Ok, edited the code for clarification:
Question: How can I access the attribute [MyAttr("...")] in TestClassOne/Two from BaseClass.TheAttribute...?
All classes except TestClassOne/Two will be compiled in to my "core" and delivered as a dev-platform to a customer.
The TestClassOne/Two is developed by the customer, so there can be no knowledge of the TestClassOne/Two in the "core".
Code below is compiled into "core" and delivered to customer as dll.
[TestMethod()]
public void AttrTest()
{
var one = new TestClassOne();
var attrOne = one.MyTestProperty.TheAttribute;
var two = new TestClassTwo();
var attrTwo = two.MyTestProperty.TheAttribute;
}
public class MyAttr : Attribute
{
private string _test;
public MyAttr(string test)
{
this._test = test;
}
}
public class BaseClass
{
public string TheAttribute
{
get {
// Here I would like to get the "[MyAttr("...")]" from the classes in the bottom
return null;
}
}
}
public class SubClass : BaseClass
{
}
Code below is developed by customer (using my dll's)
public class TestClassOne
{
[MyAttr("Attribute one")]
public SubClass MyTestProperty = new SubClass();
}
public class TestClassTwo
{
[MyAttr("Attribute two")]
public SubClass MyTestProperty = new SubClass();
}
You can get directly from type Test:
var result = typeof (Test)
.GetField("MyTest", BindingFlags.Public | BindingFlags.Instance)
.GetCustomAttribute<MyAttr>();
Edit 3:
You can walk the call stack, looking for a relevant attribute in a relevant member in a relevant class. Try this:
public class MyAttr : Attribute
{
private string _test;
public MyAttr(string test)
{
this._test = test;
}
public string getAttr()
{
return _test;
}
}
public class BaseClass
{
private string theString;
public BaseClass()
{
StackTrace callStack = new StackTrace();
for ( int i = 0; i < callStack.FrameCount; i++ )
{
Type t = callStack.GetFrame(i).GetMethod().DeclaringType;
foreach ( MemberInfo m in t.GetMembers().Where(x => typeof(BaseClass).IsAssignableFrom(x.Type)) )
{
foreach ( var z in m.GetCustomAttributes(typeof(MyAttr)) )
{
MyAttr theAttr = z as MyAttr;
if ( z!= null )
{
theString = z.getAttr();
return;
}
}
}
}
}
public string Test
{
get {
return theString;
}
}
}
This requires that your customer always initializes the SubClass member inside the class that declares it. If they start deriving TestClassOne or have it and TestClassTwo derive from a common class that initializes the member, this code will break.
With clever use of reflection, you can expand the above code to cover more use cases, but that's beyond the scope of this question.
Edit 2:
No. I'm sorry, but what you're trying to do isn't possible. There's no "normal" way for an instance of SubClass to know if it's being declared in a member field of some other object, or in an element in an array or in a temporary variable in the stack, or whatever. As such, there's no way for that instance to access the attributes of the member field that's declaring it.
(I suppose you might want to try to access the garbage collector to find out where in memory the this object lives, but that's probably way beyond the scope of this problem, and in any case, not something I know how to do.)
I suspect your problem lies elsewhere entirely. Maybe you need to require your customer to make TestClassOne and TestClassTwo derive from a common abstract class. Maybe they need to derive from BaseClass themselves. Maybe you need to add parameters to the constructor. Maybe you need to provide a different interface altogether. We can't know unless you provide more information on your specific business requirements.
Edit:
To access the attributes declared on the MyTest member, try something along these lines:
public class BaseClass
{
public string Test
{
get {
var attr = typeof(Test).GetMembers().Where(x => x.Type == this.GetType()).First().GetCustomAttributes(true);
return null;
}
}
}
This will search class Test for a member with the same type as this and look for attributes on that member.
(I don't have my Visual Studio here, to check the exact Where syntax, but it should be pretty close to that...)
Original Answer:
Your attribute is declared on the MyTest member of class Test. But, you're doing GetCustomAttributes on class SubClass itself.
Try this:
[MyAttr("apa")]
public class SubClass : BaseClass
{
}
public class Test
{
public SubClass MyTest = new SubClass();
}
Should get you what you want.
Related
I am building some integration tests for my database stored procedures.
I have setup an xUnit project and implemented Fixture pattern. To show you:
public class MyTableTest : IClassFixture<DatabaseFixture>
{
public MyTableTest()
{
//DO SOMETHING
}
[Fact]
public void Test()
{
//DO SOMETHING
}
}
And:
public class DatabaseFixture : IDisposable
{
public void Dispose()
{
// ... clean up test data from the database ...
}
}
This DatabaseFixture is something that will be shared among all of my test classes. Why? Because I want some common logic happening at the end of every test, such as cleanup.
Point is that I need to know which table to clean, which in my example would be MyTable. Such information I would retrieve by using reflection when the Dispose method will run against the instance of MyTableTest being disposed . How can I achieve this? Is it even possible (and correct) trying to achieve this? Thanks in advance.
You can have a TableName property in the DatabaseFixture class. Then receive an instance of the class in constructor of your test classes and set that TableName property. Later you can use it in dispose to do some cleanup.
public class MyTableTest : IClassFixture<DatabaseFixture>
{
DatabaseFixture databaseFixture;
public MyTableTest(DatabaseFixture databaseFixture)
{
this.databaseFixture = databaseFixture;
databaseFixture.TableName = "MyTable";
}
[Fact]
public void Test()
{
}
}
public class DatabaseFixture : IDisposable
{
//...
public string TableName { get; set; }
//...
public void Dispose()
{
// Cleanup based on TableName
}
}
To learn more about sharing context in xUnit, take a look at:
Shared Context between Tests
Comparing xUnit.net to other frameworks
You can use custom attributes to attach any arbitrary data to your derived Fixture class.
For example
you can create a TableNameAttribute like this:
[AttributeUsage(AttributeTargets.Class, Inherited = false)]
public class TableNameAttribute : Attribute
{
public string Name { get; }
public TableNameAttribute(string name)
{
this.Name = name;
}
}
you can apply this attribute to your derived fixture class:
[TableName("MyTable")]
public class MyTableFixture : DatabaseFixture { }
you can use that fixture class inside your test
public class MyTableTest : IClassFixture<MyTableFixture>
{
[Fact]
public void Test()
{
//DO SOMETHING
}
}
Finally this is how you can retrieve the Name from the Dispose method:
public abstract class DatabaseFixture : IDisposable
{
...
public void Dispose()
{
var attribute = this.GetType().GetCustomAttribute(typeof(TableNameAttribute));
if (attribute is TableNameAttribute tableNameAttr)
Console.WriteLine(tableNameAttr.Name);
}
}
Is it even possible (and correct) trying to achieve this?
No. Reflection cannot tell type T in what context T is used; reflection only sees T's declaration.
More specific to your situation, reflection cannot tell type DatabaseFixture that it is being used as a type parameter of generic interface IClassFixture in the declaration of MyTableTest. In other words, for this set of declarations,
class A { }
class B <T> { }
class C : B<A> { }
A cannot reflectively determine that it is used in C's declaration, but C can know about its usage of A:
typeof(C)
.BaseType // B
.GetGenericArguments()[0] // A
How can I achieve this?
Depending on how you are using DatabaseFixture, you could get the calling test class using the StackTrace (if you are really bent on using reflection). Here is a simple example:
public class DisposableObject : System.IDisposable
{
public void Dispose()
{
var stack = new System.Diagnostics.StackTrace();
// This will log the name of the class that instantiated and disposed this.
System.Console.WriteLine(stack.GetFrame(1).GetMethod().DeclaringType.Name);
return;
}
}
If your DatabaseFixture is not called directly from your test class, you will either have to know the offset to pass to GetFrame(int), or you will need to search each frame until you find the first DeclaringType that matches your requirements (e.g., BaseType is IClassFixture with Generic Argument DatabaseFixture), something like this:
System.Type testClassType = new StackTrace()
.GetFrames()
.Where(f =>
{
System.Type baseType = f.GetMethod().DeclaringType.BaseType;
return typeof(IClassFixture<DatabaseFixture>).IsAssignableFrom(baseType);
})
.FirstOrDefault() // First matching result (assuming you found any)
?.GetMethod() // Get the reflected Method
.DeclaringType; // Get the type (e.g. class) that declares this method.
string tableName = testClassType.Name.Replace("Test", "");
Otherwise, you will need to set the table name manually, as suggested by Reza and Peter.
I've got a class defined like this:
public abstract class Uniform<T>
{
public abstract string GlslType { get; }
...
}
And then a subclass defined like this:
public class UniformInt : Uniform<int>
{
public override string GlslType
{
get { return "int"; }
}
}
And then a method somewhere else that looks like this:
public static string GetCode<T>()
{
var sb = new StringBuilder();
var type = typeof(T);
sb.AppendFormat("struct {0} {{\n", type.Name);
var fields = type.GetFields(BindingFlags.Public | BindingFlags.Instance);
foreach(var f in fields)
{
sb.AppendFormat(" {0} {1};\n", f.FieldType.GetProperty("GlslType").GetValue(???), f.Name);
}
...
}
I'm having trouble filling in the ???s. I believe GetValue expects an instance of the object, but I don't really care what instance it is because they all return the same value. And AFAIK there's no such thing as a public abstract static readonly value, so I have to use properties.
So what can I put in place of those ???s to get back "int" (assuming one the fields was a UniformInt).
As a side: How can I limit fields to only field types that inherit Uniform<>?
You need an instance of UniformInt in order to get the value of a non-static property:
UniformInt someUniformInt = ...
f.FieldType.GetProperty("GlslType").GetValue(someUniformInt, null)
As a side: How can I limit fields to only field types that inherit Uniform?
bool isDerivesFromUniformOfInt = typeof(Uniform<int>)
.IsAssignableFrom(f.FieldType);
or if you don't know the type of T in advance:
bool isDerivesFromUniformOfT = typeof(Uniform<>)
.MakeGenericType(typeof(T))
.IsAssignableFrom(f.FieldType);
The problem is that since your property is not static the compiler doesn't know that they all return the same value. Since your UniformInt is not sealed, another user could inherit from it and override GlslType to return something else. Then UniformInt and all derived classes could be used for your GetCode<T>() method.
A static method would really be the best option. To make sure that you implement them on all classes (something you can't force because static methods can't be abstract) I would write a simple unit test that uses reflection to load all classes that inherit from Uniform<T> and check if they have the static property defined.
UPDATE
When thinking about how Attributes could help and after some experimenting I came up with the following. It definitely won't win a beauty contest but as a learning exercise it was helpful ;)
using System;
using System.Linq;
namespace StackOverflow
{
internal class StackOverflowTest
{
private static void Main()
{
string sInt = UniformInt.GlslType;
string sDouble = UniformDouble.GlslType;
}
}
public abstract class Uniform<B, T> // Curiously recurring template pattern
where B : Uniform<B, T>
{
public static string GlslType
{
get
{
var attribute = typeof(B).GetCustomAttributes(typeof(GlslTypeAttribute), true);
if (!attribute.Any())
{
throw new InvalidOperationException(
"The GslType cannot be determined. Make sure the GslTypeAttribute is added to all derived classes.");
}
return ((GlslTypeAttribute)attribute[0]).GlslType;
}
}
}
[AttributeUsage(AttributeTargets.Class, Inherited = true, AllowMultiple = false)]
internal sealed class GlslTypeAttribute : Attribute
{
public string GlslType { get; private set; }
public GlslTypeAttribute(string glslType)
{
GlslType = glslType;
}
}
[GlslType("int")]
public class UniformInt : Uniform<UniformInt, int> // Curiously recurring template pattern
{
}
[GlslType("double")]
public class UniformDouble : Uniform<UniformDouble, double> // Curiously recurring template pattern
{
}
}
The GlslType is not static, so you need an object reference before you can access it's value. The subject of static properties in abstract classes has been covered extensively already, ie:
C#, implement 'static abstract' like methods
Can't define static abstract string property
Solution 1
Add static methods to all derived classes that return the GlslType. Nothing needs to be added to the base class. Can use unit testing + reflection to check for missing implementation. Suggested by Wouter de Kort.
Solution 2
Change Uniform<T> to make GlslType static:
public abstract class Uniform<T>
{
public static string GlslType { get { throw new NotImplementedException("Please override with \"new\" in derived class."); } }
...
}
Change UniformInt to "override" GlslType, keeping the static modifier:
public class UniformInt : Uniform<int>
{
public new static string GlslType
{
get { return "int"; }
}
}
Fill ??? with null, null:
sb.AppendFormat(" {0} {1};\n", f.FieldType.GetProperty("GlslType").GetValue(null,null), f.Name);
Solution 3
Use attributes instead. Something like:
[GlslType("int")]
public class UniformInt : Uniform<int>
{
}
Conclusion
All 3 of these solutions are pretty similar and seem to have the same drawbacks (can't enforce derived class to implement it). Throwing an exception via method 1 or 2 will help find errors quickly, or with 3 I can just skip over classes that don't have the attribute by modifying my fields condition.
I am trying to accomplish the following scenario that the generic TestClassWrapper will be able to access static properties of classes it is made of (they will all derive from TestClass). Something like:
public class TestClass
{
public static int x = 5;
}
public class TestClassWrapper<T> where T : TestClass
{
public int test()
{
return T.x;
}
}
Gives the error:
'T' is a 'type parameter', which is not valid in the given context.
Any suggestions?
You can't, basically, at least not without reflection.
One option is to put a delegate in your constructor so that whoever creates an instance can specify how to get at it:
var wrapper = new TestClassWrapper<TestClass>(() => TestClass.x);
You could do it with reflection if necessary:
public class TestClassWrapper<T> where T : TestClass
{
private static readonly FieldInfo field = typeof(T).GetField("x");
public int test()
{
return (int) field.GetValue(null);
}
}
(Add appropriate binding flags if necessary.)
This isn't great, but at least you only need to look up the field once...
Surely you can just write this:
public int test()
{
return TestClass.x;
}
Even in a nontrivial example, you can't override a static field so will always call it from your known base class.
Why not just return TestClass.x?
Generics do not support anything related to static members, so that won't work. My advice would be: don't make it static. Assuming the field genuinely relates to the specific T, you could also use reflection:
return (int) typeof(T).GetField("x").GetValue(null);
but I don't recommend it.
Another solution is to simply not make it static, and work with the new() constraint on T to instantiate the object. Then you can work with an interface, and the wrapper can get the property out of any class that implements that interface:
public interface XExposer
{
Int32 X { get; }
}
public class TestClass : XExposer
{
public Int32 X { get { return 5;} }
}
public class XExposerWrapper<T> where T : XExposer, new()
{
public Int32 X
{
get { return new T().X; }
}
}
In fact, you can change that to public static Int32 X on the TestClassWrapper and simply get it out as Int32 fetchedX = XExposerWrapper<TestClass>.X;
Though since whatever code calls this will have to give the parameter T those same constraints, the wrapper class is pretty unnecessary at this point, since that calling code itself could also just execute new T().X and not bother with the wrapper.
Still, there are some interesting inheritance models where this kind of structure is useful. For example, an abstract class SuperClass<T> where T : SuperClass<T>, new() can both instantiate and return type T in its static functions, effectively allowing you to make inheritable static functions that adapt to the child classes (which would then need to be defined as class ChildClass : SuperClass<ChildClass>). By defining protected abstract functions / properties on the superclass, you can make functions that apply the same logic on any inherited object, but customized to that subclass according to its implementations of these abstracts. I use this for database classes where the table name and fetch query are implemented by the child class. Since the properties are protected, they are never exposed, either.
For example, on database classes, where the actual fetching logic is put in one central abstract class:
public abstract class DbClass<T> where T : DbClass<T>, new()
{
protected abstract String FetchQuery { get; }
protected abstract void Initialize(DatabaseRecord row);
public static T FetchObject(DatabaseSession dbSession, Int32 key)
{
T obj = new T();
DatabaseRecord record = dbSession.RetrieveRecord(obj.FetchQuery, key);
obj.Initialize(record);
return obj;
}
}
And the implementation:
public class User : DbClass<User>
{
public Int32 Key { get; private set;}
public String FirstName { get; set;}
public String LastName { get; set;}
protected override String FetchQuery
{ get { return "SELECT * FROM USER WHERE KEY = {0}";} }
protected override void Initialize(DatabaseRecord row)
{
this.Key = DbTools.SafeGetInt(row.GetField("KEY"));
this.FirstName = DbTools.SafeGetString(row.GetField("FIRST_NAME"));
this.LastName = DbTools.SafeGetString(row.GetField("LAST_NAME"));
}
}
This can be used as:
User usr = User.FetchObject(dbSession, userKey);
This is a rather simplified example, but as you see, this system allows a static function from the parent class to be called on the child class, to return an object of the child class.
T is a type, not parameter or variable so you cannot pick any value from any members. Here is a sample code.
public class UrlRecordService
{
public virtual void SaveSlug<T>(T entity) where T : ISlugSupport
{
if (entity == null)
throw new ArgumentNullException("entity");
int entityId = entity.Id;
string entityName = typeof(T).Name;
}
}
public interface ISlugSupport
{
int Id { get; set; }
}
cjk and Haris Hasan have the most-correct answers to the question as asked. However in this comment the OP implies that he is after something else not quite possible in C#: a way to define a contract for a static member in a derived class.
There isn't a way to strictly define this, but it is possible to set up a pattern that may be implied by a base class (or interface); e.g.:
public class TestClass
{
private static int x;
public virtual int StaticX => x;
}
or if not intended to be used directly
public abstract class AbstractTestClass
{
public abstract int StaticX {get;}
}
or (my preference in this contrived example)
public interface ITest
{
int StaticX {get;}
}
Elsewhere, this pattern of a StaticXxx member may be (loosely) associated with implementations that should back the member with static fields (as in TestClass above).
What's kind of fun is that this can be (re)exposed as static by the generic wrapper, because generic statics are isolated to each type used.
public class TestClassWrapper<T> where T : ITest, new()
{
private readonly static T testInstance = new T();
public static int test() => testInstance.x;
}
This uses a new() condition, but an associated static, generic factory pattern for creating ITest (or TestClass or AbstractTestClass) instances may also be used.
However this may not be feasible if you can't have long-lived instances of the class.
In this situation you assume that T is a subclass of TestClass. Subclasses of TestClass will not have the static int x.
How can i check/evaluate the exact type of T without an object for T. I know my question maybe confusing but consider this...
public abstract class Business
{
public abstract string GetBusinessName();
}
public class Casino : Business
{
public override string GetBusinessName()
{
return "Casino Corp";
}
}
public class DrugStore : Business
{
public override string GetBusinessName()
{
return "DrugStore business";
}
}
public class BusinessManager<T> where T : Business
{
private Casino _casino;
private DrugStore _drugStore;
public string ShowBusinessName()
{
string businessName;
if (T == Casino) // Error: How can I check the type?
{
_casino = new Casino();
businessName = _casino.GetBusinessName();
}
else if (T == DrugStore) // Error: How can I check the type?
{
_drugStore = new DrugStore();
businessName = _drugStore.GetBusinessName();
}
return businessName;
}
}
I just want to have something like this on the client.
protected void Page_Load(object sender, EventArgs e)
{
var businessManager = new BusinessManager<Casino>();
Response.Write(businessManager.ShowBusinessName());
businessManager = new BusinessManager<DrugStore>();
Response.Write(businessManager.ShowBusinessName());
}
Notice that I actually didnt create the actual object for Casino and Drugstore when I call the BusinessManager, I just pass it as generic type constraint of the class. I just need to know exactly what Type i am passing BusinessManager to know what exactly the Type to instantiate. Thanks...
PS: I don't want to create separate specific BusinessManager for Casino and Drugstore..
You can also comment about the design.. thanks..
ADDITIONAL: and what if class Casino and DrugStore is an ABSTRACT CLASS =)
You can write
if(typeof(T) == typeof(Casino))
but really this type of logic is a code smell.
Here's one way around this:
public class BusinessManager<T> where T : Business, new() {
private readonly T business;
public BusinessManager() {
business = new T();
}
}
but personally I'd prefer
public class BusinessManager<T> where T : Business {
private readonly T business;
public BusinessManager(T business) {
this.business = business;
}
public string GetBusinessName() {
return this.business.GetBusinessName();
}
}
You should do
public class BusinessManager<T> where T : Business, new()
...
T _business = new T();
string businessName = _business.GetBusinessName();
return businessName;
I don't know about C# syntax, but is it not possible to do:
public class BusinessManager<T> where T : Business, new()
{
private T _business;
public string ShowBusinessName()
{
string businessName;
_business = new T();
return _business.GetBusinessName();
}
}
Since other guys have already shown various answers to your first question, I would like to address the second one: design.
1. Role of BusinessManager
Actual role of the BusinessManager class in your example is not too clear. Since this class is generic, and it shouldn't be concerned with the actual type of T, then it does nothing more than add another unnecessary layer between the Business class and the rest of the program.
In other words, you can simply use:
Business casino = new Casino();
Response.Write(casino.GetBusinessName());
Business drugStore = new DrugStore();
Response.Write(drugStore.GetBusinessName());
Wrapping this in another generic class doesn't help you a lot. On the other hand, if you want to have some common functionality for all these classes, you can either add it directly to your abstract class, or extract an interface and create extension methods for that interface.
2. Using properties for getters
Second thing, using a property is more appropriate when you have a simple getter method. In other words, you should replace GetBusinessName() method with a Name property (I also omitted the "Business" from the name because it is not necessary:
public interface IBusiness
{
string Name { get; }
}
public abstract class Business : IBusiness
{
public abstract string Name { get; }
}
public class Casino : Business
{
public override string Name
{
get { return "Casino Corp"; }
}
}
public class DrugStore : Business
{
public override string Name
{
get { return "DrugStore business"; }
}
}
And then you can use it like this:
IBusiness casino = new Casino();
Response.Write(casino.Name);
IBusiness drugStore = new DrugStore();
Response.Write(drugStore.Name);
Also, you can see that I have introduced a IBusiness interface. The reason for doing so is to allow you to implement this interface in more diverse ways. Right now, you will try to derive all your classes from the abstract Business class, and try to extract as much of the common functionality in the abstract class (that's the purpose of the class).
But extracting lots of common functionality comes with a cost: there is always a possibility that you will come up with a need to create a class which isn't derived from Business. If you are accessing all these methods through the IBusiness interface, then other parts of your program won't care if that implementation is derived from Business or not.
Since GetBusinessName really applies to the type and not instances of the type, you might consider using DescriptionAttribute (or your own BusinessNameAttribute) instead of an overridden property and have your BusinessManager get the business name from the attribute.
[Description("Casino Corp")]
public class Casino : Business
{
}
Now you no longer need to instantiate the business just to gets its name. To get the description, you use:
public string ShowBusinessName()
{
var attribute = Attribute.GetCustomAttribute(typeof(T), typeof(DescriptionAttribute)) as DescriptionAttribute;
if (attribute == null)
return "Unknown business";
return attribute.Description;
}
You can do something like this:
if (typeof(T) == typeof(SomeType))
{
// Same
}
define a BusinessManager class as bellow:
public class BusinessManager<T> where T : Business
{
Business biz;
public BusinessManager()
{
biz = new T();
}
public string ShowBusinessName()
{
return biz.GetBusinessName();
}
}
and use it as bellow:
var businessManager = new BusinessManager<Casino>();
Response.Write(businessManager.ShowBusinessName());
var anotherBusinessManager = new BusinessManager<DrugStore>();
Response.Write(businessManager.ShowBusinessName());
The way you using you will lost encapsulation
In VB.net you can use the GetType pseudo-function on a generic type parameter to get a reflection Type object. I would guess C# should have an equivalent. If for whatever reason you can't use something like that, you could create an array of 0 elements of the desired type, and then check the type of that array. That would probably be cheaper than instantiating an element of the unknown type.
I want to force subclasses to define a constant value.
Like
const string SomeConstantEverySubclassMustDefine = "abc";
I need that because I need to have it tied to the Type, rather than to the instance and you can't override static Methods/Properties iirc.
I'd really like to have a compile-time check for those constants.
Let me explain in more detail:
Some classes in our Domain-Model are special, you can take certain actions for them, depending on the type. Thus the logic is tied to the type. The action to be taken requires a string tied to the type. I sure could create an instance everytime as a workaround and declare an abstract property, but that's not what I want. I want to enforce the declaration of the string at compile-time, just to be sure.
No, you can't. I would suggest you make your base class abstract, with an abstract property which you can fetch when you want. Each child class can then implement the property just by returning a constant if it wants. The downside is that you can't use this within static methods in the base class - but those aren't associated with the child classes anyway.
(It also allows child classes to customise the property per instance as well, if necessary... but that's rarely an actual problem.)
If this doesn't do enough for you, you might want to consider a parallel type hierarchy. Basically polymorphism simply doesn't happen in a type-specific way in .NET; only in an instance-specific way.
If you still want to do this and fetch it with reflection, I suggest you just write unit tests to ensure that the relevant constants are defined. When you get beyond what the type system can describe, that's often the best you can do.
Make an abstract property with only a get. That's what I think you could do to enforce a class has a value. Then you can just return a constant in the property.
Example:
Base class:
public abstract string MyConst { get; }
Derived class:
public override string MyConst {
get { return "constant"; }
}
Here is how I made mine work. I used Attribute as others have suggested.
public class ObjectAttribute : Attribute
{
public int ObjectSize { get; set; }
public ObjectAttribute(int objectSize)
{
this.ObjectSize = objectSize;
}
}
public abstract class BaseObject
{
public static int GetObjectSize<T>() where T : IPacket
{
ObjectAttribute[] attributes = (ObjectAttribute[])typeof(T).GetCustomAttributes(typeof(ObjectAttribute), false);
return attributes.Length > 0 ? attributes[0].ObjectSize : 0;
}
}
[ObjectAttribute(15)]
public class AObject : BaseObject
{
public string Code { get; set; }
public int Height { get; set; }
}
[ObjectAttribute(25)]
public class BObject : BaseObject
{
public string Code { get; set; }
public int Weight { get; set; }
}
If you would like instance access to the attribute just add it to the base abstract class.
public abstract class BaseObject
{
public static int GetObjectSize<T>() where T : IPacket
{
ObjectAttribute[] attributes = (ObjectAttribute[])typeof(T).GetCustomAttributes(typeof(ObjectAttribute), false);
return attributes.Length > 0 ? attributes[0].ObjectSize : 0;
}
public int ObjectSize
{
get
{
ObjectAttribute[] attributes = (ObjectAttribute[])GetType().GetCustomAttributes(typeof(ObjectAttribute), false);
return attributes.Length > 0 ? attributes[0].ObjectSize : 0;
}
}
}
Usage of the constants
int constantValueA = AObject.GetObjectSize<AObject>();
int constantValueB = BObject.GetObjectSize<BObject>();
AObject aInstance = new AObject();
int instanceValueA = aInstance.ObjectSize;
New idea
Here's a sort of weird idea: instead of using inheritance directly, you create a separate class to provide a constant value for every type deriving from some type T. The constructor for this type uses reflection to verify that every derived type has indeed been supplied a value.
public abstract class Constant<T, TConstant>
{
private Dictionary<Type, TConstant> _constants;
protected Constant()
{
_constants = new Dictionary<Type, TConstant>();
// Here any class deriving from Constant<T, TConstant>
// should put a value in the dictionary for every type
// deriving from T, using the DefineConstant method below.
DefineConstants();
EnsureConstantsDefinedForAllTypes();
}
protected abstract void DefineConstants();
protected void DefineConstant<U>(TConstant constant) where U : T
{
_constants[typeof(U)] = constant;
}
private void EnsureConstantsDefinedForAllTypes()
{
Type baseType = typeof(T);
// Here we discover all types deriving from T
// and verify that each has a key present in the
// dictionary.
var appDomain = AppDomain.CurrentDomain;
var assemblies = appDomain.GetAssemblies();
var types = assemblies
.SelectMany(a => a.GetTypes())
.Where(t => baseType.IsAssignableFrom(t));
foreach (Type t in types)
{
if (!_constants.ContainsKey(t))
{
throw new Exception(
string.Format("No constant defined for type '{0}'.", t)
);
}
}
}
public TConstant GetValue<U>() where U : T
{
return _constants[typeof(U)];
}
}
Basic example:
public class BaseType
{
public static Constant<BaseType, string> Description { get; private set; }
static BaseType()
{
Description = new BaseTypeDescription();
}
}
public class DerivedType : BaseType
{ }
internal sealed class BaseTypeDescription : Constant<BaseType, string>
{
public BaseTypeDescription() : base()
{ }
protected override DefineConstants()
{
DefineConstant<BaseType>("A base type");
DefineConstant<DerivedType>("A derived type");
}
}
Now I have code that allows me to do this:
var description = BaseType.Description;
// returns "A base type"
string baseTypeDescription = description.GetValue<BaseType>();
// returns "A derived type"
string derivedTypeDescription = description.GetValue<DerivedType>();
Original answer
You may not like it, but the closest way to accomplish this is by declaring an abstract read-only (no set) property.
If you've got an instance of your subclass, then this can work just as well as a constant, even though it is technically instance-level (it will just be the same for all instances of the given class).
Consider, for instance, IList.IsReadOnly. In most cases this is actually a property that tells you about the underlying class implementation, as opposed to any state specific to a particular instance. (It may be an interface member as opposed to an abstract class member, but it's the same idea.)
If you are trying to access it statically, well... then you're out of luck. But in this case I fail to see how you'd obtain the value without using reflection anyway. Maybe that's your intention; I don't know.
You could have a static method in the base class called, for instance "Register", that is passed a Type and a constant value, with the intention being that it is called by the class constructors of the subtypes. Then, add a check in all of your base class constructors that the object being constructed is of a registered type.
abstract class Base
{
private static Dictionary<Type, string> _registry = new Dictionary<Type, string>();
protected static void Register(Type t, string constVal)
{
_registry.Add(t, constVal);
}
protected Base()
{
if(!_registry.ContainsKey(this.GetType()))
throw new NotSupportedException("Type must have a registered constant");
}
public string TypeConstant
{
get
{
return _registry[this.GetType()];
}
}
}
class GoodSubtype : Base
{
static GoodSubtype()
{
Base.Register(typeof(GoodSubtype), "Good");
}
public GoodSubtype()
: base()
{
}
}
class Badsubtype : Base
{
public Badsubtype()
: base()
{
}
}
And then elsewhere, you can construct GoodSubtype instances, but trying to construct a Badsubtype gets an exception. I think a runtime error at construction is the soonest you can get an error with this type of scheme.
(You'd want to use ConcurrentDictionary for your registry if threading is involved)
There's one other method that hasn't been covered and it uses the new modifier to hide consts values in the base class. In a way, it's similar to Nap's solution, but doesn't allow per-instance access and therefore doesn't allow for polymorphic access within the base class. This solution is only useful if you want to have constant value defined but wish to have the option of changing it to different values in different subclasses.
static void Main(string[] args)
{
Console.WriteLine("BaseClass.MyConst = {0}, ClassA.MyConst = {1}, ClassB.MyConst = {2}", BaseClass.MyConst, ClassA.MyConst, ClassB.MyConst);
Console.ReadKey();
}
class BaseClass
{
public const int MyConst = 1;
}
class ClassA : BaseClass
{
public new const int MyConst = 2;
}
class ClassB : BaseClass
{
}