I'm having some performance problems in an app that encrypts lots of strings. Most of the CPU use happens when I call the private method getAes() from a public method called Encrypt():
public static class CryptKeeper
{
const int HASH_SIZE = 32; //SHA256
/// <summary>
/// Encrypts a string message. Includes integrity checking.
/// </summary>
public static string Encrypt(string messageToEncrypt, string sharedSecret, string salt)
{
// Prepare message with hash
var messageBytes = Encoding.UTF8.GetBytes(messageToEncrypt);
var hashedMessageBytes = new byte[HASH_SIZE + messageBytes.Length];
var hash = Utilities.GenerateSha256Hash(messageBytes, 0, messageBytes.Length);
Buffer.BlockCopy(hash, 0, hashedMessageBytes, 0, HASH_SIZE);
Buffer.BlockCopy(messageBytes, 0, hashedMessageBytes, HASH_SIZE, messageBytes.Length);
// Encrypt message
using (var aes = getAes(sharedSecret, Encoding.UTF8.GetBytes(salt)))
{
aes.GenerateIV();
using (var encryptor = aes.CreateEncryptor())
{
var encryptedBytes = encryptor.TransformFinalBlock(hashedMessageBytes, 0, hashedMessageBytes.Length);
// Add the initialization vector
var result = new byte[aes.IV.Length + encryptedBytes.Length];
Buffer.BlockCopy(aes.IV, 0, result, 0, aes.IV.Length);
Buffer.BlockCopy(encryptedBytes, 0, result, aes.IV.Length, encryptedBytes.Length);
return Convert.ToBase64String(result);
}
}
}
public static string Decrypt(string encryptedMessage, string sharedSecret, string salt)
{
if (encryptedMessage == null) return null;
using (var aes = getAes(sharedSecret, Encoding.UTF8.GetBytes(salt)))
{
var iv = new byte[aes.IV.Length];
Buffer.BlockCopy(Convert.FromBase64String(encryptedMessage), 0, iv, 0, iv.Length);
aes.IV = iv;
using (var decryptor = aes.CreateDecryptor())
{
var decryptedBytes = decryptor.TransformFinalBlock(Convert.FromBase64String(encryptedMessage), iv.Length, Convert.FromBase64String(encryptedMessage).Length - iv.Length);
// Check hash
var hash = Utilities.GenerateSha256Hash(decryptedBytes, HASH_SIZE, decryptedBytes.Length - HASH_SIZE);
var existingHash = new byte[HASH_SIZE];
Buffer.BlockCopy(decryptedBytes, 0, existingHash, 0, HASH_SIZE);
if (!existingHash.compareBytesTo(hash))
{
throw new CryptographicException("Message hash invalid.");
}
// Hash is valid, we're done
var res = new byte[decryptedBytes.Length - HASH_SIZE];
Buffer.BlockCopy(decryptedBytes, HASH_SIZE, res, 0, res.Length);
return Encoding.UTF8.GetString(res);
}
}
}
private static Aes getAes(string sharedSecret, byte[] salt)
{
var aes = Aes.Create();
aes.Mode = CipherMode.CBC;
aes.Key = new Rfc2898DeriveBytes(sharedSecret, salt, 129).GetBytes(aes.KeySize / 8);
return aes;
}
}
I tried to improve performance by caching the AES object, but I am getting into unfamiliar territory:
public static class CryptKeeper
{
const int HASH_SIZE = 32; //SHA256
private static Aes aes;
/// <summary>
/// Encrypts a string message. Includes integrity checking.
/// </summary>
public static string Encrypt(string messageToEncrypt, string sharedSecret, string salt)
{
// unchanged
}
public static string Decrypt(string encryptedMessage, string sharedSecret, string salt)
{
// unchanged
}
private static Aes getAes(string sharedSecret, byte[] salt)
{
if (aes != null) return aes;
var aesNew = Aes.Create();
aesNew.Mode = CipherMode.CBC;
aesNew.Key = new Rfc2898DeriveBytes(sharedSecret, salt, 129).GetBytes(aesNew.KeySize / 8);
return aes = aesNew;
}
}
I get this error:
Safe handle has been closed
at System.Runtime.InteropServices.SafeHandle.DangerousAddRef(Boolean& success) at
System.StubHelpers.StubHelpers.SafeHandleAddRef(SafeHandle pHandle, Boolean& success) at
System.Security.Cryptography.CapiNative.UnsafeNativeMethods.CryptGenRandom(SafeCspHandle hProv, Int32 dwLen, Byte[] pbBuffer) at
System.Security.Cryptography.AesCryptoServiceProvider.GenerateIV() at
Obr.Lib.CryptKeeper.Encrypt(String messageToEncrypt, String sharedSecret, String salt) in ...CryptKeeper.cs:line 28 at
Obr.Lib.HtmlRenderer.renderLawCitation(RenderContext renderContext, XElement xElement) in ...HtmlRenderer.cs:line 1472
I understand that the using() statement in Encrypt() is going to dispose of AES and that is causing it to break. I don't want to troubleshoot further unless I know it's safe to reuse. If it is safe to reuse, what is the best way to do this?
Update: I have solved the performance problem by keeping the AES object around longer. I've removed the static keywords, and made the class disposable. Here's how it looks now:
public class CryptKeeper : IDisposable
{
const int HASH_SIZE = 32; //SHA256
private readonly Aes aes;
public CryptKeeper(string sharedSecret, string salt)
{
aes = Aes.Create();
aes.Mode = CipherMode.CBC;
aes.Key = new Rfc2898DeriveBytes(sharedSecret, Encoding.UTF8.GetBytes(salt), 129).GetBytes(aes.KeySize / 8);
}
/// <summary>
/// Encrypts a string message. Includes integrity checking.
/// </summary>
public string Encrypt(string messageToEncrypt)
{
// Prepare message with hash
var messageBytes = Encoding.UTF8.GetBytes(messageToEncrypt);
var hashedMessageBytes = new byte[HASH_SIZE + messageBytes.Length];
var hash = Utilities.GenerateSha256Hash(messageBytes, 0, messageBytes.Length);
Buffer.BlockCopy(hash, 0, hashedMessageBytes, 0, HASH_SIZE);
Buffer.BlockCopy(messageBytes, 0, hashedMessageBytes, HASH_SIZE, messageBytes.Length);
// Encrypt message
aes.GenerateIV();
using (var encryptor = aes.CreateEncryptor())
{
var encryptedBytes = encryptor.TransformFinalBlock(hashedMessageBytes, 0, hashedMessageBytes.Length);
// Add the initialization vector
var result = new byte[aes.IV.Length + encryptedBytes.Length];
Buffer.BlockCopy(aes.IV, 0, result, 0, aes.IV.Length);
Buffer.BlockCopy(encryptedBytes, 0, result, aes.IV.Length, encryptedBytes.Length);
return Convert.ToBase64String(result);
}
}
public string Decrypt(string encryptedMessage)
{
if (encryptedMessage == null) return null;
var iv = new byte[aes.IV.Length];
Buffer.BlockCopy(Convert.FromBase64String(encryptedMessage), 0, iv, 0, iv.Length);
aes.IV = iv;
using (var decryptor = aes.CreateDecryptor())
{
var decryptedBytes = decryptor.TransformFinalBlock(Convert.FromBase64String(encryptedMessage), iv.Length, Convert.FromBase64String(encryptedMessage).Length - iv.Length);
// Check hash
var hash = Utilities.GenerateSha256Hash(decryptedBytes, HASH_SIZE, decryptedBytes.Length - HASH_SIZE);
var existingHash = new byte[HASH_SIZE];
Buffer.BlockCopy(decryptedBytes, 0, existingHash, 0, HASH_SIZE);
if (!existingHash.compareBytesTo(hash))
{
throw new CryptographicException("Message hash invalid.");
}
// Hash is valid, we're done
var res = new byte[decryptedBytes.Length - HASH_SIZE];
Buffer.BlockCopy(decryptedBytes, HASH_SIZE, res, 0, res.Length);
return Encoding.UTF8.GetString(res);
}
}
bool disposed;
protected virtual void Dispose(bool disposing)
{
if (!disposed)
{
if (disposing)
{
aes.Dispose();
}
}
disposed = true;
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
}
I invoke it like this:
using (cryptKeeper = new CryptKeeper(Repository.AppSettings["SharedSecret"], Repository.AppSettings["Salt"]))
{
renderingReport.Rendering = renderSegmentNav(currentUser.UserOwnsProduct(productId), book, renderingReport, currentSegment);
}
This has improved performance tremendously. A previous call to an MVC controller that needed to build many encrypted links in its result took 2.7 seconds total. With the new code where AES is reused, it takes 0.3 seconds total.
I can confirm that the code works and is much, much faster. I just want to confirm that reuse of AES in this manner is not a BAD IDEA for security reasons. According to a little google searching, the fact that I am calling GenerateIV() each time is good, and I can't find anything saying I should not re-use the AES for as long as I like.
In general you can reuse objects that implement cryptographic algorithms in both Java and C#. You should however be sure that you always leave the encryptors and decryptors in the correct state. You should not use these classes for multi-threading purposes unless specifically specified.
Note that the reason that you are experiencing a slowdown is because of the PBKDF2 function within Rfc2898DeriveBytes. This method is deliberately slow. You may reuse the key that you get from Rfc2898DeriveBytes but you should be sure that you do not reuse any IV, the IV should be random. It does of course not make sense to call Rfc2898DeriveBytes derive bytes multiple times.
Finally, it could be somewhat beneficial to cache objects holding an AES key locally. First of all, you don't want any additional key objects around if you don't have to, and second, AES first calculates the subkeys from the given key which takes a small amount of time (although nowhere near the time it takes to execute Rfc2898DeriveBytes).
Then again, don't do this if it unnecessarily complicates your design. The advantages are not big enough for that.
Related
I would like to limit the length of the encrypted output code like 8 or 10 or 12 character etc.
I have created the very small encrypted coed using he "Advanced Encryption Standard (AES)" with Cryptography.SymmetricAlgorithm.IV.
But the result of the Encrypted code as example below:
Input Password = "090400551"
Converted Output = "mkopj3WFb6RZMp34urFLew==" // This should be half the length
I want to reduce the length of 8 to 12 character. Any C# cryptography library or algorithm would be fine
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
namespace AnotherEncryption
{
class Encryption
{
public static class Global
{
// set password
public const string strPassword = "090400551";
public const String strPermutation = "Secure1234";
public const Int32 bytePermutation1 = 0x78;
public const Int32 bytePermutation2 = 0x56;
public const Int32 bytePermutation3 = 0x34;
public const Int32 bytePermutation4 = 0x88;
}
static void Main(string[] args)
{
Console.Title = "Secure Password v2";
Console.WriteLine("Output---");
Console.WriteLine("");
Console.WriteLine("Password: " + Global.strPassword);
string strEncrypted = (Encrypt(Global.strPassword));
Console.WriteLine("Encrypted: " + strEncrypted);
string strDecrypted = Decrypt(strEncrypted);
Console.WriteLine("Decrypted: " + strDecrypted);
//mkopj3WFb6RZMp34urFLew==
Console.ReadKey();
}
public static string Encrypt(string strData)
{
byte[] test = Encoding.UTF8.GetBytes(strData);
return Convert.ToBase64String(Encrypt(test));
}
public static string Decrypt(string strData)
{
return Encoding.UTF8.GetString(Decrypt(Convert.FromBase64String(strData)));
}
// encrypt
public static byte[] Encrypt(byte[] strData)
{
PasswordDeriveBytes passbytes =
new PasswordDeriveBytes(Global.strPermutation,
new byte[] { Global.bytePermutation1,
Global.bytePermutation2,
Global.bytePermutation3,
Global.bytePermutation4
});
MemoryStream memstream = new MemoryStream();
Aes aes = new AesManaged();
aes.Key = passbytes.GetBytes(aes.KeySize / 8);
aes.IV = passbytes.GetBytes(aes.BlockSize / 8);
CryptoStream cryptostream = new CryptoStream(memstream, aes.CreateEncryptor(), CryptoStreamMode.Write);
cryptostream.Write(strData, 0, strData.Length);
cryptostream.Close();
return memstream.ToArray();
}
// decrypt
public static byte[] Decrypt(byte[] strData)
{
PasswordDeriveBytes passbytes =
new PasswordDeriveBytes(Global.strPermutation,
new byte[] { Global.bytePermutation1,
Global.bytePermutation2,
Global.bytePermutation3,
Global.bytePermutation4
});
MemoryStream memstream = new MemoryStream();
Aes aes = new AesManaged();
aes.Key = passbytes.GetBytes(aes.KeySize / 8);
aes.IV = passbytes.GetBytes(aes.BlockSize / 8);
CryptoStream cryptostream = new CryptoStream(memstream,
aes.CreateDecryptor(), CryptoStreamMode.Write);
cryptostream.Write(strData, 0, strData.Length);
cryptostream.Close();
return memstream.ToArray();
}
}
}
If you put Rijndael into CFB mode with a block size of 8, then it acts as a stream cipher - for every byte you put in, you get a byte out again.
public static void Main(string[] args)
{
var algorithm = new RijndaelManaged()
{
Mode = CipherMode.CFB,
// This is the equivalent of BlockSize in CFB mode. We set it to 8 (bits) to prevent any buffering of data
// while waiting for whole blocks.
FeedbackSize = 8,
};
// Don't hard-code in real life, obviously
var key = new byte[32];
var iv = new byte[16];
var input = new byte[] { 1, 2, 3 };
byte[] result;
using (var ms = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(ms, algorithm.CreateEncryptor(key, iv), CryptoStreamMode.Write))
{
cryptoStream.Write(input, 0, input.Length);
}
result = ms.ToArray();
}
}
Note that this only appears to work on .NET Framework - .NET Core doesn't seem to support CFB (see this GitHub issue).
Note that encryption doesn't prevent tampering! People can't read your plaintext message, but they can very easily change the ciphertext to control what it gets decrypted to. Stream ciphers tend to be particularly vulnerable to this. If you need to stop someone controlling what the encrypted output decrypts into, then you need a signature.
Also note that you should not use the same IV across multiple messages. Create a random IV, and transfer it alongside your message, frequently as the first 2 bytes.
First, I realize there are dozens of other posts that have answers to this question and I have read and tried them all. I still can't seem to get past this issue so am looking for a little help from somebody that knows more about crypto than I do.
Second, the code I am going to share is legacy and because I am not a crypto expert it is still not 100% clear on what everything means. It may be that some or all of this code is total rubbish and should be scrapped; however, there are a lot of other systems already using it and have stored encrypted values that have gone through this code. Changing things like the crypto algorithm is not exactly an option at this point. With that said, the private methods are the legacy code as well as the testing values (i.e. the encryption key) are all things that can't change. The two public static methods are what is new and likely causing problems, but I can't seem to figure it out.
On with the code......
class Program
{
public static string Encrypt(string key, string toEncrypt)
{
var keyArray = Convert.FromBase64String(key);
var info = Encoding.ASCII.GetBytes(toEncrypt);
var encrypted = Encrypt(keyArray, info);
return Encoding.ASCII.GetString(encrypted);
}
public static string Decrypt(string key, string cipherString)
{
var keyArray = Convert.FromBase64String(key);
var cipherText = Encoding.ASCII.GetBytes(cipherString);
var decrypted = Decrypt(keyArray, cipherText);
return Encoding.ASCII.GetString(decrypted);
}
private static byte[] Encrypt(byte[] key, byte[] info)
{
using (var cipher = Aes.Create())
{
cipher.Key = key;
cipher.Mode = CipherMode.CBC;
cipher.Padding = PaddingMode.ISO10126;
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, cipher.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(info, 0, info.Length);
}
var ciphertext = ms.ToArray();
var message = new byte[cipher.IV.Length + ciphertext.Length];
cipher.IV.CopyTo(message, 0);
ciphertext.CopyTo(message, cipher.IV.Length);
return message;
}
}
}
private static byte[] Decrypt(byte[] key, byte[] ciphertext)
{
using (var cipher = Aes.Create())
{
cipher.Key = key;
cipher.Mode = CipherMode.CBC;
cipher.Padding = PaddingMode.ISO10126;
var ivSize = cipher.IV.Length;
var iv = new byte[ivSize];
Array.Copy(ciphertext, iv, ivSize);
cipher.IV = iv;
var data = new byte[ciphertext.Length - ivSize];
Array.Copy(ciphertext, ivSize, data, 0, data.Length);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, cipher.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(data, 0, data.Length);
}
return ms.ToArray();
}
}
}
static void Main(string[] args)
{
var newEncryptionKey = Guid.NewGuid().ToString().Replace("-", string.Empty);
var encryptedValue = Encrypt(newEncryptionKey, "test");
Console.WriteLine($"New encrypted value: {encryptedValue}");
var decryptedValue = Decrypt(newEncryptionKey, encryptedValue);
Console.WriteLine($"New decrypted value: {decryptedValue}");
}
}
So there it is. Basically, I am trying to use a test string of "test" and encrypt it using a GUID as a key. Again, I didn't choose this key and there are encrypted values already using a GUID as a key so I can't change that if at all possible. The encryption works fine, but when I go to do the decryption, I get the exception noted in the title of this question.
Any help would be GREATLY appreciated.
You can't just convert a byte[] of ciphertext to ASCII. It doesn't work like that. Character encodings are scary beasts and should not be muddled with if you don't understand them. I don't think there is a real person alive that does ;)
What you should do instead is return your result as base64, which is still a collection of ASCII characters but they are safe to be moved around as a string, and don't result in the loss of any characters.
See the modified code below:
public static string Encrypt(string key, string toEncrypt)
{
var keyArray = Convert.FromBase64String(key);
var info = Encoding.ASCII.GetBytes(toEncrypt);
var encrypted = Encrypt(keyArray, info);
return Convert.ToBase64String(encrypted);
}
public static string Decrypt(string key, string cipherString)
{
var keyArray = Convert.FromBase64String(key);
var cipherText = Convert.FromBase64String(cipherString);
var decrypted = Decrypt(keyArray, cipherText);
return Encoding.ASCII.GetString(decrypted);
}
Getting Exception " length of the data to ENCRYPTION is invalid".
private static readonly byte[] salt = Encoding.ASCII.GetBytes("S#sh#kt# VMS");
public static string Encrypt(string textToEncrypt, string encryptionPassword)
{
byte[] encryptedBytes = null;
try
{
var algorithm = GetAlgorithm(encryptionPassword);
algorithm.Padding = PaddingMode.None;
using (ICryptoTransform encryptor = algorithm.CreateEncryptor(algorithm.Key, algorithm.IV))
{
byte[] bytesToEncrypt = Encoding.UTF8.GetBytes(textToEncrypt);
encryptedBytes = InMemoryCrypt(bytesToEncrypt, encryptor);
}
}
catch (Exception ex)
{
MessageBox.Show(ex.Message);
}
return Convert.ToBase64String(encryptedBytes);
}
// Performs an in-memory encrypt/decrypt transformation on a byte array.
private static byte[] InMemoryCrypt(byte[] data, ICryptoTransform transform)
{
MemoryStream memory = new MemoryStream();
using (Stream stream = new CryptoStream(memory, transform, CryptoStreamMode.Write))
{
stream.Flush();
stream.Write(data, 0, data.Length);
//stream.FlushFinalBlock();
}
return memory.ToArray();
}
private static RijndaelManaged GetAlgorithm(string encryptionPassword)
{
// Create an encryption key from the encryptionPassword and salt.
var key = new Rfc2898DeriveBytes(encryptionPassword, salt);
// Declare that we are going to use the Rijndael algorithm with the key that we've just got.
var algorithm = new RijndaelManaged();
int bytesForKey = algorithm.KeySize/8;
int bytesForIV = algorithm.BlockSize/8;
algorithm.Key = key.GetBytes(bytesForKey);
algorithm.IV = key.GetBytes(bytesForIV);
return algorithm;
}
And the decryption routine is:
public static string Decrypt(string encryptedText, string encryptionPassword)
{
var algorithm = GetAlgorithm(encryptionPassword);
algorithm.Padding = PaddingMode.PKCS7;
byte[] descryptedBytes;
using (ICryptoTransform decryptor = algorithm.CreateDecryptor(algorithm.Key, algorithm.IV))
{
byte[] encryptedBytes = Convert.FromBase64String(encryptedText);
descryptedBytes = InMemoryCrypt(encryptedBytes, decryptor);
}
return Encoding.UTF8.GetString(descryptedBytes);
}
PaddingMode.None requires that the input is a multiple of the block size. Use somethink like PaddingMode.PKCS7 instread.
A few other issues with your code:
A constant doesn't make a good salt
The constant salt together with deterministic derivation of the IV from the password means that you're reusing (Key, IV) pairs, which should not be done
You don't add authentication/some kind of MAC. That often leads to padding oracles or similar attacks
You read more the native size from the PBKDF2 output. That halves your key derivation speed without slowing down an attacker.
This question already has answers here:
Encrypt and decrypt a string in C#? [closed]
(29 answers)
Closed 6 years ago.
What is the most modern (best) way of satisfying the following in C#?
string encryptedString = SomeStaticClass.Encrypt(sourceString);
string decryptedString = SomeStaticClass.Decrypt(encryptedString);
BUT with a minimum of fuss involving salts, keys, mucking about with byte[], etc.
Been Googling and confused at what I'm finding (you can see the list of similar SO Qs to see this is a deceptive question to ask).
UPDATE 23/Dec/2015: Since this answer seems to be getting a lot of upvotes, I've updated it to fix silly bugs and to generally improve the code based upon comments and feedback. See the end of the post for a list of specific improvements.
As other people have said, Cryptography is not simple so it's best to avoid "rolling your own" encryption algorithm.
You can, however, "roll your own" wrapper class around something like the built-in RijndaelManaged cryptography class.
Rijndael is the algorithmic name of the current Advanced Encryption Standard, so you're certainly using an algorithm that could be considered "best practice".
The RijndaelManaged class does indeed normally require you to "muck about" with byte arrays, salts, keys, initialization vectors etc. but this is precisely the kind of detail that can be somewhat abstracted away within your "wrapper" class.
The following class is one I wrote a while ago to perform exactly the kind of thing you're after, a simple single method call to allow some string-based plaintext to be encrypted with a string-based password, with the resulting encrypted string also being represented as a string. Of course, there's an equivalent method to decrypt the encrypted string with the same password.
Unlike the first version of this code, which used the exact same salt and IV values every time, this newer version will generate random salt and IV values each time. Since salt and IV must be the same between the encryption and decryption of a given string, the salt and IV is prepended to the cipher text upon encryption and extracted from it again in order to perform the decryption. The result of this is that encrypting the exact same plaintext with the exact same password gives and entirely different ciphertext result each time.
The "strength" of using this comes from using the RijndaelManaged class to perform the encryption for you, along with using the Rfc2898DeriveBytes function of the System.Security.Cryptography namespace which will generate your encryption key using a standard and secure algorithm (specifically, PBKDF2) based upon the string-based password you supply. (Note this is an improvement of the first version's use of the older PBKDF1 algorithm).
Finally, it's important to note that this is still unauthenticated encryption. Encryption alone provides only privacy (i.e. message is unknown to 3rd parties), whilst authenticated encryption aims to provide both privacy and authenticity (i.e. recipient knows message was sent by the sender).
Without knowing your exact requirements, it's difficult to say whether the code here is sufficiently secure for your needs, however, it has been produced to deliver a good balance between relative simplicity of implementation vs "quality". For example, if your "receiver" of an encrypted string is receiving the string directly from a trusted "sender", then authentication may not even be necessary.
If you require something more complex, and which offers authenticated encryption, check out this post for an implementation.
Here's the code:
using System;
using System.Text;
using System.Security.Cryptography;
using System.IO;
using System.Linq;
namespace EncryptStringSample
{
public static class StringCipher
{
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 256;
// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;
public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = Generate256BitsOfRandomEntropy();
var ivStringBytes = Generate256BitsOfRandomEntropy();
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}
public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
using (var streamReader = new StreamReader(cryptoStream, Encoding.UTF8))
{
return streamReader.ReadToEnd();
}
}
}
}
}
}
private static byte[] Generate256BitsOfRandomEntropy()
{
var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits.
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
}
}
The above class can be used quite simply with code similar to the following:
using System;
namespace EncryptStringSample
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Please enter a password to use:");
string password = Console.ReadLine();
Console.WriteLine("Please enter a string to encrypt:");
string plaintext = Console.ReadLine();
Console.WriteLine("");
Console.WriteLine("Your encrypted string is:");
string encryptedstring = StringCipher.Encrypt(plaintext, password);
Console.WriteLine(encryptedstring);
Console.WriteLine("");
Console.WriteLine("Your decrypted string is:");
string decryptedstring = StringCipher.Decrypt(encryptedstring, password);
Console.WriteLine(decryptedstring);
Console.WriteLine("");
Console.WriteLine("Press any key to exit...");
Console.ReadLine();
}
}
}
(You can download a simple VS2013 sample solution (which includes a few unit tests) here).
UPDATE 23/Dec/2015:
The list of specific improvements to the code are:
Fixed a silly bug where encoding was different between encrypting and
decrypting. As the mechanism by which salt & IV values are generated has changed, encoding is no longer necessary.
Due to the salt/IV change, the previous code comment that incorrectly indicated that UTF8 encoding a 16 character string produces 32 bytes is no longer applicable (as encoding is no longer necessary).
Usage of the superseded PBKDF1 algorithm has been replaced with usage of the more modern PBKDF2 algorithm.
The password derivation is now properly salted whereas previously it wasn't salted at all (another silly bug squished).
using System.IO;
using System.Text;
using System.Security.Cryptography;
public static class EncryptionHelper
{
public static string Encrypt(string clearText)
{
string EncryptionKey = "abc123";
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
public static string Decrypt(string cipherText)
{
string EncryptionKey = "abc123";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
}
If you are targeting ASP.NET Core that does not support RijndaelManaged yet, you can use IDataProtectionProvider.
First, configure your application to use data protection:
public class Startup
{
public void ConfigureServices(IServiceCollection services)
{
services.AddDataProtection();
}
// ...
}
Then you'll be able to inject IDataProtectionProvider instance and use it to encrypt/decrypt data:
public class MyService : IService
{
private const string Purpose = "my protection purpose";
private readonly IDataProtectionProvider _provider;
public MyService(IDataProtectionProvider provider)
{
_provider = provider;
}
public string Encrypt(string plainText)
{
var protector = _provider.CreateProtector(Purpose);
return protector.Protect(plainText);
}
public string Decrypt(string cipherText)
{
var protector = _provider.CreateProtector(Purpose);
return protector.Unprotect(cipherText);
}
}
See this article for more details.
Try this class:
public class DataEncryptor
{
TripleDESCryptoServiceProvider symm;
#region Factory
public DataEncryptor()
{
this.symm = new TripleDESCryptoServiceProvider();
this.symm.Padding = PaddingMode.PKCS7;
}
public DataEncryptor(TripleDESCryptoServiceProvider keys)
{
this.symm = keys;
}
public DataEncryptor(byte[] key, byte[] iv)
{
this.symm = new TripleDESCryptoServiceProvider();
this.symm.Padding = PaddingMode.PKCS7;
this.symm.Key = key;
this.symm.IV = iv;
}
#endregion
#region Properties
public TripleDESCryptoServiceProvider Algorithm
{
get { return symm; }
set { symm = value; }
}
public byte[] Key
{
get { return symm.Key; }
set { symm.Key = value; }
}
public byte[] IV
{
get { return symm.IV; }
set { symm.IV = value; }
}
#endregion
#region Crypto
public byte[] Encrypt(byte[] data) { return Encrypt(data, data.Length); }
public byte[] Encrypt(byte[] data, int length)
{
try
{
// Create a MemoryStream.
var ms = new MemoryStream();
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
var cs = new CryptoStream(ms,
symm.CreateEncryptor(symm.Key, symm.IV),
CryptoStreamMode.Write);
// Write the byte array to the crypto stream and flush it.
cs.Write(data, 0, length);
cs.FlushFinalBlock();
// Get an array of bytes from the
// MemoryStream that holds the
// encrypted data.
byte[] ret = ms.ToArray();
// Close the streams.
cs.Close();
ms.Close();
// Return the encrypted buffer.
return ret;
}
catch (CryptographicException ex)
{
Console.WriteLine("A cryptographic error occured: {0}", ex.Message);
}
return null;
}
public string EncryptString(string text)
{
return Convert.ToBase64String(Encrypt(Encoding.UTF8.GetBytes(text)));
}
public byte[] Decrypt(byte[] data) { return Decrypt(data, data.Length); }
public byte[] Decrypt(byte[] data, int length)
{
try
{
// Create a new MemoryStream using the passed
// array of encrypted data.
MemoryStream ms = new MemoryStream(data);
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream cs = new CryptoStream(ms,
symm.CreateDecryptor(symm.Key, symm.IV),
CryptoStreamMode.Read);
// Create buffer to hold the decrypted data.
byte[] result = new byte[length];
// Read the decrypted data out of the crypto stream
// and place it into the temporary buffer.
cs.Read(result, 0, result.Length);
return result;
}
catch (CryptographicException ex)
{
Console.WriteLine("A cryptographic error occured: {0}", ex.Message);
}
return null;
}
public string DecryptString(string data)
{
return Encoding.UTF8.GetString(Decrypt(Convert.FromBase64String(data))).TrimEnd('\0');
}
#endregion
}
and use it like this:
string message="A very secret message here.";
DataEncryptor keys=new DataEncryptor();
string encr=keys.EncryptString(message);
// later
string actual=keys.DecryptString(encr);
If you need to store a password in memory and would like to have it encrypted you should use SecureString:
http://msdn.microsoft.com/en-us/library/system.security.securestring.aspx
For more general uses I would use a FIPS approved algorithm such as Advanced Encryption Standard, formerly known as Rijndael. See this page for an implementation example:
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndael.aspx
You may be looking for the ProtectedData class, which encrypts data using the user's logon credentials.
The easiest way that I've seen to do encryption is through RSA
Check out the MSDN on it: http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.aspx
It does involve using bytes, but when it comes down to it you kind of do want encryption and decryption to be tough to figure out otherwise it will be easy to hack.
per my question Aes Encryption... missing an important piece, I have now learned that my assumption for creating a reversible encryption on a string was a bit off. I now have
public static byte[] EncryptString(string toEncrypt, byte[] encryptionKey)
{
var toEncryptBytes = Encoding.UTF8.GetBytes(toEncrypt);
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
provider.Mode = CipherMode.CBC;
provider.Padding = PaddingMode.PKCS7;
using (var encryptor = provider.CreateEncryptor(provider.Key, provider.IV))
{
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write))
{
cs.Write(toEncryptBytes, 0, toEncryptBytes.Length);
cs.FlushFinalBlock();
}
return ms.ToArray();
}
}
}
}
and this produces consistent results; however, I will not be able to decrypt without knowing/ setting the initialization vector. I really do not want to pass three values into this method (on for the IV), which leaves me with hardcoding the IV or deriving it from the key. I'd like to know if this is a good practice, or if it will render the encrypted value vulnerable to attack somehow... or am I really overthinking this and should just hardcode the IV?
UPDATE
Per Iridium's suggestion, I tried something like this instead:
public static byte[] EncryptString(string toEncrypt, byte[] encryptionKey)
{
if (string.IsNullOrEmpty(toEncrypt)) throw new ArgumentException("toEncrypt");
if (encryptionKey == null || encryptionKey.Length == 0) throw new ArgumentException("encryptionKey");
var toEncryptBytes = Encoding.UTF8.GetBytes(toEncrypt);
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
provider.Mode = CipherMode.CBC;
provider.Padding = PaddingMode.PKCS7;
using (var encryptor = provider.CreateEncryptor(provider.Key, provider.IV))
{
using (var ms = new MemoryStream())
{
ms.Write(provider.IV, 0, 16);
using (var cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write))
{
cs.Write(toEncryptBytes, 0, toEncryptBytes.Length);
cs.FlushFinalBlock();
}
return ms.ToArray();
}
}
}
}
public static string DecryptString(byte[] encryptedString, byte[] encryptionKey)
{
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
provider.Mode = CipherMode.CBC;
provider.Padding = PaddingMode.PKCS7;
using (var ms = new MemoryStream(encryptedString))
{
byte[] buffer;
ms.Read(buffer, 0, 16);
provider.IV = buffer;
using (var decryptor = provider.CreateDecryptor(provider.Key, provider.IV))
{
using (var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read))
{
byte[] decrypted = new byte[encryptedString.Length];
var byteCount = cs.Read(decrypted, 0, encryptedString.Length);
return Encoding.UTF8.GetString(decrypted, 0, byteCount);
}
}
}
}
}
however, this shows something odd in my unit test:
[TestMethod]
public void EncryptionClosedLoopTest()
{
var roundtrip = "This is the data I am encrypting. There are many like it but this is my encryption.";
var encrypted = Encryption.EncryptString(roundtrip, encryptionKey);
var decrypted = Encryption.DecryptString(encrypted, encryptionKey);
Assert.IsTrue(roundtrip == decrypted);
}
my decrypted text shows up as "92ʪ�F"�,hpv0�� I am encrypting. There are many like it but this is my encryption." which seems almost right but of course completely wrong. It looks like I'm close though. Am I missing an offset on the memory stream?
The IV should be random and unique for every run of your encryption method. Deriving it from the key/message or hard-coding it is not sufficiently secure. The IV can be generated within this method, instead of passed into it, and written to the output stream prior to the encrypted data.
When decrypting, the IV can then be read from the input before the encrypted data.
When Encrypting, generate your IV and pre-pend it to the cipher text (something like this)
using (var aes= new AesCryptoServiceProvider()
{
Key = PrivateKey,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
var input = Encoding.UTF8.GetBytes(originalPayload);
aes.GenerateIV();
var iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(aes.Key, iv))
using (var cipherStream = new MemoryStream())
{
using (var tCryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var tBinaryWriter = new BinaryWriter(tCryptoStream))
{
//Prepend IV to data
//tBinaryWriter.Write(iv); This is the original broken code, it encrypts the iv
cipherStream.Write(iv); //Write iv to the plain stream (not tested though)
tBinaryWriter.Write(input);
tCryptoStream.FlushFinalBlock();
}
string encryptedPayload = Convert.ToBase64String(cipherStream.ToArray());
}
}
When decrypting this back, get first 16 bytes out and use it in crypto stream
var aes= new AesCryptoServiceProvider()
{
Key = PrivateKey,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
};
//get first 16 bytes of IV and use it to decrypt
var iv = new byte[16];
Array.Copy(input, 0, iv, 0, iv.Length);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aes.CreateDecryptor(aes.Key, iv), CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cs))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
input,
iv.Length,
input.Length - iv.Length
);
}
return Encoding.Default.GetString(ms.ToArray());
}
Great input from folks. I took the combined answers from ankurpatel and Konstantin and cleaned it up and added some convenient method overrides. This works as of June 2019 in .NET Core 2.2.
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
private const int AesKeySize = 16;
public static void Main()
{
// the data to encrypt
var message = "Here is some data to encrypt!";
// create KeySize character key
var key = "g(KMDu(EEw63.*V`";
// encrypt the string to a string
var encrypted = AesEncrypt(message, key);
// decrypt the string to a string.
var decrypted = AesDecrypt(encrypted, key);
// display the original data and the decrypted data
Console.WriteLine($"Original: text: {encrypted}");
Console.WriteLine($"Round Trip: text: {decrypted}");
}
static string AesEncrypt(string data, string key)
{
return AesEncrypt(data, Encoding.UTF8.GetBytes(key));
}
static string AesDecrypt(string data, string key)
{
return AesDecrypt(data, Encoding.UTF8.GetBytes(key));
}
static string AesEncrypt(string data, byte[] key)
{
return Convert.ToBase64String(AesEncrypt(Encoding.UTF8.GetBytes(data), key));
}
static string AesDecrypt(string data, byte[] key)
{
return Encoding.UTF8.GetString(AesDecrypt(Convert.FromBase64String(data), key));
}
static byte[] AesEncrypt(byte[] data, byte[] key)
{
if (data == null || data.Length <= 0)
{
throw new ArgumentNullException($"{nameof(data)} cannot be empty");
}
if (key == null || key.Length != AesKeySize)
{
throw new ArgumentException($"{nameof(key)} must be length of {AesKeySize}");
}
using (var aes = new AesCryptoServiceProvider
{
Key = key,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
aes.GenerateIV();
var iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(aes.Key, iv))
using (var cipherStream = new MemoryStream())
{
using (var tCryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var tBinaryWriter = new BinaryWriter(tCryptoStream))
{
// prepend IV to data
cipherStream.Write(iv);
tBinaryWriter.Write(data);
tCryptoStream.FlushFinalBlock();
}
var cipherBytes = cipherStream.ToArray();
return cipherBytes;
}
}
}
static byte[] AesDecrypt(byte[] data, byte[] key)
{
if (data == null || data.Length <= 0)
{
throw new ArgumentNullException($"{nameof(data)} cannot be empty");
}
if (key == null || key.Length != AesKeySize)
{
throw new ArgumentException($"{nameof(key)} must be length of {AesKeySize}");
}
using (var aes = new AesCryptoServiceProvider
{
Key = key,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
// get first KeySize bytes of IV and use it to decrypt
var iv = new byte[AesKeySize];
Array.Copy(data, 0, iv, 0, iv.Length);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aes.CreateDecryptor(aes.Key, iv), CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cs))
{
// decrypt cipher text from data, starting just past the IV
binaryWriter.Write(
data,
iv.Length,
data.Length - iv.Length
);
}
var dataBytes = ms.ToArray();
return dataBytes;
}
}
}
I modified your decryption method as follows and it works:
public static string DecryptString(byte[] encryptedString, byte[] encryptionKey)
{
using (var provider = new AesCryptoServiceProvider())
{
provider.Key = encryptionKey;
using (var ms = new MemoryStream(encryptedString))
{
// Read the first 16 bytes which is the IV.
byte[] iv = new byte[16];
ms.Read(iv, 0, 16);
provider.IV = iv;
using (var decryptor = provider.CreateDecryptor())
{
using (var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read))
{
using (var sr = new StreamReader(cs))
{
return sr.ReadToEnd();
}
}
}
}
}
}
The problem with your implementation is that you are reading too many bytes into the CryptoStream. You really need to read encryptedText.Length - 16. Using a StreamReader simplifies this, since you don't need to worry about offsets anywhere anymore.
The accepted answer is correct, but doesn't provide a good example of how to get a random IV.
It turns out that this is a lot easier than people are trying to make it. The AesCryptoServiceProvider in .NET automatically generates a cryptographically random IV every time you construct one. And if you need to use the same instance for multiple encryptions, you can call GenerateIV()
You can also prepend the IV to the encrypted value before returning it and have the decrypting end pull it off
private static void Main(string[] args) {
var rnd = new Random();
var key = new byte[32]; // For this example, I'll use a random 32-byte key.
rnd.NextBytes(key);
var message = "This is a test";
// Looping to encrypt the same thing twice just to show that the IV changes.
for (var i = 0; i < 2; ++i) {
var encrypted = EncryptString(message, key);
Console.WriteLine(encrypted);
Console.WriteLine(DecryptString(encrypted, key));
}
}
public static string EncryptString(string message, byte[] key) {
var aes = new AesCryptoServiceProvider();
var iv = aes.IV;
using (var memStream = new System.IO.MemoryStream()) {
memStream.Write(iv, 0, iv.Length); // Add the IV to the first 16 bytes of the encrypted value
using (var cryptStream = new CryptoStream(memStream, aes.CreateEncryptor(key, aes.IV), CryptoStreamMode.Write)) {
using (var writer = new System.IO.StreamWriter(cryptStream)) {
writer.Write(message);
}
}
var buf = memStream.ToArray();
return Convert.ToBase64String(buf, 0, buf.Length);
}
}
public static string DecryptString(string encryptedValue, byte[] key) {
var bytes = Convert.FromBase64String(encryptedValue);
var aes = new AesCryptoServiceProvider();
using (var memStream = new System.IO.MemoryStream(bytes)) {
var iv = new byte[16];
memStream.Read(iv, 0, 16); // Pull the IV from the first 16 bytes of the encrypted value
using (var cryptStream = new CryptoStream(memStream, aes.CreateDecryptor(key, iv), CryptoStreamMode.Read)) {
using (var reader = new System.IO.StreamReader(cryptStream)) {
return reader.ReadToEnd();
}
}
}
}
[EDIT: I modified my answer to include how to pass the IV in the encrypted value and get it when decrypting. I also refactored the example a bit]
In order to resolve the setting of IV on the provider (As Iridium pointed out):
ms.Read(provider.IV, 0, 16);
I added the following to your code:
var iv = new byte[provider.IV.Length];
memoryStream.Read(iv, 0, provider.IV.Length);
using (var decryptor = provider.CreateDecryptor(key, iv);
granted, my key is not set by the provider on each run. I generated it once and then stored it. The IV is randomly generated off of the provider for each encryption.
In my case, to generate the IV, I use something like this
/// <summary>
/// Derives password bytes
/// </summary>
/// <param name="Password">password</param>
/// <returns>derived bytes</returns>
private Rfc2898DeriveBytes DerivePass(string Password)
{
byte[] hash = CalcHash(Password);
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(Password, hash, _KEY_ITER);
return pdb;
}
/// <summary>
/// calculates the hash of the given string
/// </summary>
/// <param name="buffer">string to hash</param>
/// <returns>hash value (byte array)</returns>
private byte[] CalcHash(string buffer)
{
RIPEMD160 hasher = RIPEMD160.Create();
byte[] data = Encoding.UTF8.GetBytes(buffer);
return hasher.ComputeHash(data);
}
that is, I calculate the password hash using RIPEMD160 and use it to generate the derived bytes, at that point, when it comes to intializing the encryption/decryption I just use something like this
Rfc2898DeriveBytes pdb = DerivePass(Password);
SymmetricAlgorithm alg = _engine;
alg.Key = pdb.GetBytes(_keySize);
alg.IV = pdb.GetBytes(_IVSize);
I don't know if it's "correct" (probably crypto gurus here will shoot at me :D), but, at least, it gives me a decent IV and I don't have to store it "somewhere" since just entering the correct password will give back the needed IV value; as a note, the _engine in the above example is declared as "SymmetricAlgorithm" and initialized using something like this
_engine = Rijndael.Create();
_keySize = (_engine.KeySize / 8);
_IVSize = (_engine.BlockSize / 8);
which creates the desired crypto objects and initializes the key and IV sizes
To generate random IV you would need a truly random number. Whichever language specific API you use for generating the random number, should generate true random number. Both android and ios have apis which generate random numbers based on sensor data.
I recently implemented AES 256 with random IV (Generated using really random numbers) and hashed key. For more secure(random IV + hashed key) cross platform (android, ios, c#) implementation of AES see my answer here - https://stackoverflow.com/a/24561148/2480840