Priority queue data structure; create a size-limited queue(with the size set to however many elements you want), and then just scan through the list inserting every element. After the scan, you can pull out your results in sorted order.
This has the benefit of being O(n log p) instead of O(n log n) where p is the number of points you want, and the extra storage cost is also dependent on your output size instead of the whole list.
int resultSize = pointList.Count * (1-N);
FixedSizedPriorityQueue<Point> q =
new FixedSizedPriorityQueue<Point>(resultSize, p => p.Z);
q.AddEach(pointList);
List<Point> selectedPoints = q.ToList();
Now all you have to do is implement a FixedSizedPriorityQueue that adds elements one at a time and discards the largest element when it is full.
You wrote, you are working with a DataSet. If so, you can use DataView to sort your data once and use them for all future accessing the rows.
Just tried with 50,000 rows and 100 times accessing 30% of them. My performance results are:
Sort With Linq: 5.3 seconds
Use DataViews: 0.01 seconds
Give it a try.
[TestClass]
public class UnitTest1 {
class MyTable : TypedTableBase<MyRow> {
public MyTable() {
Columns.Add("Col1", typeof(int));
Columns.Add("Col2", typeof(int));
}
protected override DataRow NewRowFromBuilder(DataRowBuilder builder) {
return new MyRow(builder);
}
}
class MyRow : DataRow {
public MyRow(DataRowBuilder builder) : base(builder) {
}
public int Col1 { get { return (int)this["Col1"]; } }
public int Col2 { get { return (int)this["Col2"]; } }
}
DataView _viewCol1Asc;
DataView _viewCol2Desc;
MyTable _table;
int _countToTake;
[TestMethod]
public void MyTestMethod() {
_table = new MyTable();
int count = 50000;
for (int i = 0; i < count; i++) {
_table.Rows.Add(i, i);
}
_countToTake = _table.Rows.Count / 30;
Console.WriteLine("SortWithLinq");
RunTest(SortWithLinq);
Console.WriteLine("Use DataViews");
RunTest(UseSoredDataViews);
}
private void RunTest(Action method) {
int iterations = 100;
Stopwatch watch = Stopwatch.StartNew();
for (int i = 0; i < iterations; i++) {
method();
}
watch.Stop();
Console.WriteLine(" {0}", watch.Elapsed);
}
private void UseSoredDataViews() {
if (_viewCol1Asc == null) {
_viewCol1Asc = new DataView(_table, null, "Col1 ASC", DataViewRowState.Unchanged);
_viewCol2Desc = new DataView(_table, null, "Col2 DESC", DataViewRowState.Unchanged);
}
var rows = _viewCol1Asc.Cast<DataRowView>().Take(_countToTake).Select(vr => (MyRow)vr.Row);
IterateRows(rows);
rows = _viewCol2Desc.Cast<DataRowView>().Take(_countToTake).Select(vr => (MyRow)vr.Row);
IterateRows(rows);
}
private void SortWithLinq() {
var rows = _table.OrderBy(row => row.Col1).Take(_countToTake);
IterateRows(rows);
rows = _table.OrderByDescending(row => row.Col2).Take(_countToTake);
IterateRows(rows);
}
private void IterateRows(IEnumerable<MyRow> rows) {
foreach (var row in rows)
if (row == null)
throw new Exception("????");
}
}