This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
What is the difference between a field and a property in C#
I'm a beginning programmer and I've read all about class properties. Books state that properties allow you to indirectly access member variables. Ok, so what makes it any different than just making the field public and accessing it directly?
Here's a quote from Learning C# 3.0 by Jesse Liberty:
For example, you might want external
classes to be able to read a value, but not change it; or you might want to write
some code so that the internal field can accept only values in a certain range. If you
grant external classes free access to your member fields, you can’t control any of that.
I don't understand what he is saying here. Can someone further explain this or give an example of why I would want to use a property over making the field public. As I understand it now they would both accomplish the same exact thing...so I'm obviously missing something here.
The other answers provided so far provide details of the advantages of accessor/mutator logic, but all seem to miss out on the ideological point about object encapsulation.
You see, class member fields are an implementation detail. If you have a class that represents a collection, for example, then you could implement it as a linked list (and expose the root-node via a public field) or you could implement it as a resizable array and expose the index0 member.
The problem with revealing implementation details is that you lose any kind of defined interface between your class and its consumers. By ensuring all operations are done via defined methods (controlled by the class itself) you make it easier to work with and provide for a long-term viewpoint. For example, you are far more easily able to convert your collection implementation from one type (the linked-list) to another (the array) without breaking any contracts with your class' consumers.
Don't worry about any performance impact of trivial accessor/mutator methods: the JIT compiler will inline the property methods. If you'll run some benchmarks you'll see the performance of properties vs fields is identical.
He's saying that properties can provide a getter but not a setter, therefore making them read-only (for example)
Properties are just syntactic sugar for a method e.g.
public int SomeProperty { get; set; }
is just sugar for
private int _someProperty;
public int SomeProperty_get()
{
return _someProperty;
}
public void SomeProperty_set(int value)
{
_someProperty = value;
}
This means that property setters/getters can apply logic that a mere public field can't
Edit: I'm not exactly sure what field names the CLR gives the backing fields for auto-properties - it's just an example :)
Edit2:
An example of a read only property:
public int SomeProperty { get; }
and finally a public read - private write (for autoproperties)
public int SomeProperty { get; private set; }
Really useful when you can't be bothered to type a backing field in :)
Just remember, if there is a possibility that you wish to apply logic to a member, then a property is the way to go. This is the way a lot of frameworks work (e.g. tracking 'dirty' objects by using a property to tell some sort of object manager that something has changed, this would not be possible using a public field)
Properties can have side-effects, They provide syntactic sugar around 'getter' and 'setter' methods.
public class MyClass {
int sizeValue = 0;
public int Size {
get {
return sizeValue;
}
set {
if ( value < 10 ) throw new Exception("Size too small");
sizeValue = value;
}
}
}
Properties can also have different levels of protection for get and set, you cannot do that with fields.
public class MyOtherClass {
// only this object can set this.
public int Level {
get; private set;
}
// only things in the same assembly can set this.
public string Name {
get; internal set;
}
}
There are a number of important differences between "properties" and "member access".
The most significant is that you can, through a property, make a member read-only (you can access the state, but you cannot change it). Just like "getter()" and "setter()" methods in Java.
You can also return a computed value from a property (generate a value "on-the-fly", as though it were a variable).
Properties can be configured so that:
they are read-only, Public MyProp {get;}
they are write-only Public MyProp {set;}
they are readable by external objects, but can only be set by the class's internals
Public MyProp {get; private set;}
As others have posted, you can also put logic into your getters and setters. For example before allowing the property to bet set to a new value, you can check that the value is acceptable.
You cannot do any of that with a public field.
Basically, a public field is the dumbest sort of property that you can have. Given that .Net now allows autobacking fields for your properties. There is no good reason to use public fields any longer.
If you have Public Int MyAge
I can set it to -200 or 20,000 and there is nothing you can do about it.
If you use a property you can check that age is between 0 and 150, for example.
Edit: as per IanNorton's example (man, that was fast)
Related
This question already has answers here:
Auto-implemented getters and setters vs. public fields
(17 answers)
Closed 8 years ago.
I have looked at at least 10 SO questions on get/set but cannot find mine. So I hope this is not a duplicate.
public class myint
{
public int value{get;set;}
}
vs
public class myint
{
public int value;
}
The above 2 codes look the same to me. If I want to use the myint class, I just write the code below and it can run on either class.
myint A;
A.value=10;
So what is the get/set use for?
You're asking what the difference is between using a public instance variable vs. getter/setter properties I assume.
Properties allow you to further encapsulate logic around getting or setting a variable, for example adding simple validation logic. You could throw an exception if someone sets your value to less than zero for example. You could also add further logic in the getter/setter to for example synchronize a specific field.
A few other differences:
Properties can be used for data binding easily in most .NET UI frameworks.
Reflection works differently.
Differing access levels for get/set vs. for example your instance variable you can choose between readonly, private, protected, static, etc. as a whole.
There is more overhead accessing a property. This is usually unimportant in most use cases other than games and highly performance sensitive situations.
http://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx
A property is a member that provides a flexible mechanism to read,
write, or compute the value of a private field. Properties can be used
as if they are public data members, but they are actually special
methods called accessors. This enables data to be accessed easily and
still helps promote the safety and flexibility of methods.
Here are few things off the top of my head that differentiate a public {get;set;} vs a public member variable:
Properties are needed for data binding.
get and set can have different accessors (e.g. public int Value {get; protected set;}
get;set; can be part of a interface e.g. interface IHasValueGetter { public int Value {get;}}
What is the difference between a Field and a Property in C#?
here is when do we use get set
According to the Property Usage Guidelines on MSDN:
Use a property when the member is a logical data member. In the following member declarations, Name is a property because it is a
logical member of the class.
Use a method when:
The operation is a conversion, such as Object.ToString.
The operation is expensive enough that you want to communicate to the user that they should consider caching the result.
Obtaining a property value using the get accessor would have an observable side effect.
Calling the member twice in succession produces different results.
The order of execution is important. Note that a type's properties should be able to be set and retrieved in any order.
The member is static but returns a value that can be changed.
The member returns an array. Properties that return arrays can be very misleading. Usually it is necessary to return a copy of the
internal array so that the user cannot change internal state. This,
coupled with the fact that a user can easily assume it is an indexed
property, leads to inefficient code. In the following code example,
each call to the Methods property creates a copy of the array. As a
result, 2n+1 copies of the array will be created in the following
loop.
you can remove get and set it will not affect the code and working due to the reason that you have defined a variable of type int with the Access type of public so that properties are mostly used to access the private members of class which is in your case do not exist so go on and remove it how ever if in top most class you define a variable with Private modifier the to access it get and set are necessary properties!
// This is an example of property...
public class myint
{
public int value{get;set;}
}
// This is an example of field...
public class myint
{
public int value;
}
The difference:
Databinding techniques only works on properties, and not on fields
Fields may be used as input to out/ref arguments. Properties may not.
Properties may throw exceptions - fields will never do that
Example:
class Person
{
private string _name;
public string FirstName
{
get
{
return _name ?? string.Empty;
}
set
{
if (value == null)
throw new System.ArgumentNullException("value");
_name = value;
}
}
}
Properties support different accessibility for getters/setters - fields do not (but fields can be made readonly)
This question already has answers here:
Difference between Property and Field in C# 3.0+
(10 answers)
Closed 9 years ago.
is there any effective difference between Foo.Something and Bar.Something in this example?
class Foo
{
public string Something;
}
class Bar
{
public string Something{get; set;}
}
class Program
{
static void Main(string[] args)
{
var MyFoo = new Foo();
MyFoo.Something = "Hello: foo";
System.Console.WriteLine(MyFoo.Something);
var MyBar = new Bar();
MyBar.Something = "Hello: bar";
System.Console.WriteLine(MyBar.Something);
System.Console.ReadLine();
}
}
AFAIK they behave exactly the same. If they do why not to use plain Fields like in Foo?
In java we use setters to be able enforce new invariants without breaking code and getters to return safe data but in c# you can always rewrite Foo into this:
class Foo
{
private string _Something;
public string Something
{
get {
//logic
return _Something;
}
set {
//check new invariant
_Something = value;
}
}
}
And old code will not be broken.
AFAIK they behave exactly the same.
No they don't.
Fields can't be used in data binding (at least in some binding implementations)
You can add more logic later for properties without breaking source or binary compatibility
Properties can't be passed by reference
You couldn't previously add an initializer to an automatically implemented property (that was addressed in later versions of C#)
They'll clearly be different in terms of reflection
Philosophically, properties are logically part of the API whereas fields are an implementation detail
in c# you can always rewrite Foo into this: [...]
Well you can if you don't care about binary or source compatibility, yes. In some cases that's really not an issue - in other cases it's very, very much an issue. Why not make the choice to expose your API rather than your implementation details from the start? It's not like adding { get; set; } in your code is adding much clutter...
For more ranting, see my article on this.
Foo.Something is a field, Bar.Something is an automatically implemented property. That's a huge difference.
You can just access properties the same way as fields, but internally a set/get method is called when you access a property.
So when you say myBar.Something = "asdf", the C# compiler translates this to a call to a setter method: myBar.set_Something("asdf"). The setter and getter methods are generated automatically for you, as well as a backing field for the actual value.
By changing Foo.Something to a property with get and set methods, you are breaking binary compatibility, that means you'll have to recompile all assemblies that used Foo.Something when it still was a field.
The getters and setters of a property (including automatic ones) have a method call cost. Public fields should be avoided in order to keep things clean with access.
public string Something{get; set;} is just syntactic sugar; the compiler actually expands this to methods. So there is little point in having all get; set; fields all over the place, just for the sake of it.
1) You can add private accessor to get or set and control access to property.
public object MyProp {get; private set;}
You can read prop everywhere, but write only inside class
2) You can connect some logic to read/write property. In case of field you can not do anything additional
3) You can not serialize fields
Seen a few examples of code where this happens:
public class Foo
{
string[] m_workID;
public string[] WorkID
{
get
{
return m_workID;
}
private set
{
m_workID = value;
}
}
}
What's the point of this?
Since the use m_workID unnescessary.
In general, the point is to separate implementation (the field) from API (the property).
Later on you can, should you wish, put logic, logging etc in the property without breaking either source or binary compatibility - but more importantly you're saying what your type is willing to do, rather than how it's going to do it.
I have an article giving more benefits of using properties instead of public fields.
In C# 3 you can make all of this a lot simpler with automatically implemented properties:
public class Foo
{
public string[] WorkID { get; private set; }
}
At that point you still have a public getter and a private setter, but the backing field (and property implementation) is generated for you behind the scenes. At any point you can change this to a "normal" fully-implemented property with a backing field, and you'll still have binary and source compatibility. (Compatibility of serialized objects is a different matter, mind you.)
Additionally, in this case you can't mirror the behaviour you want (the ability to read the value publicly but write it privately) with a field - you could have a readonly field, but then you could only write to it within the constructor. Personally I wish there were a similar shorthand for this:
public class Foo
{
private readonly int id;
public int Id { get { return id; } }
...
}
as I like immutable types, but that's a different matter.
In another different matter, it's generally not a good idea to expose arrays like this anyway - even though callers can't change which array WorkID refers to, they can change the contents of the array, which is probably not what you want.
In the example you've given you could get away without the property setter, just setting the field directly within the same class, but it would mean that if you ever wanted to add logging etc you'd have to find all those writes.
A property by itself doesn't provide anywhere to put the data - you need the field (m_workID) for storage, but it entirely correct to hide that behind a property for many, many reasons. In C# 3.0 you can reduce this to:
public string[] WorkID {get; private set;}
Which will do much of the same. Note that exposing an array itself may be problematic, as there is no mechanism for protecting data in an array - at least with an IList<string> you could (if needed) add extra code to sanity check things, or could make it immutable. I'm not saying this needs fixing, but it is something to watch.
In addition to the Object Oriented philosophy of data encapsulation, it helps when you need to do something every time your property is read/write.
You can have to perform a log, a validation, or any another method call later in your development.
If your property is public, you'll have to look around all your code to find and modify your code. And what if your code is used as a library by someone else ?
If your property is private with appropriate get/set methods, then you change the get/set and that's all.
You can use C# 3.0 auto properties feature to save time typing:
public class Foo
{
public string[] WorkID
{
get; private set;
}
}
In addition properties gives you lot of advantages in comparison to fields:
properties can be virtual
properties hide implementation details (not all properties are just trivial variable accessors)
properties can contain validation and logging code and raise change events
interfaces cannot contains fields but properties
A lot of times you only want to provide read access to a field. By using a property you can provide this access. As you mention you may want to perform operations before the field is accessed (lazy loading, e.g.). You have a lot of code in there that just isn't necessary anymore unless you're still working in .Net 2.0-.
my question is simple, is using the get set properties of C# considered good, better even than writing getter and setter methods? When you use these properties, don't you have to declare your class data members as public ? I ask this because my professor stated that data members should never be declared as public, as it is considered bad practice.
This....
class GetSetExample
{
public int someInt { get; set; }
}
vs This...
class NonGetSetExample
{
private int someInt;
}
Edit:
Thanks to all of you! All of your answers helped me out, and I appropriately up-voted your answers.
This:
class GetSetExample
{
public int someInt { get; set; }
}
is really the same as this:
class GetSetExample
{
private int _someInt;
public int someInt {
get { return _someInt; }
set { _someInt = value; }
}
}
The get; set; syntax is just a convenient shorthand for this that you can use when the getter and setter don't do anything special.
Thus, you are not exposing a public member, you are defining a private member and providing get/set methods to access it.
Yes, members should normally never be declared public in good design for several reasons. Think about OOP where you inherit the class later. Kind of hard to override a field. :-) Also it prevents you from keeping your internals from being accessed directly.
The simplistic get; set; design was introduced in C# 2.0. It's basically the same as declaring everything with a private member backing it (decompile it out in tool like Reflector and see).
public int someInt{get;set;}
is directly equal to
private int m_someInt;
public int someInt{
get { return m_someInt; }
set { m_someInt = value; }
}
The great part about having the simplified getter/setter is that when you want to fill in the implementation with a little bit more guts later, you do not break ABI compatibility.
Don't worry about getter/setters slowing down your code through indirection. The JIT has a thing called inlineing makes using the getter/setter just as efficient as direct field access.
Yes. Data members should be private and automatic properties allow it and give public access on right way.
But you should be careful. Understand the context is very important. In threaded application, update one property following an another related property can be harmful to consistency. In that case, a setter method updating the two private data members in a proper way makes more sense.
In your first example C# automatically generates the private backing fields so technically the data member is not declared as public only the getter/setter.
because with public data member , that data member can be changed or can be read out of class
and you cannot control read/write operation accessibility but with properties you can control
read/write stream for example consider this statement :
public MyVar{private get; public set;}
means value of MyVar can be changed only inside of class and can be read out of class(read privately and read publicly) and this is not possible with just public data members
In a "pure" object oriented approach, it is not considered OK to expose the state of your objects at all, and this appliese to properties as they are implemented in .NET and get_ set_ properteis of Java/EJB. The idea is that by exposing the state of your object, you are creating external dependencies to the internal data representation of your object. A pure object design reduces all interactions to messages with parameters.
Back to the real world: if you try to implement such a strict theoretical approach on the job, you will either be laughed out of the office or beaten to a pulp. Properties are immensely popular because they are a reasonable compromise between a pure object design and fully exposed private data.
It's quite reasonable, and your professor (without context) is wrong. But anyway, using "automatic properties", is fine, and you can do it whether they are public or private.
Though in my experience, whenever I use one, I almost inevitably end up needing to write some logic in there, and hence can't use the auto props.
your professor was quite right.
Consider this trivial example of why "getters" should be avoided: There may be 1,000 calls to a getX() method in your program, and every one of those calls assumes that the return value is a particular type. The return value of getX() may be sotred in a local variable, for example, and the variable type must match the return-value type. If you need to change the way that the object is implemented in such a way that the type of X changes, you're in deep trouble. If X used to be an int, but now has to be a long, you'll now get 1,000 compile errors. If you fix the problem incorrectly by casting the return value to int, the code will compile cleanly but won't work. (The return value may be truncated.) You have to modify the code surrounding every one of those 1,000 calls to compensate for the change. I, at least, don't want to do that much work.
Holub On Patterns
I see a lot of example code for C# classes that does this:
public class Point {
public int x { get; set; }
public int y { get; set; }
}
Or, in older code, the same with an explicit private backing value and without the new auto-implemented properties:
public class Point {
private int _x;
private int _y;
public int x {
get { return _x; }
set { _x = value; }
}
public int y {
get { return _y; }
set { _y = value; }
}
}
My question is why. Is there any functional difference between doing the above and just making these members public fields, like below?
public class Point {
public int x;
public int y;
}
To be clear, I understand the value of getters and setters when you need to do some translation of the underlying data. But in cases where you're just passing the values through, it seems needlessly verbose.
I tend to agree (that it seems needlessly verbose), although this has been an issue our team hasn't yet resolved and so our coding standards still insist on verbose properties for all classes.
Jeff Atwood dealt with this a few years ago. The most important point he retrospectively noted is that changing from a field to a property is a breaking change in your code; anything that consumes it must be recompiled to work with the new class interface, so if anything outside of your control is consuming your class you might have problems.
It's also much simpler to change it to this later:
public int x { get; private set; }
It encapsulates setting and accessing of those members. If some time from now a developer for the code needs to change logic when a member is accessed or set it can be done without changing the contract of the class.
The idea is that even if the underlying data structure needs to change, the public interface to the class won't have to be changed.
C# can treat properties and variables differently at times. For example, you can't pass properties as ref or out parameters. So if you need to change the data structure for some reason and you were using public variables and now you need to use properties, your interface will have to change and now code that accesses property x may not longer compile like it did when it was variable x:
Point pt = new Point();
if(Int32.TryParse(userInput, out pt.x))
{
Console.WriteLine("x = {0}", pt.x);
Console.WriteLine("x must be a public variable! Otherwise, this won't compile.");
}
Using properties from the start avoids this, and you can feel free to tweak the underlying implementation as much as you need to without breaking client code.
Setter and Getter enables you to add additional abstraction layer and in pure OOP you should always access the objects via the interface they are providing to the outside world ...
Consider this code, which will save you in asp.net and which it would not be possible without the level of abstraction provided by the setters and getters:
class SomeControl
{
private string _SomeProperty ;
public string SomeProperty
{
if ( _SomeProperty == null )
return (string)Session [ "SomeProperty" ] ;
else
return _SomeProperty ;
}
}
Since auto implemented getters takes the same name for the property and the actual private storage variables. How can you change it in the future? I think the point being said is that use the auto implemented instead of field so that you can change it in the future if in case you need to add logic to getter and setter.
For example:
public string x { get; set; }
and for example you already use the x a lot of times and you do not want to break your code.
How do you change the auto getter setter... for example for setter you only allow setting a valid telephone number format... how do you change the code so that only the class is to be change?
My idea is add a new private variable and add the same x getter and setter.
private string _x;
public string x {
get {return _x};
set {
if (Datetime.TryParse(value)) {
_x = value;
}
};
}
Is this what you mean by making it flexible?
Also to be considered is the effect of the change to public members when it comes to binding and serialization. Both of these often rely on public properties to retrieve and set values.
Also, you can put breakpoints on getters and setters, but you can't on fields.
AFAIK the generated CIL interface is different. If you change a public member to a property you are changing it's public interface and need to rebuild every file that uses that class. This is not necessary if you only change the implementation of the getters and setters.
Maybe just making fields public you could leads you to a more Anemic Domain Model.
Kind Regards
It is also worth noting that you can't make Auto Properties Readonly and you cannot initialise them inline. Both of these are things I would like to see in a future release of .NET, but I believe you can do neither in .NET 4.0.
The only times I use a backing field with properties these days is when my class implements INotifyPropertyChanged and I need to fire the OnPropertyChanged event when a property is changed.
Also in these situations I set the backing fields directly when values are passed in from a constructor (no need to try and fire the OnPropertyChangedEvent (which would be NULL at this time anyway), anywhere else I use the property itself.
You never know if you might not need some translation of the data later. You are prepared for that if you hide away your members. Users of your class wont notice if you add the translation since the interface remains the same.
The biggest difrence is that, if ever you change your internal structure, you can still maintain the getters and setters as is, changing their internal logic without hurting the users of your API.
If you have to change how you get x and y in this case, you could just add the properties later. This is what I find most confusing. If you use public member variables, you can easily change that to a property later on, and use private variables called _x and _y if you need to store the value internally.
why we dont just use public fields instead of using properties then
call accessors ( get,set ) when we dont need to make validations ?
A property is a member that provides a flexible mechanism to read only or write only
Properties can be overridden but fields can't be.
Adding getter and setter makes the variable a property as in working in Wpf/C#.
If it's just a public member variable, it's not accessible from XAML because it's not a property (even though its public member variable).
If it has setter and getter, then its accessible from XAML because now its a property.
Setters and getters are bad in principle (they are a bad OO smell--I'll stop short of saying they are an anti-pattern because they really are necessary sometimes).
No, there is technically no difference and when I really want to share access to an object these days, I occasionally make it public final instead of adding a getter.
The way setters and getters were "Sold" is that you might need to know that someone is getting a value or changing one--which only makes sense with primitives.
Property bag objects like DAOs, DTOs and display objects are excluded from this rule because these aren't objects in a real "OO Design" meaning of the word Object. (You don't think of "Passing Messages" to a DTO or bean--those are simply a pile of attribute/value pairs by design).