How to avoid UI hanging with Invoke? - c#

The following code makes UI thread hanging.
private void button1_Click(object sender, EventArgs e)
{
Thread t = new Thread(Func);
t.Start();
}
private void Func()
{
this.Invoke((Action)(() =>
{
while (true);
}));
}
I'd like to have Func() invoked in a different working thread without any UI thread freezing every time I click the button.
What would be the best workaround?

With your code, while(true) is running on UI thread, that is the reason which blocks your UI.
Put while(true) out of Invoke method, so whenver you want to change UI, put the block of code changing UI inside Invoke:
private void button1_Click(object sender, EventArgs e)
{
Thread t = new Thread(Func);
t.Start();
}
private void Func()
{
while(true)
{
this.Invoke((Action)(() =>
{
textBox.Text = "abc";
}));
}
}

The Func() codes does run on a non-UI thread. However, the this.Invoke then executes the Action on the UI thread!.
Try something like this:
void Func()
{
// Do some work.
// Update the UI (must be on UI thread)
this.Invoke(Action) (() =>
{
// Update the UI.
}));
}
I might be better to use the BeginInvoke method. This way the non-UI thread is not waiting around for the UI thread to do the Action.
Also, you have no Exception catching or progress reporting logic. I recommend looking at the BackgroundWorker class; http://msdn.microsoft.com/en-us/library/cc221403(v=vs.95).aspx.
void button1_Click(object sender, EventArgs e)
{
var worker = new BackgroundWorker();
worker.DoWork += (s,e) =>
{
// Do some work.
};
worker.RunWorkerCompleted += (s,e) =>
{
// Update the UI.
}
worker.RunWorkerAsync();
}

Related

Update the ItemSource of a Datagrid from another thread

I've seen many of these types of questions asked and answered here but none of those seems to solve my problem.
I have a Page that retrieves and shows a list of data from a database. my initial code looked like this
private void HistoryPage_OnLoaded(object sender, RoutedEventArgs e)
{
//''''''
_invoices = Invoice.GetAll(); // returns a list of invoices
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage);
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
//'''''''''
}
this worked ok until the data list got bigger. now it takes about 6-8 seconds for this operation.
then I tried to fetch data from a different thread and update the Datagrid ( DGInvoices ) from there.
private void HistoryPage_OnLoaded(object sender, RoutedEventArgs e)
{
//''''''''
new Thread(() =>
{
_invoices = Invoice.GetAll();
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage);
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
}).Start();
}
which throws this exception
The Calling thread cannot access this object because a different thread owns it
After searching around, I found that the Dispatcher is the way to go about this. but I cannot get it to work.
private void HistoryPage_OnLoaded(object sender, RoutedEventArgs e)
{
//''''''''
new Thread(() =>
{
_invoices = Invoice.GetAll();
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage);
Dispatcher.Invoke(() =>
{
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
});
}).Start();
}
this still throws the above exception.
can you recommend a way to get this working?
I personally think a BackgroundWorker would be the best option. Dispatcher may work, but it's a more "forced" operation in WPF and it can sometimes present a litany of other problems. With a BackgroundWorker you can do your data work in the background, and then do your UI work on the main thread upon its completion.
As an example:
BackgroundWorker bw = new BackgroundWorker();
public MainWindow()
{
InitializeComponent();
//Subscribe to the events
bw.DoWork += Bw_DoWork;
bw.RunWorkerCompleted += Bw_RunWorkerCompleted;
}
private void HistoryPage_OnLoaded(object sender, RoutedEventArgs e)
{
//Start background worker on page load
bw.RunWorkerAsync(); //This is the DoWork function
}
//Background worker executes on separate thread
private void Bw_DoWork(object sender, DoWorkEventArgs e)
{
//Do long running operations
_invoices = Invoice.GetAll();
}
//Fires when the DoWork operation finishes. Executes on the main UI thread
private void Bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
//Update UI when the worker completes on the main thread
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage);
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
}
If your operation gets really long you can even tap into the BackgrounWorker.ReportProgess operation and give status updates to the UI. It's a great tool for loading operations that you can use to avoid locking the UI.
Why are you using Dispatcher within new thread?
You can simply use Dipatcher outside of the new thread.
Like this:
Dispatcher.Invoke(() =>
{
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
});
So you can invoke on the main thread and not on the new thread
Don't update DgInvoices.ItemsSource directly inside the thread.
Instead bind ItemSource to a property and update the property in the thread.
Upon to your last edit, to get this working you must move
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage) to the Dispatcher too because its child CurrentItems is assigned to DitaGrid's items source. Thus, you cannot modify InvoiceList from other than main UI thread.
Additionally I suggest using Task instead of Thread because creating thread is too expensive operation and Task may reuse already created threads and save your time and PCs resources. Task is a smart wrapper of the Thread.
private void HistoryPage_OnLoaded(object sender, RoutedEventArgs e)
{
//''''''''
Task.Run(() =>
{
_invoices = Invoice.GetAll();
Dispatcher.Invoke(() =>
{
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage);
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
});
});
}
Or in case your API have async method to get the data you may use asynchronuous approach. But i dont's know if such awaitable method exists.
private async void HistoryPage_OnLoaded(object sender, RoutedEventArgs e)
{
//''''''''
await _invoices = Invoice.GetAllAsync();
InvoiceList = new PagingCollection<Invoice>(_invoices, _itemsPerPage);
DgInvoices.ItemsSource = InvoiceList.CurrentItems;
}

wpf c# background worker works when execution finished

I have a wpf application where I want to start a loading indicator before a task and end after task done. But the indicator starts after the task executes.
What I am trying is as follows.
private void RunAllScriptsChildwdwBtnOK_Click(object sender, RoutedEventArgs e)
{
worker.RunWorkerAsync(); // this supposed to start progress bar
_RunAllScripts_Click();
}
private void worker_DoWork(object sender, DoWorkEventArgs e)
{
this.Dispatcher.Invoke(() =>
{
... Start loading indicator
});
}
private void worker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)
{
... End loading indicator
}
But loading indicator starts and ends (as supposed in worker events) only after
_RunAllScripts_Click(); method execution is complete.
(I found that after unsubscribing from worker_RunWorkerCompleted event, progress bar starts and stays as is because no code to end it).
Also I want to add that, breakpoint hits worker_DoWork method before the execution, but UI updates after execution as I indicated above.
Thanks for all help you will be able to provide.
If i was you i would use the async + await keyword for this
private async void ButtonBase_OnClick(object sender, RoutedEventArgs e)
{
// this is where you would enable your indicator
Button.IsEnabled = false;
await Task.Run(
() =>
{
// this is where you put your work, which should be executed in the background thread.
Thread.Sleep(2000);
});
// this is where you would disable it
Button.IsEnabled = true;
}
Using async/await will work. The await keyword will allow you to run work without affecting/blocking the UI thread (allowing message pumping to still occur). Once the work has finished, any code after the await keyword will execute.
Note that I have also wrapped the await work in an InvokeAsync call, as it appears that additional work you are doing required UI thread access.
private async void RunAllScriptsChildwdwBtnOK_Click(object sender, RoutedEventArgs e)
{
//TODO ... Start loading indicator
await Task.Run(async ()=>
{
await Application.Current.Dispatcher.InvokeAsync(()=>
{
_RunAllScripts_Click();
});
});
//TODO ... End loading indicator
}
Dear kind people helping me about this subject, thank you all.
This works for me, hope it works for all.
BackgroundWorker bwTestAll = new BackgroundWorker() { WorkerReportsProgress = true };
bwTestAll.DoWork += new DoWorkEventHandler(TestAll);
bwTestAll.RunWorkerCompleted += TestAll_RunWorkerCompleted;
//this is where I initialize my loading ring and other stuff and marshall background
//worker to do the main work
Dispatcher.Invoke(new Action(() =>
{
EnableLoading = true;
RunAllScriptsTest.IsEnabled = false;
}), DispatcherPriority.ContextIdle);
bwTestAll.RunWorkerAsync();
//this is my main work
void TestAll(object sender, DoWorkEventArgs e)
{
presenter.RunAllScripts(true);
}
//this is where I do my post-work stuff
private void TestAll_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)
{
Dispatcher.Invoke(new Action(() =>
{
/
EnableLoading = false;
RunAllScriptsTest.IsEnabled = true;
DbExecGrid = this.ExecutionResults;
ShowOrHideExecGrid(this.EnableOrDisableGrid);
}), DispatcherPriority.ContextIdle);
}
*Please Notice that Dispatcher with "DispatcherPriority.ContextIdle" works for me.

Trouble with UI Threads and Backgroundworker

What I'm trying to achieve is simple. I have a dynamic timer (one that can be changed by the user) which calls on background worker to go and fetch the user's external IP address. The combination of Timer and BackgroundWorker is causing some problems. Here's the code:
namespace IPdevices
{
/// <summary>
/// Interaction logic for Main.xaml
/// </summary>
public partial class Main : Window
{
private readonly BackgroundWorker worker;
private IPret iprep;
private Timer timer;
public Main(Client client)
{
InitializeComponent();
iprep = new IPret();
startClock();
worker = new BackgroundWorker();
worker.DoWork += worker_DoWork;
worker.RunWorkerCompleted += worker_RunWorkerCompleted;
worker.WorkerReportsProgress = true;
worker.ProgressChanged += worker_ProgressChanged;
}
private void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ipAdd.Content = e.UserState;
}
private void startClock()
{
timer = new Timer();
timer.Interval = 2000;
timer.Elapsed += new ElapsedEventHandler(clockTimer_Tick);
timer.Start();
}
private void clockTimer_Tick(object sender, ElapsedEventArgs e)
{
timer.Stop();
worker.RunWorkerAsync();
}
private void worker_DoWork(object sender, DoWorkEventArgs e)
{
Console.WriteLine("Checking ip");
iprep.refresh();
worker.ReportProgress(0, iprep.getExternalIp());
Console.WriteLine("Found ip");
}
private void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
timer.Start();
}
}
}
Essentially, once the timer fires, I wish to fetch the ip address and output on a label in the application. However, I get an exception in the ProgressChanged method saying that it can't be changed because another thread owns it. Which thread is that? Is it the iprep that is owned by another thread? In fact, RunWorkerCompleted never gets fired. I'm having trouble understanding which threads own what and how objects are locked...Any insight would be appreciated.
This appears to fix it in my test of it
private void clockTimer_Tick(object sender, ElapsedEventArgs e)
{
timer.Stop();
Action a = () =>
{
worker.RunWorkerAsync();
};
Application.Current.Dispatcher.BeginInvoke(a);
}
Also, I'll note this is consistent behavior for Timer in WPF (I hadn't used it in WPF before); trying ipAdd.Content = "Tick"; in the clockTimer_Tick causes the same error. System.Timers.Timer's tick event does not happen on the UI thread.
Replace all your code by the few lines shown below. The Tick handler is executed in the UI thread. Still it asynchronously runs a background operation and does not block the UI thread.
private void StartClock()
{
var timer = new DispatcherTimer { Interval = TimeSpan.FromSeconds(2) };
timer.Tick += async (o, e) => await GetIP();
timer.Start();
}
private async Task GetIP()
{
Debug.WriteLine("Checking ip");
await Task.Run(() =>
{
// Get the IP asynchronously here
});
Debug.WriteLine("Found ip");
// Update the UI here
}
ipAdd is an UI element if I am not mistaken. If it is then the problem lies on cross threading.
What happened is that Background worker is going to be running on a different thread than the UI thread. If you want to modify UI element's property you need to do it on the UI thread. One option is to use Dispatcher.Invoke but since you are using WPF, there is a better way to do it.
Do a search about MVVM design patter and move the background code into View Model. Then you could do something like
string _XXContent
public string XXContent
{
get
{
return _XXContent;
}
set
{
_XXContent = value;
OnPropertyChanged("XXContent");
}
}
private void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
XXContent = e.UserState;
}
xaml :
<TextBox Content={Binding XXContent}/>
Edit:
If you are on c# 5 then you should look into async/IProgress as well an get rid of Background worker.

How to wait a thread out of that thread without freeze my APP?

I'm running some scripts in runtime, but it's freezing my UI, I'm calling the CodeProvider inside a Thread, but it still freezing.
In my form I call:
var mre = new ManualResetEvent(false);
Thread tr = new Thread(() =>
{
Script sp = new Script();
code = textBox.Text;
sp.Comp(code);
mre.Set();
});
tr.Start();
mre.WaitOne();
I'm using the mre.WaitOne() because I want to wait the thread finish to keep running my code.
Tried to use the same way inside the Compile method too:
public bool Comps(string code)
{
var mre = new ManualResetEvent(false);
Thread tr = new Thread(() =>
{
//Code to generate a CompilerResult and generate the assembly
Run();
mre.Set();
});
tr.Start();
mre.WaitOne();
return true;
}
But while it's waiting it still freezing the UI.
Any ideas?
Thanks
I'm using the mre.WaitOne() because I want to wait the thread finish
to keep running my code.
What did you expect to happen if you force the calling thread to freeze until your processing thread has completed processing? Doing it this way, there is no point in having that extra thread and if the calling thread is the UI thread, of course it will freeze.
If you do background processing you cannot wait for the result synchronously, instead you have to notify the UI in some sort of fashion that the processing is done, i.e. using a callback or dispatching the result back to the UI in some other form.
The entire point of multi-threading is to allow the Thread to execute on it's own, independent of any other threads. What you want to do is use a callback to signal the completion of your thread and then have your UI respond to the completion.
The BackgroundWorker class has an event already built in for this purpose.
There are three events you want to subscribe to:
bw.DoWork +=
new DoWorkEventHandler(bw_DoWork);
bw.ProgressChanged +=
new ProgressChangedEventHandler(bw_ProgressChanged);
bw.RunWorkerCompleted +=
new RunWorkerCompletedEventHandler(bw_RunWorkerCompleted);
DoWork is where your work will happen. ProgressChanged allows you to update the UI of progress. RunWorkerCompleted will pop the event with your DoWork function has completed.
This object handles the threading and can be set to run asynchronously by running the bw.RunWorkerAsync() call.
See the following page for detail for this:
http://msdn.microsoft.com/en-us/library/cc221403%28v=vs.95%29.aspx
As an example:
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
}
private void button1_Click(object sender, EventArgs e)
{
MessageBox.Show(String.Format("UI thread: {0}", Thread.CurrentThread.ManagedThreadId));
this.Invoke(new MethodInvoker(delegate() { MessageBox.Show(String.Format("Invoke thread: {0}", Thread.CurrentThread.ManagedThreadId)); }));
backgroundWorker1.RunWorkerAsync();
}
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
MessageBox.Show(String.Format("Worker thread: {0}", Thread.CurrentThread.ManagedThreadId));
}
}
This example can be built by adding one button and one background worker to a form. Wire up the events through the events designer for the button1_Click and the backgroundWorker1_DoWork function. You should have three MessagesBoxes that pop up after clicking button1. You'll notice the Id for the UI thread and the Invoke thread are the same, which means that any processing you do from the invoke will cause your UI thread to wait. The third popup is from the worker thread, which has a different ID.
Use BeginInvoke when done. For example:
delegate void MyAction();
void Form1_Load( object sender, EventArgs e )
{
Thread tr = new Thread( () =>
{
Script sp = new Script();
code = textBox.Text;
sp.Comp(code);
BeginInvoke( new MyAction( ThreadOperationEnded ) );
} );
tr.Start();
}
void ThreadOperationEnded()
{
MessageBox.Show( "Finished!" );
}

How to update GUI with backgroundworker?

I have spent the whole day trying to make my application use threads but with no luck. I have read much documentation about it and I still get lots of errors, so I hope you can help me.
I have one big time consuming method which calls the database and updates the GUI. This has to happen all the time(or about every 30 seconds).
public class UpdateController
{
private UserController _userController;
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
}
public void Update()
{
BackgroundWorker backgroundWorker = new BackgroundWorker();
while(true)
{
backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);
backgroundWorker.RunWorkerAsync();
}
}
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
_userController.UpdateUsersOnMap();
}
}
With this approach I get an exception because the backgroundworker is not and STA thread(but from what I can understand this is what I should use). I have tried with a STA thread and that gave other errors.
I think the problem is because I try to update the GUI while doing the database call(in the background thread). I should only be doing the database call and then somehow it should switch back to the main thread. After the main thread has executed it should go back to the background thread and so on. But I can't see how to do that.
The application should update the GUI right after the database call. Firering events don't seem to work. The backgroundthread just enters them.
EDIT:
Some really great answers :) This is the new code:
public class UpdateController{
private UserController _userController;
private BackgroundWorker _backgroundWorker;
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
_backgroundWorker = new BackgroundWorker();
_backgroundWorker.DoWork += backgroundWorker_DoWork;
_backgroundWorker.RunWorkerCompleted += backgroundWorker_RunWorkerCompleted;
}
public void _backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
_userController.UpdateUsersOnMap();
}
public void Update()
{
_backgroundWorker.RunWorkerAsync();
}
void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
//UI update
System.Threading.Thread.Sleep(10000);
Update();
}
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
// Big database task
}
}
But how can I make this run every 10 second? System.Threading.Thread.Sleep(10000) will just make my GUI freeze and while(true) loop in Update() as suggested gives an exception(Thread too busy).
You need to declare and configure the BackgroundWorker once - then Invoke the RunWorkerAsync method within your loop...
public class UpdateController
{
private UserController _userController;
private BackgroundWorker _backgroundWorker;
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
_backgroundWorker = new BackgroundWorker();
_backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);
_backgroundWorker.ProgressChanged += new ProgressChangedEventHandler(backgroundWorker_ProgressChanged);
_backgroundWorker.WorkerReportsProgress= true;
}
public void Update()
{
_backgroundWorker.RunWorkerAsync();
}
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
while (true)
{
// Do the long-duration work here, and optionally
// send the update back to the UI thread...
int p = 0;// set your progress if appropriate
object param = "something"; // use this to pass any additional parameter back to the UI
_backgroundWorker.ReportProgress(p, param);
}
}
// This event handler updates the UI
private void backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
// Update the UI here
// _userController.UpdateUsersOnMap();
}
}
You have to use the Control.InvokeRequired property to determine if you are on a background thread. Then you need to invoke your logic that modified your UI via the Control.Invoke method to force your UI operations to occur on the main thread. You do this by creating a delegate and passing it to the Control.Invoke method. The catch here is you need some object derived from Control to call these methods.
Edit: As another user posted, if yo you can wait to the BackgroundWorker.Completed event to update your UI then you can subscribe to that event and call your UI code directly. BackgroundWorker_Completed is called on the main app thread. my code assumes you want to do updates during the operation. One alternative to my method is to subscribe to the BwackgroundWorker.ProgressChanged event, but I believe you'll need to still call Invoke to update your UI in that case.
for example
public class UpdateController
{
private UserController _userController;
BackgroundWorker backgroundWorker = new BackgroundWorker();
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
}
public void Update()
{
// The while loop was unecessary here
backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);
backgroundWorker.RunWorkerAsync();
}
public delegate void DoUIWorkHandler();
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
// You must check here if your are executing on a background thread.
// UI operations are only allowed on the main application thread
if (someControlOnMyForm.InvokeRequired)
{
// This is how you force your logic to be called on the main
// application thread
someControlOnMyForm.Invoke(new
DoUIWorkHandler(_userController.UpdateUsersOnMap);
}
else
{
_userController.UpdateUsersOnMap()
}
}
}
You should remove the while(true), you are adding infinite event handlers and invoking them infinite times.
You can use the RunWorkerCompleted event on the backgroundWorker class to define what should be done when the background task has completed. So you should do the database call in the DoWork handler, and then update the interface in the RunWorkerCompleted handler, something like this:
BackgroundWorker bgw = new BackgroundWorker();
bgw.DoWork += (o, e) => { longRunningTask(); }
bgw.RunWorkerCompleted += (o, e) => {
if(e.Error == null && !e.Cancelled)
{
_userController.UpdateUsersOnMap();
}
}
bgw.RunWorkerAsync();
In addition to previous comments, take a look at www.albahari.com/threading - best doc on threading you will ever find. It will teach you how to use the BackgroundWorker properly.
You should update the GUI when the BackgroundWorker fires Completed event (which is invoked on UI thread to make it easy for you, so that you don't have to do Control.Invoke yourself).
Here's a source code pattern you can use based on some WinForms example code, but you can apply it for WPF as well very easily. In this example, I am redirecting output to a Console which I then use to let the background worker write some messages to a textbox while it is processing.
It consists of:
A helper class TextBoxStreamWriter used to redirect console output to a textbox
A background worker writing to the redirected console
A progress bar which needs to be reset after completion of background worker
Some text boxes (txtPath and txtResult), and a "Start" button
In other words, there is some background task which needs to interact with the UI. Now I am going to show how that is done.
From the context of the background task, you need to use Invoke to access any UI element. I believe the simplest way to do that is to use lambda expression syntax, like
progressBar1.Invoke((Action) (() =>
{ // inside this context, you can safely access the control
progressBar1.Style = ProgressBarStyle.Continuous;
}));
To update the ProgressBar, a local method like
private void UpdateProgress(int value)
{
progressBar1.Invoke((Action)(() => { progressBar1.Value = value; }));
}
helps. It is passing the value parameter to the progress bar as a closure.
This is the helper class TextBoxStreamWriter, which is used to redirect console output:
public class TextBoxStreamWriter : TextWriter
{
TextBox _output = null;
public TextBoxStreamWriter(TextBox output)
{
_output = output;
}
public override void WriteLine(string value)
{
// When character data is written, append it to the text box.
// using Invoke so it works in a different thread as well
_output.Invoke((Action)(() => _output.AppendText(value+"\r\n")));
}
}
You need to use it in the form load event as follows (where txtResult is a textbox, to which the output will be redirected):
private void Form1_Load(object sender, EventArgs e)
{
// Instantiate the writer and redirect the console out
var _writer = new TextBoxStreamWriter(txtResult);
Console.SetOut(_writer);
}
There is also a button on the form which starts the background worker, it passes a path to it:
private void btnStart_Click(object sender, EventArgs e)
{
backgroundWorker1.RunWorkerAsync(txtPath.Text);
}
This is the workload of the background worker, note how it uses the console to output messages to the textbox (because of the redirection that was set up earlier):
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
var selectedPath = e.Argument as string;
Console.Out.WriteLine("Processing Path:"+selectedPath);
// ...
}
The variable selectedPath consists of the path that was passed to the backgroundWorker1 earlier via the parameter txtPath.Text, it is being accessed via e.Argument.
If you need to reset some controls afterwards, do it in the following way (as already mentioned above):
private void backgroundWorker1_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
progressBar1.Invoke((Action) (() =>
{
progressBar1.MarqueeAnimationSpeed = 0;
progressBar1.Style = ProgressBarStyle.Continuous;
}));
}
In this example, after completion, a progress bar is being reset.
Important: Whenever you access a GUI control, use Invoke as I did in the examples above.
Using Lambda's makes it easy, as you could see in the code.
And here's the complete example, which runs in LinqPad 6 (just copy and paste it into an empty C# Program query) - I decided to use LinqPad this time so you can learn something new, because you all know how to create a new Windows Forms project in Visual Studio (and if you still want to do so, just copy the events below and drag and drop the controls to the form):
// see: https://stackoverflow.com/a/27566468/1016343
using System.ComponentModel;
using System.Windows.Forms;
BackgroundWorker backgroundWorker1 = new System.ComponentModel.BackgroundWorker();
ProgressBar progressBar1 = new ProgressBar() { Text = "Progress", Width = 250, Height=20, Top=10, Left=0 };
TextBox txtPath = new TextBox() { Text =#"C:\temp\", Width = 100, Height=20, Top=30, Left=0 };
TextBox txtResult = new TextBox() { Text = "", Width = 200, Height=250, Top=70, Left=0, Multiline=true, Enabled=false };
Button btnStart = new Button() { Text = "Start", Width = 100, Height=30, Top=320, Left=0 };
void Main()
{
// see: https://www.linqpad.net/CustomVisualizers.aspx
// Instantiate the writer and redirect the console out
var _writer = new TextBoxStreamWriter(txtResult);
Console.SetOut(_writer);
// wire up events
btnStart.Click += (object sender, EventArgs e) => btnStart_Click(sender, e);
backgroundWorker1.DoWork += (object sender, DoWorkEventArgs e) => backgroundWorker1_DoWork(sender, e);
backgroundWorker1.RunWorkerCompleted += (object sender, RunWorkerCompletedEventArgs e)
=> backgroundWorker1_RunWorkerCompleted(sender, e);
using var frm = new Form() {Text="Form", Width = 300, Height=400, Top=0, Left=0};
frm.Controls.Add(progressBar1);
frm.Controls.Add(txtPath);
frm.Controls.Add(txtResult);
frm.Controls.Add(btnStart);
// display controls
frm.ShowDialog();
}
private void btnStart_Click(object sender, EventArgs e)
{
backgroundWorker1.RunWorkerAsync(txtPath.Text);
}
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
InitProgress();
var selectedPath = e.Argument as string;
Console.Out.WriteLine("Processing Path: " + selectedPath);
UpdateProgress(0); Thread.Sleep(300); UpdateProgress(30); Thread.Sleep(300);
UpdateProgress(50); Thread.Sleep(300);
Console.Out.WriteLine("Done.");
// ...
}
private void UpdateProgress(int value)
{
progressBar1.Invoke((Action)(() =>
{
progressBar1.Value = value;
}));
}
private void InitProgress()
{
progressBar1.Invoke((Action)(() =>
{
progressBar1.MarqueeAnimationSpeed = 0;
progressBar1.Style = ProgressBarStyle.Continuous;
}));
}
private void backgroundWorker1_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
UpdateProgress(100); // always show 100% when done
}
// You can define other methods, fields, classes and namespaces here
public class TextBoxStreamWriter : TextWriter
{
TextBox _output = null;
public TextBoxStreamWriter(TextBox output)
{
_output = output;
}
public override Encoding Encoding => throw new NotImplementedException();
public override void WriteLine(string value)
{
// When character data is written, append it to the text box.
// using Invoke so it works in a different thread as well
_output.Invoke((Action)(() => _output.AppendText(value + "\r\n")));
}
}
The if-statement in #Lee's answer should look like:
bgw.RunWorkerCompleted += (o, e) => {
if(e.Error == null && !e.Cancelled)
{
_userController.UpdateUsersOnMap();
}
}
...if you want to invoke UpdateUsersOnMap(); when there are no errors and BgWorker hasn't been cancelled.

Categories