I'm trying to determine the optimal solution for this tough problem. I've got a length (let's say 11). So it's a one dimensional space 0-10. Now I've got these intervals with same length (let's assume 2 in this example). Now they're randomly distributed (overlapping, or not). Let me draw an example:
Situation:
|00|01|02|03|04|05|06|07|08|09|10| <- Space (length = 11)
|-----|
|-----|
|-----|
|-----|
|-----|
|-----| <- single interval of length = 2
Now the solution needs to find the maximal number of intervals that can fit at once without overlap.
The solution is: 4 intervals
There are three results of 4 intervals:
|00|01|02|03|04|05|06|07|08|09|10|
|-----| |-----|-----| |-----| <- result 1
|-----| |-----| |-----| |-----| <- result 2
|-----| |-----|-----| |-----| <- result 3
But there are also two more constraints as well.
If there are more results (of best solution, in this case = 4), then the one with the least number of gaps.
If there are more results still the one with the highest minimal length of all its spaces. For example the one with spaces (of length) 2 & 3 has minimal length of space = 2, that is better than 1 & 4 where the minimal length of space is only 1.
So the result 2 has 4 "continual" chunks, the other two have only 3 so the refinement is:
|00|01|02|03|04|05|06|07|08|09|10|
|-----| |-----------| |-----| <- result 1
|-----| |-----------| |-----| <- result 3
Those two got same space distributions between them, so let's take first one.
The result for the input set is:
Interval count : 4
Optimal solution: |-----| |-----------| |-----|
The algorithm has to work universally for all the space length (not only 11), all interval lengths (interval length is always <= space length) and any number of intervals.
Update:
Problematic scenario:
|00|01|02|03|04|05|06|07|08|09|
|-----|
|-----|
|-----|
|-----|
|-----|
This is a simple dynamic programming problem.
Let the total length be N and the length of a task be L.
Let F(T) be maximum number of tasks that can be selected from the sub interval (T, N), then at each unit time T, there are 3 possibilities:
There is no task that starts at T.
There is a task that starts at T, but we do not include it in the result set.
There is a task that starts at T, and we do include it in the result set.
Case 1 is simple, we just have F(T) = F(T + 1).
In case 2/3, notice that selecting a task that start a T means we must reject all tasks that start while this task is running, i.e. between T and T + L. So we get F(T) = max(F(T + 1), F(T + L) + 1).
Finally, F(N) = 0. So you just start from F(N) and work your way back to F(0).
EDIT: This will give you the maximum number of intervals, but not the set that fulfils your 2 constraints. Your explanation of the constraints is unclear to me, so I'm not sure how to help you there. In particular, I can't tell what constraint 1 means since all the solutions to your example set are apparently equal.
EDIT 2: Some further explanation as requested:
Consider your posted example, we have N = 11 and L = 2. There are tasks that start at T = 0, 3, 4, 5, 6, 9. Starting from F(11) = 0 and working backwards:
F(11) = 0
F(10) = F(11) = 0 (Since no task starts at T = 10)
F(9) = max(F(10), F(11) + 1) = 1
...
Eventually we get to F(0) = 4:
T |00|01|02|03|04|05|06|07|08|09|10|
F(T)| 4| 3| 3| 3| 3| 2| 2| 1| 1| 1| 0|
EDIT 3: Well I was curious enough about this that I wrote a solution, so may as well post it. This will give you the set that has the most tasks, with the least number of gaps, and the smallest minimum gap. The output for the examples in the question is:
(0, 2) -> (4, 6) -> (6, 8) -> (9, 11)
(0, 2) -> (4, 6) -> (8, 10)
Obviously, I make no guarantees about correctness! :)
private class Task
{
public int Start { get; set; }
public int Length { get; set; }
public int End { get { return Start + Length; } }
public override string ToString()
{
return string.Format("({0:d}, {1:d})", Start, End);
}
}
private class CacheEntry : IComparable
{
public int Tasks { get; set; }
public int Gaps { get; set; }
public int MinGap { get; set; }
public Task Task { get; set; }
public Task NextTask { get; set; }
public int CompareTo(object obj)
{
var other = obj as CacheEntry;
if (Tasks != other.Tasks)
return Tasks - other.Tasks; // More tasks is better
if (Gaps != other.Gaps)
return other.Gaps = Gaps; // Less gaps is better
return MinGap - other.MinGap; // Larger minimum gap is better
}
}
private static IList<Task> F(IList<Task> tasks)
{
var end = tasks.Max(x => x.End);
var tasksByTime = tasks.ToLookup(x => x.Start);
var cache = new List<CacheEntry>[end + 1];
cache[end] = new List<CacheEntry> { new CacheEntry { Tasks = 0, Gaps = 0, MinGap = end + 1 } };
for (int t = end - 1; t >= 0; t--)
{
if (!tasksByTime.Contains(t))
{
cache[t] = cache[t + 1];
continue;
}
foreach (var task in tasksByTime[t])
{
var oldCEs = cache[t + task.Length];
var firstOldCE = oldCEs.First();
var lastOldCE = oldCEs.Last();
var newCE = new CacheEntry
{
Tasks = firstOldCE.Tasks + 1,
Task = task,
Gaps = firstOldCE.Gaps,
MinGap = firstOldCE.MinGap
};
// If there is a task that starts at time T + L, then that will always
// be the best option for us, as it will have one less Gap than the others
if (firstOldCE.Task == null || firstOldCE.Task.Start == task.End)
{
newCE.NextTask = firstOldCE.Task;
}
// Otherwise we want the one that maximises MinGap.
else
{
var ce = oldCEs.OrderBy(x => Math.Min(x.Task.Start - newCE.Task.End, x.MinGap)).Last();
newCE.NextTask = ce.Task;
newCE.Gaps++;
newCE.MinGap = Math.Min(ce.MinGap, ce.Task.Start - task.End);
}
var toComp = cache[t] ?? cache[t + 1];
if (newCE.CompareTo(toComp.First()) < 0)
{
cache[t] = toComp;
}
else
{
var ceList = new List<CacheEntry> { newCE };
// We need to keep track of all subsolutions X that start on the interval [T, T+L] that
// have an equal number of tasks and gaps, but a possibly a smaller MinGap. This is
// because an earlier task may have an even smaller gap to this task.
int idx = newCE.Task.Start + 1;
while (idx < newCE.Task.End)
{
toComp = cache[idx];
if
(
newCE.Tasks == toComp.First().Tasks &&
newCE.Gaps == toComp.First().Gaps &&
newCE.MinGap >= toComp.First().MinGap
)
{
ceList.AddRange(toComp);
idx += toComp.First().Task.End;
}
else
idx++;
}
cache[t] = ceList;
}
}
}
var rv = new List<Task>();
var curr = cache[0].First();
while (true)
{
rv.Add(curr.Task);
if (curr.NextTask == null) break;
curr = cache[curr.NextTask.Start].First();
}
return rv;
}
public static void Main()
{
IList<Task> tasks, sol;
tasks = new List<Task>
{
new Task { Start = 0, Length = 2 },
new Task { Start = 3, Length = 2 },
new Task { Start = 4, Length = 2 },
new Task { Start = 5, Length = 2 },
new Task { Start = 6, Length = 2 },
new Task { Start = 9, Length = 2 },
};
sol = F(tasks);
foreach (var task in sol)
Console.Out.WriteLine(task);
Console.Out.WriteLine();
tasks = new List<Task>
{
new Task { Start = 0, Length = 2 },
new Task { Start = 3, Length = 2 },
new Task { Start = 4, Length = 2 },
new Task { Start = 8, Length = 2 },
};
sol = F(tasks);
foreach (var task in sol)
Console.Out.WriteLine(task);
Console.Out.WriteLine();
tasks = new List<Task>
{
new Task { Start = 0, Length = 5 },
new Task { Start = 6, Length = 5 },
new Task { Start = 7, Length = 3 },
new Task { Start = 8, Length = 9 },
new Task { Start = 19, Length = 1 },
};
sol = F(tasks);
foreach (var task in sol)
Console.Out.WriteLine(task);
Console.Out.WriteLine();
Console.In.ReadLine();
}
Related
I'm trying to use the Parallel library for my code and I'm facing a strange issue.
I made a short program to demonstrate the behavior. In short, I make 2 loops (one inside another). The first loop generates a random array of 200 integers and the second loop adds all the arrays in a big list.
The issue is, in the end, I don't get a multiple of 200 integers, instead I see some runs doesn't wait for the random array to fully be loaded.
It's difficult to explain so here the sample code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace TestParallel
{
class Program
{
static int RecommendedDegreesOfParallelism = 8;
static int DefaultMaxPageSize = 200;
static void Main(string[] args)
{
int maxPage = 50;
List<int> lstData = new List<int>();
Parallel.For(0, RecommendedDegreesOfParallelism, new ParallelOptions() { MaxDegreeOfParallelism = RecommendedDegreesOfParallelism },
(index) =>
{
int cptItems = 0;
int cptPage = 1 - RecommendedDegreesOfParallelism + index;
int idx = index;
do
{
cptPage += RecommendedDegreesOfParallelism;
if (cptPage > maxPage) break;
int Min = 0;
int Max = 20;
Random randNum = new Random();
int[] test2 = Enumerable
.Repeat(0, DefaultMaxPageSize)
.Select(i => randNum.Next(Min, Max))
.ToArray();
var lstItems = new List<int>();
lstItems.AddRange(test2);
var lstRes = new List<int>();
lstItems.AsParallel().WithDegreeOfParallelism(8).ForAll((item) =>
{
lstRes.Add(item);
});
Console.WriteLine($"{Task.CurrentId} = {lstRes.Count}");
lstData.AddRange(lstRes);
cptItems = lstRes.Count;
} while (cptItems == DefaultMaxPageSize);
}
);
Console.WriteLine($"END: {lstData.Count}");
Console.ReadKey();
}
}
}
And here is an execution log :
4 = 200
1 = 200
2 = 200
3 = 200
6 = 200
5 = 200
7 = 200
8 = 200
1 = 200
6 = 194
2 = 191
5 = 200
7 = 200
8 = 200
4 = 200
5 = 200
3 = 182
4 = 176
8 = 150
7 = 200
5 = 147
1 = 200
7 = 189
1 = 200
1 = 198
END: 4827
We can see some loops return less than 200 items.
How is it possible?
This here is not threadsafe:
lstItems.AsParallel().WithDegreeOfParallelism(8).ForAll((item) =>
{
lstRes.Add(item);
});
From the documentation for List<T>:
It is safe to perform multiple read operations on a List, but
issues can occur if the collection is modified while it's being read.
To ensure thread safety, lock the collection during a read or write
operation. To enable a collection to be accessed by multiple threads
for reading and writing, you must implement your own synchronization.
It doesn't explicitly mention it, but .Add() can also fail when called simultaneously by multiple threads.
The solution would be to lock the calls to List<T>.Add() in the loop above, but if you do that it will likely make it slower than just adding the items in a loop in a single thread.
var locker = new object();
lstItems.AsParallel().WithDegreeOfParallelism(8).ForAll((item) =>
{
lock (locker)
{
lstRes.Add(item);
}
});
This question already has answers here:
Captured variable in a loop in C#
(10 answers)
Closed 2 years ago.
I have a .NET 3.1 Core app. I am learning to use the Task Parallel library. To do this, I want to create a basic Task. I want to run this Task via an extension method. At this time, I have the following:
var tasks = new List<Task<int>>(); // Used to track the calculated result
var details = new List<Details>(); // Used for debugging purposes
var random = new Random(); // Used to generate a random wait time
var offset = 10; // This value is used to perform a basic calculation
// The following tasks should run the tasks OUT OF ORDER (i.e. 4, 5, 2, 3, 1)
var stopwatch = Stopwatch.StartNew(); // Keep track of how long all five calculations take
for (var i=1; i<=5; i++)
{
var shouldBe = i + offset;
var d = new Details();
var t = new Task<int>(() => {
var ms = random.Next(1001); // Choose a wait time between 0 and 1 seconds
Thread.Sleep(ms);
d.SleepTime = ms;
var result = i + offset;
Console.WriteLine($"{i} + {offset} = {result} (over {timeout} ms.)");
return result;
});
tasks.Add(t.ExecuteAsync<int>());
details.Add(d);
}
stopwatch.Stop();
Task.WaitAll(tasks.ToArray());
foreach (var t in tasks)
{
Console.WriteLine($"Result: {t.Result}");
}
// Calculate how long the whole thing took
var totalMilliseconds = 0.0;
foreach (var log in logs)
{
totalMilliseconds = totalMilliseconds + log.TotalMilliseconds;
}
Console.WriteLine($"Runtime: {stopwatch.Elapsed.TotalMilliseconds}, Execution: {totalMilliseconds}");
MyExtensions.cs
namespace System.Threading.Tasks
{
public static class MyExtensions
{
public static async Task<T> ExecuteAsync<T>(this Task<T> code, Details details)
{
T result = default(T);
Stopwatch stopwatch = Stopwatch.StartNew();
code.Start();
await code.ConfigureAwait(false);
result = code.Result;
stopwatch.Stop();
return result;
}
}
// The following class is only for debugging purposes
public class Details
{
public int SleepTime { get; set; }
public double TotalMilliseconds { get; set; }
}
}
When I run this app, I see something like the following in the Terminal window:
6 + 10 = 16 (over 44 ms.)
6 + 10 = 16 (over 197 ms.)
6 + 10 = 16 (over 309 ms.)
6 + 10 = 16 (over 687 ms.)
6 + 10 = 16 (over 950 ms.)
Result: 16
Result: 16
Result: 16
Result: 16
Result: 16
Runtime: 3.5835, Execution: 2204.62970000004
Based on this output, it appears I have five tasks running asynchronously. The sleep time changes each time (which is good). The runtime is less than the execution time, which implies the tasks are running in parallel. However, it's almost like the tasks get ran after the 'for' loop has finished. That's the only place I can see where the 6 is coming from. But, I don't understand why, or how to fix it. The results should be more like:
4 + 10 = 14
5 + 10 = 15
2 + 10 = 12
3 + 10 = 13
1 + 10 = 11
What am I doing wrong? Why is the same i value used each time? How do I fix this?
Thank you so much for your help!
the value of i is not local to the function, aka the mem allication is the same across so its changed.
for (var i=1; i<=5; i++)
{
var shouldBe = i + offset;
var d = new Details();
var t = new Task<int>(() => {
var ms = random.Next(1001); // Choose a wait time between 0 and 1 seconds
Thread.Sleep(ms);
d.SleepTime = ms;
var result = i + offset;
Console.WriteLine($"{i} + {offset} = {result} (over {timeout} ms.)");
return result;
});
tasks.Add(t.ExecuteAsync<int>());
details.Add(d);
}
this should print correctly
for (var i=1; i<=5; i++)
{
var localCounter = i;
var shouldBe = localCounter + offset;
var d = new Details();
var t = new Task<int>(() => {
var ms = random.Next(1001); // Choose a wait time between 0 and 1 seconds
Thread.Sleep(ms);
d.SleepTime = ms;
var result = localCounter + offset;
Console.WriteLine($"{localCounter} + {offset} = {result} (over {timeout} ms.)");
return result;
});
tasks.Add(t.ExecuteAsync<int>()); //<- this extention method is just making it more completcated to read. i would remove it.
details.Add(d);
}
this should help a bucket
static async Task Main(string[] args)
{
var random = new Random();
List<Task<Details>> tasks = new List<Task<Details>>();
for (var i = 1; i <= 20; i++)
{
var localCounter = i;
var t = new Task<Details>(() => {
var ms = random.Next(1001);
Task.Delay(ms);
var result = new Details
{
Id = localCounter,
DelayTime = ms
};
Console.WriteLine($"basically done id: {localCounter}");
return result;
});
tasks.Add(t);
}
tasks.ForEach(t => t.Start());
Task.WaitAll(tasks.ToArray());
foreach (var item in tasks)
{
Console.WriteLine($"id: {item.Result.Id}");
Console.WriteLine($"random delay: {item.Result.DelayTime}");
}
}
I have an array where the first two smallest values have to be added, and consequently the result has to be added to next smallest and so on until it reaches the end of the array to give a final total.
However, how can I dynamically modify the method/function so if the values changes and I have 6 vehicles and 6 specs values in the array, the return of the method/function total is not restricted to just 4 indexes.
The array values are unsorted, so in order to add the first smallest, it has to be sorted. Once that's done it adds the values of the new array.
Here's what I've tried:
public static int vehicles = 4;
public static int[] specs = new int[] { 40, 8, 16, 6 };
public static int time(int vehicles, int[] specs)
{
int newValue = 0;
for (int i = 1; i < vehicles; i++)
{
newValue = specs[i];
int j = i;
while (j > 0 && specs[j - 1] > newValue)
{
specs[j] = specs[j - 1];
j--;
}
specs[j] = newValue;
}
// How can I dynamically change this below:
int result1 = specs[0] + specs[1];
int result2 = result1 + specs[2];
int result3 = result2 + specs[3];
int total = result1 + result2 + result3;
return total; // Returns 114
}
Here's the idea of how it works:
4, [40, 8, 16, 6] = 14 --> [40, 14, 16] = 30 --> [40, 30] = 70 ==>> 14 + 30 + 70 = 114
6, [62, 14, 2, 6, 28, 41 ] = 8 --> [62, 14, 8, 28, 41 ] --> 22 [62, 22, 28, 41 ] --> 50
[62, 50, 41 ] --> 91 [62, 91 ] --> 153 ==> 8 + 22 + 50 + 91 + 153 = 324
First off, if you are not restricted to arrays for some weird reason use List<int> and your life will be easier.
List<int> integers = { 14, 6, 12, 8 };
integers.Sort();
integers.Reverse();
while( integers.Count > 1 )
{
int i = integers[integers.Count - 1];
int j = integers[integers.Count - 2];
integers[integers.Count - 2] = i + j;
integers.RemoveAt(integers.Count - 1);
}
var result = integers[0];
P.S.: This can be easily modified to operate on the array version, you can't RemoveAt() from an array but can separately maintain a lastValidIndex.
I would go with the simplest version of a one line solution using LINQ:
Array.Sort(specs);
int total = specs.Select((n, i) => specs.Take(i + 1).Sum()).Sum() - (specs.Length > 1 ? specs[0] : 0);
I would use Linq.
Enumerable.Range(2, specs.Length - 1)
.Select(i => specs
.Take(i)
.Sum())
.Sum();
Explanation:
We take a range starting from 2 ending with specs.Length.
We sum the first i values of specs where i is the current value in the range.
After we have all those sums, we sum them up as well.
To learn more about linq, start here.
This code only works if the values have been sorted already.
If you want to sort the values using linq, you should use this:
IEnumerable<int> sorted = specs.OrderBy(x => x);
Enumerable.Range(2, sorted.Count() - 1)
.Select(i => sorted
.Take(i)
.Sum())
.Sum();
The OrderBy function needs to know how to get the value it should use to compare the array values. Because the array values are the values we want to compare we can just select them using x => x. This lamba takes the value and returns it again.
See comments in code for explanation.
using System;
using System.Linq;
class Program
{
static void Main()
{
//var inputs = new [] { 40, 8, 16, 6 }; // total = 114
var inputs = new[] { 62, 14, 2, 6, 28, 41 }; // total = 324
var total = 0;
var query = inputs.AsEnumerable();
while (query.Count() > 1)
{
// sort the numbers
var sorted = query.OrderBy(x => x).ToList();
// get sum of the first two smallest numbers
var sumTwoSmallest = sorted.Take(2).Sum();
// count total
total += sumTwoSmallest;
// remove the first two smallest numbers
query = sorted.Skip(2);
// add the sum of the two smallest numbers into the numbers
query = query.Append(sumTwoSmallest);
}
Console.WriteLine($"Total = {total}");
Console.WriteLine("Press any key...");
Console.ReadKey(true);
}
}
I benchmark my code and the result was bad when dealing with large dataset. I suspect it was because of the sorting in the loop. The sorting is needed because I need to find the 2 smallest numbers in each iteration. So I think I need a better way to solve this. I use a PriorityQueue (from visualstudiomagazine.com) because the elements are dequeued based on priority, smaller numbers have higher priority in this case.
long total = 0;
while (pq.Count() > 0)
{
// get two smallest numbers when the priority queue is not empty
int sum = (pq.Count() > 0 ? pq.Dequeue() : 0) + (pq.Count() > 0 ? pq.Dequeue() : 0);
total += sum;
// put the sum of two smallest numbers in the priority queue if the queue is not empty
if (pq.Count() > 0) pq.Enqueue(sum);
}
Here's some benchmark results of the new (priority queue) code and the old code in release build. Results are in milliseconds. I didn't test the 1 million data with the old code because it's too slow.
+---------+----------+-------------+
| Data | New | Old |
+---------+----------+-------------+
| 10000 | 3.9158 | 5125.9231 |
| 50000 | 16.8375 | 147219.4267 |
| 1000000 | 406.8693 | |
+---------+----------+-------------+
Full code:
using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
class Program
{
static void Main()
{
const string fileName = #"numbers.txt";
using (var writer = new StreamWriter(fileName))
{
var random = new Random();
for (var i = 0; i < 10000; i++)
writer.WriteLine(random.Next(100));
writer.Close();
}
var sw = new Stopwatch();
var pq = new PriorityQueue<int>();
var numbers = File.ReadAllLines(fileName);
foreach (var number in numbers)
pq.Enqueue(Convert.ToInt32(number));
long total = 0;
sw.Start();
while (pq.Count() > 0)
{
// get two smallest numbers when the priority queue is not empty
int sum = (pq.Count() > 0 ? pq.Dequeue() : 0) + (pq.Count() > 0 ? pq.Dequeue() : 0);
total += sum;
// put the sum of two smallest numbers in the priority queue if the queue is not empty
if (pq.Count() > 0) pq.Enqueue(sum);
}
sw.Stop();
Console.WriteLine($"Total = {total}");
Console.WriteLine($"Time = {sw.Elapsed.TotalMilliseconds}");
total = 0;
var query = File.ReadAllLines(fileName).Select(x => Convert.ToInt32(x));
sw.Restart();
while (query.Count() > 0)
{
// sort the numbers
var sorted = query.OrderBy(x => x).ToList();
// get sum of the first two smallest numbers
var sumTwoSmallest = sorted.Take(2).Sum();
// count total
total += sumTwoSmallest;
// remove the first two smallest numbers
query = sorted.Skip(2);
// add the sum of the two smallest numbers into the numbers
if (query.Count() > 0)
query = query.Append(sumTwoSmallest);
}
sw.Stop();
Console.WriteLine($"Total = {total}");
Console.WriteLine($"Time = {sw.Elapsed.TotalMilliseconds}");
Console.WriteLine("Press any key...");
Console.ReadKey(true);
}
}
PriorityQueue code:
using System;
using System.Collections.Generic;
// From http://visualstudiomagazine.com/articles/2012/11/01/priority-queues-with-c.aspx
public class PriorityQueue<T> where T : IComparable<T>
{
private List<T> data;
public PriorityQueue()
{
this.data = new List<T>();
}
public void Enqueue(T item)
{
data.Add(item);
int ci = data.Count - 1; // child index; start at end
while (ci > 0)
{
int pi = (ci - 1) / 2; // parent index
if (data[ci].CompareTo(data[pi]) >= 0)
break; // child item is larger than (or equal) parent so we're done
T tmp = data[ci];
data[ci] = data[pi];
data[pi] = tmp;
ci = pi;
}
}
public T Dequeue()
{
// assumes pq is not empty; up to calling code
int li = data.Count - 1; // last index (before removal)
T frontItem = data[0]; // fetch the front
data[0] = data[li];
data.RemoveAt(li);
--li; // last index (after removal)
int pi = 0; // parent index. start at front of pq
while (true)
{
int ci = pi * 2 + 1; // left child index of parent
if (ci > li)
break; // no children so done
int rc = ci + 1; // right child
if (rc <= li && data[rc].CompareTo(data[ci]) < 0) // if there is a rc (ci + 1), and it is smaller than left child, use the rc instead
ci = rc;
if (data[pi].CompareTo(data[ci]) <= 0)
break; // parent is smaller than (or equal to) smallest child so done
T tmp = data[pi];
data[pi] = data[ci];
data[ci] = tmp; // swap parent and child
pi = ci;
}
return frontItem;
}
public T Peek()
{
T frontItem = data[0];
return frontItem;
}
public int Count()
{
return data.Count;
}
public override string ToString()
{
string s = "";
for (int i = 0; i < data.Count; ++i)
s += data[i].ToString() + " ";
s += "count = " + data.Count;
return s;
}
public bool IsConsistent()
{
// is the heap property true for all data?
if (data.Count == 0)
return true;
int li = data.Count - 1; // last index
for (int pi = 0; pi < data.Count; ++pi)
{ // each parent index
int lci = 2 * pi + 1; // left child index
int rci = 2 * pi + 2; // right child index
if (lci <= li && data[pi].CompareTo(data[lci]) > 0)
return false; // if lc exists and it's greater than parent then bad.
if (rci <= li && data[pi].CompareTo(data[rci]) > 0)
return false; // check the right child too.
}
return true; // passed all checks
}
// IsConsistent
}
// PriorityQueue
Reference:
https://visualstudiomagazine.com/articles/2012/11/01/priority-queues-with-c.aspx
https://en.wikipedia.org/wiki/Priority_queue
You can simply sort it using Array.Sort(), then get the sums in a new array which starts with the smallest value and add each next value to the most recent sum, the total will be the value of the last sum.
public static int time(int vehicles, int[] specs)
{
int i, total;
int[] sums = new int[vehicles];
Array.Sort(spec);
sums[0] = specs[0];
for (i = 1; i < vehicles; i++)
sums[i] = sums[i - 1] + spec[i];
total = sums[spec - 1];
}
Assume I have a list of integers of any length, for an example I have the list of 1,3,5 and 7.
I would like an algorithm to pick a combination of X elements from the list.
For example, X = 1 would return:
1
3
5
7
x = 2 would return:
1 + 1
1 + 3
1 + 5
1 + 7
3 + 3
3 + 5
3 + 7
5 + 5
5 + 7
7 + 7
var listOfInts = new List<int> { 1, 3, 5, 7 };
var combinedInts = new List<int>();
// x = 1 solution
// This is only picking one item from the list.
for (int i = 0; i < listOfInts.Count(); i++)
{
combinedInts.Add(listOfInts[i]);
}
// x = 2 solution
// This is how to pick two. I wrap it around another for loop.
for (int i = 0; i < listOfInts.Count(); i++)
{
for (int j = i; j < listOfInts.Count(); j++)
{
combinedInts.Add(listOfInts[i] + listOfInts[j]);
}
}
// x = 3 solution
// If I go up another level I have to wrap it around another for loop. This solution won't scale.
for (int i = 0; i < listOfInts.Count(); i++)
{
for (int j = i; j < listOfInts.Count(); j++)
{
for (int k = j; k < listOfInts.Count(); k++)
{
combinedInts.Add(listOfInts[i] + listOfInts[j] + listOfInts[k]);
}
}
}
This solution doesn't scale as I have to continually wrap around another for loop for each number of element I'm picking. For example X = 7 would need 7-nested for loops. Is there a better way to write this method that doesn't involve nesting for loops?
You can use the following to get combinations of the sequences:
public static class LinqHelper
{
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int? k = null)
{
if (!k.HasValue)
k = elements.Count();
return k == 0 ? new[] { new T[0] } :
elements.SelectMany((e, i) => elements.Skip(i).Combinations(k - 1).Select(c => (new[] { e }).Concat(c)));
}
}
var list = new List<int> { 1, 3, 5, 7 };
int x = 2; //Change to 3, 4, 5, etc
var result = list.Combinations(x);
Yields:
1 1
1 3
1 5
1 7
3 3
3 5
3 7
5 7
7 7
To get the sum of each one, you'd aggregate the result:
var result = list.Combinations(x).Select(g => g.Aggregate((left, right) => left + right));
Which produces:
2
4
6
8
6
8
10
10
12
14
There is also a purely iterative way to do this. It requires a great deal more thought and complexity, but can be made very efficient. The basic idea is to simulate the same nested loops, but track the iterations of each nested loop as an array of loop counters, which are iterated forward in the same manner as the original nested loop code. Here is a fully working example:
var listOfInts = new List<int> { 1, 3, 5, 7 };
var combinedInts = new List<int>();
var numInts = listOfInts.Count;
var numElements = 5; // number of "nested loops", or ints selected in each combination
var loopCounters = new int[numElements]; // make one loop counter for each "nested loop"
var lastCounter = numElements - 1; // iterate the right-most counter by default
// maintain current sum in a variable for efficiency, since most of the time
// it is changing only by the value of one loop counter change.
var tempSum = listOfInts[0] * numElements;
// we are finished when the left/outer-most counter has looped past number of ints
while (loopCounters[0] < numInts) {
// you can use this to verify the output is iterating correctly:
// Console.WriteLine(string.Join(",", loopCounters.Select(x => listOfInts[x])) + ": " + loopCounters.Select(x => listOfInts[x]).Sum() + "; " + tempSum);
combinedInts.Add(tempSum);
tempSum -= listOfInts[loopCounters[lastCounter]];
loopCounters[lastCounter]++;
if (loopCounters[lastCounter] < numInts) tempSum += listOfInts[loopCounters[lastCounter]];
// if last element reached in inner-most counter, increment previous counter(s).
while (lastCounter > 0 && loopCounters[lastCounter] == numInts) {
lastCounter--;
tempSum -= listOfInts[loopCounters[lastCounter]];
loopCounters[lastCounter]++;
if (loopCounters[lastCounter] < numInts) tempSum += listOfInts[loopCounters[lastCounter]];
}
// if a previous counter was advanced, reset all future counters to same
// starting number to start iteration forward again.
while (lastCounter < numElements - 1) {
lastCounter++;
if (loopCounters[lastCounter] < numInts) tempSum -= listOfInts[loopCounters[lastCounter]];
loopCounters[lastCounter] = loopCounters[lastCounter - 1];
if (loopCounters[lastCounter] < numInts) tempSum += listOfInts[loopCounters[lastCounter]];
}
}
At the end of the iteration, combinedInts should contains a list of all sum combinations, similar to the original code or the other recursive solutions. If you are working with small sets, and small combinations, then this level of efficiency is unnecessary and you should prefer a recursive solution which is easier to reason about correctness. I present this as an alternative way to think about the problem. Cheers!
This works for me:
Func<IEnumerable<int>, int, IEnumerable<IEnumerable<int>>> generate = null;
generate = (xs, n) =>
(xs == null || !xs.Any())
? Enumerable.Empty<IEnumerable<int>>()
: n == 1
? xs.Select(x => new [] { x })
: xs.SelectMany(x => generate(xs, n - 1).Select(ys => ys.Concat(new [] { x })));
int[] array = { 1, 3, 5, 7, };
var results =
generate(array, 3)
.Select(xs => String.Join("+", xs));
With this call I get:
1+1+1, 3+1+1, 5+1+1, 7+1+1, 1+3+1, 3+3+1, 5+3+1, 7+3+1, 1+5+1, 3+5+1, 5+5+1, 7+5+1, 1+7+1, 3+7+1, 5+7+1, 7+7+1, 1+1+3, 3+1+3, 5+1+3, 7+1+3, 1+3+3, 3+3+3, 5+3+3, 7+3+3, 1+5+3, 3+5+3, 5+5+3, 7+5+3, 1+7+3, 3+7+3, 5+7+3, 7+7+3, 1+1+5, 3+1+5, 5+1+5, 7+1+5, 1+3+5, 3+3+5, 5+3+5, 7+3+5, 1+5+5, 3+5+5, 5+5+5, 7+5+5, 1+7+5, 3+7+5, 5+7+5, 7+7+5, 1+1+7, 3+1+7, 5+1+7, 7+1+7, 1+3+7, 3+3+7, 5+3+7, 7+3+7, 1+5+7, 3+5+7, 5+5+7, 7+5+7, 1+7+7, 3+7+7, 5+7+7,7+7+7
List<Int32> dansConList = new List<Int32>();
dansConList[0] = 1;
dansConList[1] = 2;
dansConList[2] = 3;
List<Int32> dansRandomList = new List<Int32>();
dansRandomList[0] = 1;
dansRandomList[1] = 2;
dansRandomList[2] = 4;
I need a method that, when evaluating the above lists, will return false for dansRandomList and true for dansConList based on the fact dansConList has a consecutive number sequence in it's values, and dansRandomList does not (missing the value 3).
Using LINQ is preferable, if possible.
What I've Tried:
For the sake of achieving the end result, I have used a for loop and compare with 'i' (loop counter) to evaluate the values, but as mentioned above I'd like to use LINQ for this.
One-liner, only iterates until the first non-consecutive element:
bool isConsecutive = !myIntList.Select((i,j) => i-j).Distinct().Skip(1).Any();
Update: a couple examples of how this works:
Input is { 5, 6, 7, 8 }
Select yields { (5-0=)5, (6-1=)5, (7-2=)5, (8-3=)5 }
Distinct yields { 5, (5 not distinct, 5 not distinct, 5 not distinct) }
Skip yields { (5 skipped, nothing left) }
Any returns false
Input is { 1, 2, 6, 7 }
Select yields { (1-0=)1, (2-1=)1, (6-2=)4, (7-3=)4 } *
Distinct yields { 1, (1 not distinct,) 4, (4 not distinct) } *
Skip yields { (1 skipped,) 4 }
Any returns true
* The Select will not yield the second 4 and the Distinct will not check it, as the Any will stop after finding the first 4.
var min = list.Min();
var max = list.Max();
var all = Enumerable.Range(min, max - min + 1);
return list.SequenceEqual(all);
var result = list
.Zip(list.Skip(1), (l, r) => l + 1 == r)
.All(t => t);
You can use this extension method:
public static bool IsConsecutive(this IEnumerable<int> ints )
{
//if (!ints.Any())
// return true; //Is empty consecutive?
// I think I prefer exception for empty list but I guess it depends
int start = ints.First();
return !ints.Where((x, i) => x != i+start).Any();
}
Use it like this:
[Test]
public void ConsecutiveTest()
{
var ints = new List<int> {1, 2, 4};
bool isConsecutive = ints.IsConsecutive();
}
Extension method:
public static bool IsConsecutive(this IEnumerable<int> myList)
{
return myList.SequenceEqual(Enumerable.Range(myList.First(), myList.Last()));
}
Useage:
bool isConsecutive = dansRandomList.IsConsecutive();
Caveat: returns true if empty.
var list = new int[] {-1,0,1,2,3};
var isConsecutive = list.Select((n,index) => n == index+list.ElementAt(0)).All (n => n);
Here is the another one. It supports {1,2,3,4} and {4,3,2,1} both. It tests sequential number differences equals 1 or -1.
Function IsConsecutive(ints As IEnumerable(Of Integer)) As Boolean
If ints.Count > 1 Then
Return Enumerable.Range(0, ints.Count - 1).
All(Function(r) ints(r) + 1 = ints(r + 1) OrElse ints(r) - 1 = ints(r + 1))
End If
Return False
End Function
In order to check whether the series contain consecutive number or not you may use this
Sample
isRepeatable(121878999, 2);
Result = True
since 9 repeats two times , where upto is no of times in series
isRepeatable(37302293, 3)
Result = False
since no number repeat 3 times in series
static bool isRepeatable(int num1 ,int upto)
{
List<int> myNo = new List<int>();
int previous =0;
int series = 0;
bool doesMatch = false;
var intList = num1.ToString().Select(x => Convert.ToInt32(x.ToString())).ToList();
for (int i = 0; i < intList.Count; i++)
{
if (myNo.Count==0)
{
myNo.Add(intList[i]);
previous = intList[i];
series += 1;
}
else
{
if (intList[i]==previous)
{
series += 1;
if (series==upto)
{
doesMatch = true;
break;
}
}
else
{
myNo = new List<int>();
previous = 0;
series = 0;
}
}
}
return doesMatch;
}
// 1 | 2 | 3 | 4 | _
// _ | 1 | 2 | 3 | 4
// | 1 | 1 | 1 | => must be 1 (or 2 for even/odd consecutive integers)
var numbers = new List<int>() { 1, 2, 3, 4, 5 };
const step = 1; // change to 2 for even and odd consecutive integers
var isConsecutive = numbers.Skip(1)
.Zip(numbers.SkipLast(1))
.Select(n => {
var diff = n.First - n.Second;
return (IsValid: diff == step, diff);
})
.Where(diff => diff.IsValid)
.Distinct()
.Count() == 1;
Or we could write that a bit shorter but less readable:
var isConsecutive = numbers.Skip(1)
.Zip(numbers.SkipLast(1), (l, r) => (IsValid: (l-r == step), l-r))
.Where(diff => diff.IsValid)
.Distinct()
.Count() == 1;
Old question, but here's an easy way using some simple algebra.
This only works if your integers start at 1 though.
public bool AreIntegersConsecutive(List<int> integers)
{
var sum = integers.Sum();
var count = integers.Count();
var expectedSum = (count * (count + 1)) / 2;
return expectedSum == sum;
}
It is works for unique list only.
List<Int32> dansConList = new List<Int32>();
dansConList.Add(7);
dansConList.Add(8);
dansConList.Add(9);
bool b = (dansConList.Min() + dansConList.Max())*((decimal)dansConList.Count())/2.0m == dansConList.Sum();
Here is an extension method that uses the Aggregate function.
public static bool IsConsecutive(this List<Int32> value){
return value.OrderByDescending(c => c)
.Select(c => c.ToString())
.Aggregate((current, item) =>
(item.ToInt() - current.ToInt() == -1) ? item : ""
)
.Any();
}
Usage:
var consecutive = new List<Int32>(){1,2,3,4}.IsConsecutive(); //true
var unorderedConsecutive = new List<Int32>(){1,4,3,2}.IsConsecutive(); //true
var notConsecutive = new List<Int32>(){1,5,3,4}.IsConsecutive(); //false
Here is a C version code, I think it's easy to rewrite it in other language based on the logical.
int isConsecutive(int *array, int length) {
int i = 1;
for (; i < length; i++) {
if (array[i] != array[i - 1] + 1)
return 0; //which means false and it's not a consecutive list
}
return 1;
}