Searching specific indexes in arrays for specific numbers - c#

Hi there is there a way to check specific integer array indexes for specific numbers in C#; for example what I would love to have worked would be:
if(si[6] || si[7] || si[8] == 3)
{
MessageBox.Show("3 detected")
}
else
{
continue();
{
Obviously this doesn't work. Is there a clean way to do this? Thank you for looking.

var indexes = new int[] {6, 7, 8};
if (indexes.Any(i => si[i] == 3))
{
MessageBox.Show("3 detected")
}

The simplest is to make three separate checks:
if (si[6] == 3 || si[7] == 3 || si[8] == 3)

You could do this a bit neater using a method with a params:
public static bool HasValue(int value, params int[] itemsToCheck)
{
bool valueDetected = false;
foreach(var item in itemsToCheck)
{
valueDetected |= item == value;
}
return valueDetected;
}
Then you could just call it like this:
if (HasValue(3, si[6], si[7], si[8]))
{
}

You can use Array.IndexOf function to find the index of the integer. If array has the integer then it will return the index else it will return -1.
Like this
int[] a = new int[] { 1, 2 };
int c = Array.IndexOf(a, 2);

Related

C# - LINQ Select returns a value but the variable is still null

private static readonly List<long> KnownPrimes = new List<long>() { 2, 3, 5, 7};
static void Main(string[] args)
{
int numDivisors;
string input = "";
bool first = true;
while (!int.TryParse(input, out numDivisors))
{
if(!first) Console.WriteLine("You must enter a number with no other characters.");
Console.WriteLine("Find the least common multiple for numbers 1 through:");
input = Console.ReadLine();
first = false;
}
int index = -1;
//make sure that there are enough primes in the list
while (index == -1)
{
index = KnownPrimes.FindIndex(n => n > numDivisors);
if(index == -1) AppendNextPrime();
}
// prep the list with 0s
List<int> countPrimes = KnownPrimes.Select(n=>0) as List<int>;
When I debug that last line in Rider, it is showing:
Enumerable.Select() returned: Count = 5 countPrimes: null
From what I have read, LINQ shouldn't be able to return a null, and it doesn't appear to be, but somehow the variable is remaining null. I'm obviously missing something here, can anyone help me identify what I am doing wrong?
as operator will return null since the result of the Select ist no List<int> but an IEnumerable<int>. Replace it by ToList to make a List out of the IEnumerable:
List<int> countPrimes = KnownPrimes.Select(n=>0).ToList();

How to display null array in C#?

I am using the same code in my previous post but now I am trying to debug errors like
System.ArgumentNullException: 'Value cannot be null. (Parameter 'values')'
when I do
static void Main(string[] arg){
int[] numbers = new int[] { 2, 4 };
Console.WriteLine(String.Join(",", HowSum(7, numbers)));
}
How can I fix this when HowSum() returns a NULL?
Here is the original post for reference:
class HowSumSlow {
static int[] HowSum(int targetSum, int[] numbers)
{
int[] empty = new int[] { };
if (targetSum == 0) return empty;
if (targetSum < 0) return null;
foreach( var num in numbers){
var remainder = targetSum - num;
int[] remainderResult = HowSum(remainder, numbers);
if (remainderResult != null){
return remainderResult.Append(num).ToArray();
}
}
return null;
}
static void Main(string[] arg) {
int[] numbers = new int[] { 2, 3, 5 };
Console.WriteLine(String.Join(",", HowSum(8, numbers)));
}
}
How can I fix this when HowSum() returns a NULL?
You can use ?? to specify a fallback for the null array:
Console.WriteLine(String.Join(",", HowSum(7, numbers) ?? Array.Empty<int>()));
Now you are passing an empty int-array to String.Join if HowSum returns null.
just do a regular null check to find if the function returns null or not
if (HowSum(8 , numbers) != null) {
Console.WriteLine(String.Join(",", HowSum(8, numbers)));
} else {
Console.WriteLine("ITS NULLLLL");
}
Hope it helped. :)
In my previous answer (deleted since), I missed the recursion. So, you need the null return for the stop criterion.
Therefore, a negative targetSum value is a valid input while recursing but not as a start value.
So, what you could do, is to give it a "starter method" - like this:
// Your "HowSum" Method stays untouched!
static int[] StartHowSum(int targetSum, int[] numbers)
{
if (targetSum < 0)
{
throw new ArgumentOutOfRangeException (
nameof(targetSum), targetSum,
"Argument must be greater than or equal to 0."
);
}
if (targetSum == 0) return Array.Empty<int>();
// maybe also sanity-check `numbers`?
int[] result = HowSum(targetSum, numbers);
// Now that we checked input, is it possible to still get null OUTput?
return result ?? Array.Empty<int>();
}
static void Main(string[] arg) {
int[] numbers = new int[] { 2, 3, 5 };
Console.WriteLine(String.Join(",", StartHowSum(8, numbers)));
}
After taking into account what everyone said, I found that the simplest way was to just store the result and use a ?-operator. (Thank you everyone. I wanted to write that in each and every comment, but apparently I'm supposed to refrain from that.)
Here's the final code.
static int[] HowSum(int targetSum, int[] numbers)
{
int[] empty = new int[0];
if (targetSum == 0) return Array.Empty<int>();
if (targetSum < 0) return null;
foreach (var num in numbers)
{
var remainder = targetSum - num;
int[] remainderResult = HowSum(remainder, numbers);
if (remainderResult != null){
return remainderResult.Append(num).ToArray();
}
}
return null;
}
static void Main(string[] arg)
{
int[] numbers = new int[] { 2, 4 };
int[] result = HowSum(7, numbers);
Console.WriteLine(result == null ? "null" : String.Join(",", result));
}
}

Comparison of dynamic number of lists in C#

I have a variable number of List-objects, of which I need to compare the values at the same indexes. The number of entries in the list is given and does not vary.
For example:
4 Lists
each 4 entries
So what I'd be looking for in this example, is 4 bools, one per index.
Getting the indexes of unmatching entries would be fine, too.
Pseudo:
bool isFirstEqual = (list1[i] == list2[i] == list3[i] == list4[i]);
But I need to do this in a fashion that's applicable for a variable number of lists. I could have 6 Lists, but also 2.
I was thinking of doing something with LINQs .Except() but am not sure how to use it with a variable number of lists.
I am struggling to find the elegant solution that I'm sure is out there.
Any help on this is appreciated.
If i understand what you mean, something like this might work
public static bool IsEqual<T>(int index, params List<T>[] ary)
{
for (var i = 1; i < ary.Length; i++)
if (!EqualityComparer<T>.Default.Equals(ary[0][index], ary[i][index]))
return false;
return true;
}
Usage
var isSecondelemEqual = IsEqual(1, list1, list2, list3,...)
Update
Basically takes a variable list of lists, and assumes you want to check the index of each list against each other.
bool AreIndexesEqual(int index, List<List<int>> lists)
{
int match = lists[0][index];
foreach(List<int> list in lists.Skip(1))
{
if (list[index] != match)
{
return false;
}
}
return true;
}
Given for example:
List<List<int>> listOfLists = new List<List<int>>
{
new List<int> { 1, 100, 2},
new List<int> { 2, 100, 3},
new List<int> { 3, 100, 4},
new List<int> { 4, 100, 5},
};
So a List<> of List<int>
the totally unreadable LINQ expression that will return a List<bool> is something like:
List<bool> result = Enumerable.Range(0, listOfLists.Count != 0 ? listOfLists[0].Count : 0)
.Select(x => listOfLists.Count <= 1 ?
true :
listOfLists.Skip(1).All(y => y[x] == listOfLists[0][x])
).ToList();
Here I want to show you that if your first solution to any problem is LINQ, then perhaps now you will have two problems.
Now... What does this linq does? We have 4 List<int>, each one with 3 elements... So 3 rows of 4 columns. We want to calculate the result "by row", so the first thing is discover the number of rows, that is listOfLists[0].Count (we put a pre-check for the case that we have 0 rows). Now we generate an index (like a for), using Enumerable.Range(0, numberofrows), like for (int i = 0; i < numberofrows; i++). For each row we see if there are 0 or 1 columns (listOfLists.Count <= 1), then the result is true, otherwise we compare all the other columns y[x] with the first column listOfLists[0][x].
With a dual for cycle it becomes clearer probably:
var result2 = new List<bool>(listOfLists.Count != 0 ? listOfLists[0].Count : 0);
// Note the use of .Capacity here. It is listOfLists.Count != 0 ? listOfLists[0].Count : 0
for (int col = 0; col < result2.Capacity; col++)
{
if (listOfLists.Count <= 1)
{
result2.Add(true);
}
else
{
bool equal = true;
for (int row = 1; row < listOfLists.Count; row++)
{
if (listOfLists[row][col] != listOfLists[0][col])
{
equal = false;
break;
}
}
result2.Add(equal);
}
}
Note that both programs can be simplified: new int[0].All(x => something) == true, so .All() on empty IEnumerable<> is true. You can remove listOfLists.Count <= 1 ? true : and if (...) { ... } else up to the else keyword, keeping only the code inside the else:
var result2 = new List<bool>(listOfLists.Count != 0 ? listOfLists[0].Count : 0);
// Note the use of .Capacity here. It is listOfLists.Count != 0 ? listOfLists[0].Count : 0
for (int col = 0; col < result2.Capacity; col++)
{
bool equal = true;
for (int row = 1; row < listOfLists.Count; row++)
{
if (listOfLists[row][col] != listOfLists[0][col])
{
equal = false;
break;
}
}
result2.Add(equal);
}
Here you go
IEnumerable<bool> CompareAll<T>(IEnumerable<IEnumerable<T>> source)
{
var lists = source.ToList();
var firstList = lists[0];
var otherLists = lists.Skip(1).ToList();
foreach(var t1 in firstList)
{
yield return otherlists.All(tn => tn.Equals(t1));
}
}

How to compare two arrays in c# and find the exact match of arrays

I want to compare two array in c#. If they are matched go to if condition else go to the else condition. How can we do that in c#.
int[] numbers = new int[] { 1, 2, 3, 4, 5 };
int[] numbers2 = new int[] { 1, 2, 3, 4, 5 };
I want to compare the two arrays like
if(numbers == numbers2){
do something
}else{
do something
}
You can use the Enumerable.SequenceEqual() extension method. It does exactly what you want:
if (numbers.SequenceEqual(numbers2)) {
// do something
} else {
// do something else
}
You can create a extension function for array, which takes input another array object and then using HashSet you can compare two arrays. Like -
if (numbers.ArrayEqual(number2){
// do this
}
else{
// do that
}
function static bool ArrayEqual(this int[] a, int []b)
{
return a.Length == b.Length
&& new HashSet<string>(a).SetEquals(b);
}

Detecting sequence of at least 3 sequential numbers from a given list

I have a list of numbers e.g. 21,4,7,9,12,22,17,8,2,20,23
I want to be able to pick out sequences of sequential numbers (minimum 3 items in length), so from the example above it would be 7,8,9 and 20,21,22,23.
I have played around with a few ugly sprawling functions but I am wondering if there is a neat LINQ-ish way to do it.
Any suggestions?
UPDATE:
Many thanks for all the responses, much appriciated. Im am currently having a play with them all to see which would best integrate into our project.
It strikes me that the first thing you should do is order the list. Then it's just a matter of walking through it, remembering the length of your current sequence and detecting when it's ended. To be honest, I suspect that a simple foreach loop is going to be the simplest way of doing that - I can't immediately think of any wonderfully neat LINQ-like ways of doing it. You could certainly do it in an iterator block if you really wanted to, but bear in mind that ordering the list to start with means you've got a reasonably "up-front" cost anyway. So my solution would look something like this:
var ordered = list.OrderBy(x => x);
int count = 0;
int firstItem = 0; // Irrelevant to start with
foreach (int x in ordered)
{
// First value in the ordered list: start of a sequence
if (count == 0)
{
firstItem = x;
count = 1;
}
// Skip duplicate values
else if (x == firstItem + count - 1)
{
// No need to do anything
}
// New value contributes to sequence
else if (x == firstItem + count)
{
count++;
}
// End of one sequence, start of another
else
{
if (count >= 3)
{
Console.WriteLine("Found sequence of length {0} starting at {1}",
count, firstItem);
}
count = 1;
firstItem = x;
}
}
if (count >= 3)
{
Console.WriteLine("Found sequence of length {0} starting at {1}",
count, firstItem);
}
EDIT: Okay, I've just thought of a rather more LINQ-ish way of doing things. I don't have the time to fully implement it now, but:
Order the sequence
Use something like SelectWithPrevious (probably better named SelectConsecutive) to get consecutive pairs of elements
Use the overload of Select which includes the index to get tuples of (index, current, previous)
Filter out any items where (current = previous + 1) to get anywhere that counts as the start of a sequence (special-case index=0)
Use SelectWithPrevious on the result to get the length of the sequence between two starting points (subtract one index from the previous)
Filter out any sequence with length less than 3
I suspect you need to concat int.MinValue on the ordered sequence, to guarantee the final item is used properly.
EDIT: Okay, I've implemented this. It's about the LINQiest way I can think of to do this... I used null values as "sentinel" values to force start and end sequences - see comments for more details.
Overall, I wouldn't recommend this solution. It's hard to get your head round, and although I'm reasonably confident it's correct, it took me a while thinking of possible off-by-one errors etc. It's an interesting voyage into what you can do with LINQ... and also what you probably shouldn't.
Oh, and note that I've pushed the "minimum length of 3" part up to the caller - when you have a sequence of tuples like this, it's cleaner to filter it out separately, IMO.
using System;
using System.Collections.Generic;
using System.Linq;
static class Extensions
{
public static IEnumerable<TResult> SelectConsecutive<TSource, TResult>
(this IEnumerable<TSource> source,
Func<TSource, TSource, TResult> selector)
{
using (IEnumerator<TSource> iterator = source.GetEnumerator())
{
if (!iterator.MoveNext())
{
yield break;
}
TSource prev = iterator.Current;
while (iterator.MoveNext())
{
TSource current = iterator.Current;
yield return selector(prev, current);
prev = current;
}
}
}
}
class Test
{
static void Main()
{
var list = new List<int> { 21,4,7,9,12,22,17,8,2,20,23 };
foreach (var sequence in FindSequences(list).Where(x => x.Item1 >= 3))
{
Console.WriteLine("Found sequence of length {0} starting at {1}",
sequence.Item1, sequence.Item2);
}
}
private static readonly int?[] End = { null };
// Each tuple in the returned sequence is (length, first element)
public static IEnumerable<Tuple<int, int>> FindSequences
(IEnumerable<int> input)
{
// Use null values at the start and end of the ordered sequence
// so that the first pair always starts a new sequence starting
// with the lowest actual element, and the final pair always
// starts a new one starting with null. That "sequence at the end"
// is used to compute the length of the *real* final element.
return End.Concat(input.OrderBy(x => x)
.Select(x => (int?) x))
.Concat(End)
// Work out consecutive pairs of items
.SelectConsecutive((x, y) => Tuple.Create(x, y))
// Remove duplicates
.Where(z => z.Item1 != z.Item2)
// Keep the index so we can tell sequence length
.Select((z, index) => new { z, index })
// Find sequence starting points
.Where(both => both.z.Item2 != both.z.Item1 + 1)
.SelectConsecutive((start1, start2) =>
Tuple.Create(start2.index - start1.index,
start1.z.Item2.Value));
}
}
Jon Skeet's / Timwi's solutions are the way to go.
For fun, here's a LINQ query that does the job (very inefficiently):
var sequences = input.Distinct()
.GroupBy(num => Enumerable.Range(num, int.MaxValue - num + 1)
.TakeWhile(input.Contains)
.Last()) //use the last member of the consecutive sequence as the key
.Where(seq => seq.Count() >= 3)
.Select(seq => seq.OrderBy(num => num)); // not necessary unless ordering is desirable inside each sequence.
The query's performance can be improved slightly by loading the input into a HashSet (to improve Contains), but that will still not produce a solution that is anywhere close to efficient.
The only bug I am aware of is the possibility of an arithmetic overflow if the sequence contains negative numbers of large magnitude (we cannot represent the count parameter for Range). This would be easy to fix with a custom static IEnumerable<int> To(this int start, int end) extension-method. If anyone can think of any other simple technique of dodging the overflow, please let me know.
EDIT:
Here's a slightly more verbose (but equally inefficient) variant without the overflow issue.
var sequences = input.GroupBy(num => input.Where(candidate => candidate >= num)
.OrderBy(candidate => candidate)
.TakeWhile((candidate, index) => candidate == num + index)
.Last())
.Where(seq => seq.Count() >= 3)
.Select(seq => seq.OrderBy(num => num));
I think my solution is more elegant and simple, and therefore easier to verify as correct:
/// <summary>Returns a collection containing all consecutive sequences of
/// integers in the input collection.</summary>
/// <param name="input">The collection of integers in which to find
/// consecutive sequences.</param>
/// <param name="minLength">Minimum length that a sequence should have
/// to be returned.</param>
static IEnumerable<IEnumerable<int>> ConsecutiveSequences(
IEnumerable<int> input, int minLength = 1)
{
var results = new List<List<int>>();
foreach (var i in input.OrderBy(x => x))
{
var existing = results.FirstOrDefault(lst => lst.Last() + 1 == i);
if (existing == null)
results.Add(new List<int> { i });
else
existing.Add(i);
}
return minLength <= 1 ? results :
results.Where(lst => lst.Count >= minLength);
}
Benefits over the other solutions:
It can find sequences that overlap.
It’s properly reusable and documented.
I have not found any bugs ;-)
Here is how to solve the problem in a "LINQish" way:
int[] arr = new int[]{ 21, 4, 7, 9, 12, 22, 17, 8, 2, 20, 23 };
IOrderedEnumerable<int> sorted = arr.OrderBy(x => x);
int cnt = sorted.Count();
int[] sortedArr = sorted.ToArray();
IEnumerable<int> selected = sortedArr.Where((x, idx) =>
idx <= cnt - 3 && sortedArr[idx + 1] == x + 1 && sortedArr[idx + 2] == x + 2);
IEnumerable<int> result = selected.SelectMany(x => new int[] { x, x + 1, x + 2 }).Distinct();
Console.WriteLine(string.Join(",", result.Select(x=>x.ToString()).ToArray()));
Due to the array copying and reconstruction, this solution - of course - is not as efficient as the traditional solution with loops.
Not 100% Linq but here's a generic variant:
static IEnumerable<IEnumerable<TItem>> GetSequences<TItem>(
int minSequenceLength,
Func<TItem, TItem, bool> areSequential,
IEnumerable<TItem> items)
where TItem : IComparable<TItem>
{
items = items
.OrderBy(n => n)
.Distinct().ToArray();
var lastSelected = default(TItem);
var sequences =
from startItem in items
where startItem.Equals(items.First())
|| startItem.CompareTo(lastSelected) > 0
let sequence =
from item in items
where item.Equals(startItem) || areSequential(lastSelected, item)
select (lastSelected = item)
where sequence.Count() >= minSequenceLength
select sequence;
return sequences;
}
static void UsageInt()
{
var sequences = GetSequences(
3,
(a, b) => a + 1 == b,
new[] { 21, 4, 7, 9, 12, 22, 17, 8, 2, 20, 23 });
foreach (var sequence in sequences)
Console.WriteLine(string.Join(", ", sequence.ToArray()));
}
static void UsageChar()
{
var list = new List<char>(
"abcdefghijklmnopqrstuvwxyz".ToCharArray());
var sequences = GetSequences(
3,
(a, b) => (list.IndexOf(a) + 1 == list.IndexOf(b)),
"PleaseBeGentleWithMe".ToLower().ToCharArray());
foreach (var sequence in sequences)
Console.WriteLine(string.Join(", ", sequence.ToArray()));
}
Here's my shot at it:
public static class SequenceDetector
{
public static IEnumerable<IEnumerable<T>> DetectSequenceWhere<T>(this IEnumerable<T> sequence, Func<T, T, bool> inSequenceSelector)
{
List<T> subsequence = null;
// We can only have a sequence with 2 or more items
T last = sequence.FirstOrDefault();
foreach (var item in sequence.Skip(1))
{
if (inSequenceSelector(last, item))
{
// These form part of a sequence
if (subsequence == null)
{
subsequence = new List<T>();
subsequence.Add(last);
}
subsequence.Add(item);
}
else if (subsequence != null)
{
// We have a previous seq to return
yield return subsequence;
subsequence = null;
}
last = item;
}
if (subsequence != null)
{
// Return any trailing seq
yield return subsequence;
}
}
}
public class test
{
public static void run()
{
var list = new List<int> { 21, 4, 7, 9, 12, 22, 17, 8, 2, 20, 23 };
foreach (var subsequence in list
.OrderBy(i => i)
.Distinct()
.DetectSequenceWhere((first, second) => first + 1 == second)
.Where(seq => seq.Count() >= 3))
{
Console.WriteLine("Found subsequence {0}",
string.Join(", ", subsequence.Select(i => i.ToString()).ToArray()));
}
}
}
This returns the specific items that form the sub-sequences and permits any type of item and any definition of criteria so long as it can be determined by comparing adjacent items.
What about sorting the array then create another array that is the difference between each element the previous one
sortedArray = 8, 9, 10, 21, 22, 23, 24, 27, 30, 31, 32
diffArray = 1, 1, 11, 1, 1, 1, 3, 3, 1, 1
Now iterate through the difference array; if the difference equlas 1, increase the count of a variable, sequenceLength, by 1. If the difference is > 1, check the sequenceLength if it is >=2 then you have a sequence of at at least 3 consecutive elements. Then reset sequenceLenght to 0 and continue your loop on the difference array.
Here is a solution I knocked up in F#, it should be fairly easy to translate this into a C# LINQ query since fold is pretty much equivalent to the LINQ aggregate operator.
#light
let nums = [21;4;7;9;12;22;17;8;2;20;23]
let scanFunc (mainSeqLength, mainCounter, lastNum:int, subSequenceCounter:int, subSequence:'a list, foundSequences:'a list list) (num:'a) =
(mainSeqLength, mainCounter + 1,
num,
(if num <> lastNum + 1 then 1 else subSequenceCounter+1),
(if num <> lastNum + 1 then [num] else subSequence#[num]),
if subSequenceCounter >= 3 then
if mainSeqLength = mainCounter+1
then foundSequences # [subSequence#[num]]
elif num <> lastNum + 1
then foundSequences # [subSequence]
else foundSequences
else foundSequences)
let subSequences = nums |> Seq.sort |> Seq.fold scanFunc (nums |> Seq.length, 0, 0, 0, [], []) |> fun (_,_,_,_,_,results) -> results
Linq isn't the solution for everything, sometimes you're better of with a simple loop. Here's a solution, with just a bit of Linq to order the original sequences and filter the results
void Main()
{
var numbers = new[] { 21,4,7,9,12,22,17,8,2,20,23 };
var sequences =
GetSequences(numbers, (prev, curr) => curr == prev + 1);
.Where(s => s.Count() >= 3);
sequences.Dump();
}
public static IEnumerable<IEnumerable<T>> GetSequences<T>(
IEnumerable<T> source,
Func<T, T, bool> areConsecutive)
{
bool first = true;
T prev = default(T);
List<T> seq = new List<T>();
foreach (var i in source.OrderBy(i => i))
{
if (!first && !areConsecutive(prev, i))
{
yield return seq.ToArray();
seq.Clear();
}
first = false;
seq.Add(i);
prev = i;
}
if (seq.Any())
yield return seq.ToArray();
}
I thought of the same thing as Jon: to represent a range of consecutive integers all you really need are two measly integers! So I'd start there:
struct Range : IEnumerable<int>
{
readonly int _start;
readonly int _count;
public Range(int start, int count)
{
_start = start;
_count = count;
}
public int Start
{
get { return _start; }
}
public int Count
{
get { return _count; }
}
public int End
{
get { return _start + _count - 1; }
}
public IEnumerator<int> GetEnumerator()
{
for (int i = 0; i < _count; ++i)
{
yield return _start + i;
}
}
// Heck, why not?
public static Range operator +(Range x, int y)
{
return new Range(x.Start, x.Count + y);
}
// skipping the explicit IEnumerable.GetEnumerator implementation
}
From there, you can write a static method to return a bunch of these Range values corresponding to the consecutive numbers of your sequence.
static IEnumerable<Range> FindRanges(IEnumerable<int> source, int minCount)
{
// throw exceptions on invalid arguments, maybe...
var ordered = source.OrderBy(x => x);
Range r = default(Range);
foreach (int value in ordered)
{
// In "real" code I would've overridden the Equals method
// and overloaded the == operator to write something like
// if (r == Range.Empty) here... but this works well enough
// for now, since the only time r.Count will be 0 is on the
// first item.
if (r.Count == 0)
{
r = new Range(value, 1);
continue;
}
if (value == r.End)
{
// skip duplicates
continue;
}
else if (value == r.End + 1)
{
// "append" consecutive values to the range
r += 1;
}
else
{
// return what we've got so far
if (r.Count >= minCount)
{
yield return r;
}
// start over
r = new Range(value, 1);
}
}
// return whatever we ended up with
if (r.Count >= minCount)
{
yield return r;
}
}
Demo:
int[] numbers = new[] { 21, 4, 7, 9, 12, 22, 17, 8, 2, 20, 23 };
foreach (Range r in FindConsecutiveRanges(numbers, 3))
{
// Using .NET 3.5 here, don't have the much nicer string.Join overloads.
Console.WriteLine(string.Join(", ", r.Select(x => x.ToString()).ToArray()));
}
Output:
7, 8, 9
20, 21, 22, 23
Here's my LINQ-y take on the problem:
static IEnumerable<IEnumerable<int>>
ConsecutiveSequences(this IEnumerable<int> input, int minLength = 3)
{
int order = 0;
var inorder = new SortedSet<int>(input);
return from item in new[] { new { order = 0, val = inorder.First() } }
.Concat(
inorder.Zip(inorder.Skip(1), (x, val) =>
new { order = x + 1 == val ? order : ++order, val }))
group item.val by item.order into list
where list.Count() >= minLength
select list;
}
uses no explicit loops, but should still be O(n lg n)
uses SortedSet instead of .OrderBy().Distinct()
combines consecutive element with list.Zip(list.Skip(1))
Here's a solution using a Dictionary instead of a sort...
It adds the items to a Dictionary, and then for each value increments above and below to find the longest sequence.
It is not strictly LINQ, though it does make use of some LINQ functions, and I think it is more readable than a pure LINQ solution..
static void Main(string[] args)
{
var items = new[] { -1, 0, 1, 21, -2, 4, 7, 9, 12, 22, 17, 8, 2, 20, 23 };
IEnumerable<IEnumerable<int>> sequences = FindSequences(items, 3);
foreach (var sequence in sequences)
{ //print results to consol
Console.Out.WriteLine(sequence.Select(num => num.ToString()).Aggregate((a, b) => a + "," + b));
}
Console.ReadLine();
}
private static IEnumerable<IEnumerable<int>> FindSequences(IEnumerable<int> items, int minSequenceLength)
{
//Convert item list to dictionary
var itemDict = new Dictionary<int, int>();
foreach (int val in items)
{
itemDict[val] = val;
}
var allSequences = new List<List<int>>();
//for each val in items, find longest sequence including that value
foreach (var item in items)
{
var sequence = FindLongestSequenceIncludingValue(itemDict, item);
allSequences.Add(sequence);
//remove items from dict to prevent duplicate sequences
sequence.ForEach(i => itemDict.Remove(i));
}
//return only sequences longer than 3
return allSequences.Where(sequence => sequence.Count >= minSequenceLength).ToList();
}
//Find sequence around start param value
private static List<int> FindLongestSequenceIncludingValue(Dictionary<int, int> itemDict, int value)
{
var result = new List<int>();
//check if num exists in dictionary
if (!itemDict.ContainsKey(value))
return result;
//initialize sequence list
result.Add(value);
//find values greater than starting value
//and add to end of sequence
var indexUp = value + 1;
while (itemDict.ContainsKey(indexUp))
{
result.Add(itemDict[indexUp]);
indexUp++;
}
//find values lower than starting value
//and add to start of sequence
var indexDown = value - 1;
while (itemDict.ContainsKey(indexDown))
{
result.Insert(0, itemDict[indexDown]);
indexDown--;
}
return result;
}

Categories