ReSharper. Why convert to an autoproperty? - c#

Resharper is suggesting I change the following code to an auto-property. Can anyone explain why this would be better?
private List<Configuration> _configurations;
public List<Configuration> Configurations
{
get { return _configurations; }
set { _configurations = value; }
}
To:
public List<Configuration> Configurations { get; set; }
Why is it okay to do this to primitive types but suggests this way for object types?

Consider both equivalent pieces of code:
private List<Configuration> _configurations;
public List<Configuration> Configurations
{
get { return _configurations; }
set { _configurations = value; }
}
and
public List<Configuration> Configurations { get; set; }
To a reader, assuming she is knowledgeable of C#, the second piece code is very quick to read. The first one takes longer and does not add any information. In fact, it adds useless information: I have a property Configurations, but I also have an equivalent field _configurations, and the code in the rest of the class may use any of them, so I have to take them both into account. Now imagine your class has fifteen properties like this one, for instance. Using automatic properties you greatly reduce complexity for whoever is reading the code.
Besides, if you consistently use automatic properties, whenever you write a non-automatic one the reader is warned immediately that there is something going on there. This useful information is hidden if you don't use automatic properties.
In summary, consistent use of automatic properties:
Reduces code length
Reduces the time needed for reading and understanding a class
Hides useless information
Makes useful information easier to find
What's not to like?

The behaviour between both codes is the same, auto properties are just syntax sugar to make properties without logic easier to read.
See the MSDN documentation for more explanations :
In C# 3.0 and later, auto-implemented properties make
property-declaration more concise when no additional logic is required
in the property accessors.

I guess re-sharper has determined that an auto-property would be better here as your code is simply getting and setting a backing variable, in the same way that an auto-property would do.
Had re-sharper detected that your getter and setter were going more than just assigning to and reading from the backing variable, my assumption is that it would not be an issue.
I'm not a fan of re-sharper, for various reasons. I prefer using StyleCop and Code Analysis (FXCop), however it has it's benefits in that it can help make your code more readable and maintainable. That's all its trying to do here really.

If you are not doing anything clever in the properties then it simply reduces the code, and enhances the readability of the code - behind the scenes it produces the same code.
The only time you wouldn't want to do this is if you wanted to do something like this:
private readonly List<Configuration> _configurations = new List<Configuration>();
public List<Configuration> Configurations
{
get { return _configurations; }
}
Which I would probably recommend as the property will then never be null.

The only (temporarily?) advantage of using the old notation is that you are able to break on the set and get methods when they are hit.

Related

Is there any reason to use field over automatic property? [duplicate]

I just realized that the C# property construct can also be used with a private access modifier:
private string Password { get; set; }
Although this is technically interesting, I can't imagine when I would use it since a private field involves even less ceremony:
private string _password;
and I can't imagine when I would ever need to be able to internally get but not set or set but not get a private field:
private string Password { get; }
or
private string Password { set; }
but perhaps there is a use case with nested / inherited classes or perhaps where a get/set might contain logic instead of just giving back the value of the property, although I would tend to keep properties strictly simple and let explicit methods do any logic, e.g. GetEncodedPassword().
Does anyone use private properties in C# for any reason or is it just one of those technically-possible-yet-rarely-used-in-actual-code constructs?
Addendum
Nice answers, reading through them I culled these uses for private properties:
when private fields need to be lazily loaded
when private fields need extra logic or are calculated values
since private fields can be difficult to debug
in order to "present a contract to yourself"
to internally convert/simplify an exposed property as part of serialization
wrapping global variables to be used inside your class
I use them if I need to cache a value and want to lazy load it.
private string _password;
private string Password
{
get
{
if (_password == null)
{
_password = CallExpensiveOperation();
}
return _password;
}
}
The primary usage of this in my code is lazy initialization, as others have mentioned.
Another reason for private properties over fields is that private properties are much, much easier to debug than private fields. I frequently want to know things like "this field is getting set unexpectedly; who is the first caller that sets this field?" and it is way easier if you can just put a breakpoint on the setter and hit go. You can put logging in there. You can put performance metrics in there. You can put in consistency checks that run in the debug build.
Basically, it comes down to : code is far more powerful than data. Any technique that lets me write the code I need is a good one. Fields don't let you write code in them, properties do.
perhaps there is a use case with nested / inherited classes or perhaps where a get/set might contain logic instead of just giving back the value of the property
I personally use this even when I don't need logic on the getter or setter of a property. Using a property, even a private one, does help future-proof your code so that you can add the logic to a getter later, if required.
If I feel that a property may eventually require extra logic, I will sometimes wrap it into a private property instead of using a field, just so I don't have to change my code later.
In a semi-related case (though different than your question), I very frequently use the private setters on public properties:
public string Password
{
get;
private set;
}
This gives you a public getter, but keeps the setter private.
One good usage for private get only properties are calculated values. Several times I've had properties which are private readonly and just do a calculation over other fields in my type. It's not worthy of a method and not interesting to other classes so private property it is.
Lazy initialization is one place where they can be neat, e.g.
private Lazy<MyType> mytype = new Lazy<MyType>(/* expensive factory function */);
private MyType MyType { get { return this.mytype.Value; } }
// In C#6, you replace the last line with: private MyType MyType => myType.Value;
Then you can write: this.MyType everywhere rather than this.mytype.Value and encapsulate the fact that it is lazily instantiated in a single place.
One thing that's a shame is that C# doesn't support scoping the backing field to the property (i.e. declaring it inside the property definition) to hide it completely and ensure that it can only ever be accessed via the property.
The only one usage that I can think of
private bool IsPasswordSet
{
get
{
return !String.IsNullOrEmpty(_password);
}
}
Properties and fields are not one to one. A property is about the interface of a class (whether talking about its public or internal interface), while a field is about the class's implementation. Properties should not be seen as a way to just expose fields, they should be seen as a way to expose the intent and purpose of the class.
Just like you use properties to present a contract to your consumers on what constitutes your class, you can also present a contract to yourself for very similar reasons. So yes, I do use private properties when it makes sense. Sometimes a private property can hide away implementation details like lazy loading, the fact that a property is really a conglomeration of several fields and aspects, or that a property needs to be virtually instantiated with each call (think DateTime.Now). There are definitely times when it makes sense to enforce this even on yourself in the backend of the class.
I use them in serialization, with things like DataContractSerializer or protobuf-net which support this usage (XmlSerializer doesn't). It is useful if you need to simplify an object as part of serialization:
public SomeComplexType SomeProp { get;set;}
[DataMember(Order=1)]
private int SomePropProxy {
get { return SomeProp.ToInt32(); }
set { SomeProp = SomeComplexType.FromInt32(value); }
}
I use private properties to reduce code for accessing sub properties which often to use.
private double MonitorResolution
{
get { return this.Computer.Accesories.Monitor.Settings.Resolution; }
}
It is useful if there are many sub properties.
One thing I do all the time is store "global" variables/cache into HttpContext.Current
private static string SomeValue{
get{
if(HttpContext.Current.Items["MyClass:SomeValue"]==null){
HttpContext.Current.Items["MyClass:SomeValue"]="";
}
return HttpContext.Current.Items["MyClass:SomeValue"];
}
set{
HttpContext.Current.Items["MyClass:SomeValue"]=value;
}
}
I use them every now and then. They can make it easier to debug things when you can easily put in a breakpoint in the property or you can add a logging statement etc.
Can be also be useful if you later need to change the type of your data in some way or if you need to use reflection.
I know this question is very old but the information below was not in any of the current answers.
I can't imagine when I would ever need to be able to internally get but not set
If you are injecting your dependencies you may well want to have a Getter on a Property and not a setter as this would denote a readonly Property. In other words the Property can only be set in the constructor and cannot be changed by any other code within the class.
Also Visual Studio Professional will give information about a Property and not a field making it easier to see what your field is being used.
It is a common practice to only modify members with get/set methods, even private ones. Now, the logic behind this is so you know your get/set always behave in a particular way (for instance, firing off events) which doesn't seem to make sense since those won't be included in the property scheme... but old habits die hard.
It makes perfect sense when there is logic associated with the property set or get (think lazy initialization) and the property is used in a few places in the class.
If it's just a straight backing field? Nothing comes to mind as a good reason.
Well, as no one mentioned you can use it to validate data or to lock variables.
Validation
string _password;
string Password
{
get { return _password; }
set
{
// Validation logic.
if (value.Length < 8)
{
throw new Exception("Password too short!");
}
_password = value;
}
}
Locking
object _lock = new object();
object _lockedReference;
object LockedReference
{
get
{
lock (_lock)
{
return _lockedReference;
}
}
set
{
lock (_lock)
{
_lockedReference = value;
}
}
}
Note: When locking a reference you do not lock access to members of the referenced object.
Lazy reference: When lazy loading you may end up needing to do it async for which nowadays there is AsyncLazy. If you are on older versions than of the Visual Studio SDK 2015 or not using it you can also use AsyncEx's AsyncLazy.
One more usage would be to do some extra operations when setting value.
It happens in WPF in my case, when I display some info based on private object (which doesn't implement INotifyPropertyChanged):
private MyAggregateClass _mac;
private MyAggregateClass Mac
{
get => _mac;
set
{
if(value == _mac) return;
_mac = value;
PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(nameof(DisplayInfo)));
}
}
public string DisplayInfo => _mac.SomeStringInformationToDisplayOnUI;
One could also have some private method, such as
private void SetMac(MyAggregateClass newValue)
to do that.
Some more exotic uses of explicit fields include:
you need to use ref or out with the value - perhaps because it is an Interlocked counter
it is intended to represent fundamental layout for example on a struct with explicit layout (perhaps to map to a C++ dump, or unsafe code)
historically the type has been used with BinaryFormatter with automatic field handling (changing to auto-props changes the names and thus breaks the serializer)
Various answers have mentioned using properties to implement a lazy member. And this answer discussed using properties to make live aliases. I just wanted to point out that those two concepts sometimes go together.
When using a property to make an alias of another object's public property, the laziness of that property is preserved:
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private IDbConnection Conn => foo.bar.LazyDbConnection;
On the other hand, retrieving that property in the constructor would negate the lazy aspect:
Conn = foo.bar.LazyDbConnection;
Looking into the guideline (Properties (C# Programming Guide)) it seems no one expects to use properties as private members.
Properties enable a class to expose a public way of getting and setting values, while hiding implementation or verification code.
In any case it can be interchanged by one or two methods and vice versa.
So the reason can be to spare parentheses on getting and get field syntax on setting.

c# using field with get and set methods vs using property

What is the difference in functionality between using a field with get and set methods versus using a property to attribute a value to an object through a class? For example, when setting up a value val in a class, are there any reasons to choose one of the two classes below over the other (other than length of code written and interface compatibility):
class FieldTest
{
public FieldTest()
{
}
private string val;
public void SetVal(string temp)
{
val = temp;
}
public string GetVal()
{
return val;
}
}
Versus
class PropertyTest
{
public PropertyTest()
{
}
public string val { get; set; }
}
Tested Usage in Visual Studio 2010:
class TestFunctions
{
static void Main(string[] args)
{
FieldTest Test_Fields = new FieldTest();
Test_Fields.SetVal("Test");
string temp_str = Test_Fields.GetVal();
PropertyTest Test_Property = new PropertyTest();
Test_Property.val = "test";
string temp_str_prop = Test_Property.val;
System.Windows.Forms.MessageBox.Show("Field: " + temp_str + "\n\nProperty: " + temp_str_prop);
}
}
I know only a field can use ref and out keywords, but the other advantages usually attributed to a property--encapsulation, versioning, etc-- seem to be the same with these two setups.
I've checked articles such as Difference between Property and Field in C# 3.0+ and What is the difference between a Field and a Property in C#?. Though they give good descriptions of the ideas behind properties and fields, I have not been able to find a specific answer to my question.
Thanks in advance for clarification.
EDIT 2015-07-29:
I believe this to be a separate question from other StackOverflow answers, such as those found here, as these answers did not seem to specifically address using fields with their own get and set methods as a replacement for a property.
My statement above, "I know only a field can use ref and out keywords..." comes from answers similar to the following (found here):
      "Fields may be used for out / ref parameters, properties may not. Properties support additional
       logic – this could be used to implement lazy loading among other things."
The functionality is almost identical. For "normal" code use-cases, these snippets will act exactly the same, as a property is in effect just a hidden field with two hidden methods (get and set).
However, there is a difference when it comes to reflection. Properties show up as PropertyInfo, and methods MethodInfo. You also can only bind to properties (in WPF/WinRT). Serialization also only works against properties. Both of these (and doubtlessly others) fail because they use reflection to find the members to act against.
So depending on your use case, they are the same. Generally speaking, I would stick with properties.
In the .NET world properties are how you attribute data to objects. Methods are typically actions associated with the objects. Fields usually store internal (private) object instance state.
Under the hood, read/write property accessors get compiled to get and set methods.
Additionally, many technologies do not work with methods. Data Annotations, Entity Framework, and serialization are a few that pop instantly to mind.
I would always vote for properties rather than getter and setter.
First of all - using Property is neat and clean. The code is more clear, less junky and easy to understand.
If you use Automatic Property you just need one line of code for one Property where you need at least 6 for a getter and setter approach. So if your class has 20 attributes then total 120 lines of codes? Oh Man!!!
but the other advantages usually attributed to a property--encapsulation, versioning, etc-- seem to be the same with these two setups. => I disagree, consider a scenario where you want to force all implementation of an interface with an attribute to be readonly. That is easily doable with a readonly property in the interface. Now try that with getter and setter. Frankly you can't.
Then there comes Serialization. You cannot serialize a computed value unless that is a property. Methods are never serialized.
Let's take a look at your second code:
class PropertyTest
{
public PropertyTest()
{
}
public string val { get; set; }
}
As said in the Auto-Implemented Properties page on MSDN, when you declare an auto-implemented property like in your example, the compiler creates a private, anonymous backing field that can only be accessed through the property's get and set accessors.
In other words, it would be like writing this code:
public class PropertyTest
{
public PropertyTest()
{
}
private string _val;
public string val
{
get { return _val; }
set { val = value; }
}
}
So, properties are a way to encapsulate fields. As you can see on MSDN, too:
A property is a member that provides a flexible mechanism to read,
write, or compute the value of a private field. Properties can be used
as if they are public data members, but they are actually special
methods called accessors. This enables data to be accessed easily and
still helps promote the safety and flexibility of methods.
In my opinion, you should always prefer to use the property implementation than the getter/setter methods. Not because it seems cleaner and flexible to make things like compute values, but it is actually easier to implement (you write less code on auto-implemented properties).
We could say that there are almost no difference from the properties than the getter/setter methods too, if we look at the part where MSDN says "but they are actually special methods called accessors". But again, we have the example of brainless coder above, we have Framework behaviours that encourages us to use properties: methods can not be serialized, while properties can.

list<T> property with private set

I'd like to know if this:
private List<FixedTickProvider> minorTickProviders;
public List<FixedTickProvider> MinorTickProviders { get { return minorTickProviders; } }
is equivalent to this:
public List<FixedTickProvider> MinorTickProviders { get; private set; }
the thing is: I've inherited the first piece of code, while I myself am more used to the second option. As Is was about to re-write the portion of code, I wondered if those two are exactly equivalent though.
please note that I am NOT talking about readonly Lists here. I am fully aware of the "readonly list" topic as discussed here and my question is slightly different.
NB: I am almost sure I once read an article stating that the compiler would produce the exact same code from those two extracts but I can't find it any more, nor can I find a precise answer on this subject. So please enlighten me.
In C# 3.0 and later, auto-implemented properties make property-declaration more concise when no additional logic is required in the property accessors. They also enable client code to create objects. When you declare a property, the compiler creates a private, anonymous backing field that can only be accessed through the property's get and set accessors.
So, both will have same output......
Yes, both pieces of code will achieve the same result
//here you are declaring a private field of class
private List<FixedTickProvider> minorTickProviders;
//and only exposing get to rest of the code
public List<FixedTickProvider> MinorTickProviders { get { return minorTickProviders; } }
//here you are declaring a public property which can only be set by the class which is declaring it
public List<FixedTickProvider> MinorTickProviders { get; private set; }
As far as IL is considered there will be slight difference
In case of separate field and property following IL will be generated
In case of single property without backing field
They achieve equivalent results, except that any code which assigns the value will be different between the two (the first will assign to the field, the second to the property), and so, of course, the generated IL will be slightly different also.
(Of course, in the property assignment case, it's quite likely that the method call and the eventual field assignment are simple enough to inline)

Why use private members then use public properties to set them?

Seen a few examples of code where this happens:
public class Foo
{
string[] m_workID;
public string[] WorkID
{
get
{
return m_workID;
}
private set
{
m_workID = value;
}
}
}
What's the point of this?
Since the use m_workID unnescessary.
In general, the point is to separate implementation (the field) from API (the property).
Later on you can, should you wish, put logic, logging etc in the property without breaking either source or binary compatibility - but more importantly you're saying what your type is willing to do, rather than how it's going to do it.
I have an article giving more benefits of using properties instead of public fields.
In C# 3 you can make all of this a lot simpler with automatically implemented properties:
public class Foo
{
public string[] WorkID { get; private set; }
}
At that point you still have a public getter and a private setter, but the backing field (and property implementation) is generated for you behind the scenes. At any point you can change this to a "normal" fully-implemented property with a backing field, and you'll still have binary and source compatibility. (Compatibility of serialized objects is a different matter, mind you.)
Additionally, in this case you can't mirror the behaviour you want (the ability to read the value publicly but write it privately) with a field - you could have a readonly field, but then you could only write to it within the constructor. Personally I wish there were a similar shorthand for this:
public class Foo
{
private readonly int id;
public int Id { get { return id; } }
...
}
as I like immutable types, but that's a different matter.
In another different matter, it's generally not a good idea to expose arrays like this anyway - even though callers can't change which array WorkID refers to, they can change the contents of the array, which is probably not what you want.
In the example you've given you could get away without the property setter, just setting the field directly within the same class, but it would mean that if you ever wanted to add logging etc you'd have to find all those writes.
A property by itself doesn't provide anywhere to put the data - you need the field (m_workID) for storage, but it entirely correct to hide that behind a property for many, many reasons. In C# 3.0 you can reduce this to:
public string[] WorkID {get; private set;}
Which will do much of the same. Note that exposing an array itself may be problematic, as there is no mechanism for protecting data in an array - at least with an IList<string> you could (if needed) add extra code to sanity check things, or could make it immutable. I'm not saying this needs fixing, but it is something to watch.
In addition to the Object Oriented philosophy of data encapsulation, it helps when you need to do something every time your property is read/write.
You can have to perform a log, a validation, or any another method call later in your development.
If your property is public, you'll have to look around all your code to find and modify your code. And what if your code is used as a library by someone else ?
If your property is private with appropriate get/set methods, then you change the get/set and that's all.
You can use C# 3.0 auto properties feature to save time typing:
public class Foo
{
public string[] WorkID
{
get; private set;
}
}
In addition properties gives you lot of advantages in comparison to fields:
properties can be virtual
properties hide implementation details (not all properties are just trivial variable accessors)
properties can contain validation and logging code and raise change events
interfaces cannot contains fields but properties
A lot of times you only want to provide read access to a field. By using a property you can provide this access. As you mention you may want to perform operations before the field is accessed (lazy loading, e.g.). You have a lot of code in there that just isn't necessary anymore unless you're still working in .Net 2.0-.

Class internal usage of public properties

Let's say I have a class that exposes one property. Is it considered to be a good aproach to use the private "holder variable" for internal use in the class? Or should I use the property for internal use also.
To explain, should I use:
public class foo
{
String _statusHolder;
public String myStaus
{
get { return _statusHolder; }
set{ _statusHolder = value; }
}
public void DisplayMyStatus()
{
Console.WriteLine(_statusHolder);
}
}
Or:
public class foo
{
String _statusHolder;
public String myStaus
{
get { return _statusHolder; }
set{ _statusHolder = value; }
}
public void DisplayMyStatus()
{
Console.WriteLine(myStaus);
}
}
I could see it as beeing more consistent and more readable to use the second approach. It would also be more effective if I would later do some modificatins in the set-statement. But are there any performance issues or is it considered bad-practise for some reason?
EDIT:
It seems that everybody is leaning towards using the property internally. My initial thoughts was the same, but as a novice programmer, you can never know.
Thanks everyone for the quick feedback!
Performance issues should be negligable, as the JITer or compiler will happily work out that your function call (the getter of the property) doesn't do anything exciting, and can be inlined.
The benefit is future changes to business logic that might be put in the getter, which your class will then automatically take advantage of, without refactoring too much.
Of course, the downside is, you might want to avoid that new business logic in some circumstances, so it is something that needs to be considered based on how likely a) logic will change, and b) that logic might need to be circumvented.
The other (potential) advantage of using the property internally is that you can easily move to, or from, automatic properties.
I tend to go with calling the properties cause once stuff gets tricky you can put in locking and business logic in the getter
For C# 3.0 I would go with something along these lines (and only explicitly create the backing field when its really needed)
public class foo
{
public String Status
{
get;
set;
}
public void DisplayMyStatus()
{
Console.WriteLine(Status);
}
}
Use the property if there is one. A property can have side effects like lazy initializing that you want to have regardless from where you access the variable.
Even if the property has no side effects now, other developers could add them later, and the places where the "raw" variable is used may be error-prone because the new code is not called.
And lastly, the property makes refactoring easier, for example, when the value later is no longer stored in a variable but is calculated inside the property accessor or comes from some other source variable.
Programming in Java, I prefer using the getter method because I can put a breakpoint there and/or see changes to it in logging output.

Categories