Draw line from text input in SharpGL - c#

I want to draw line in SharpGl but this code does not work !
void Line_DDA(OpenGL gl,int X0, int Y0, int Xend, int Yend)
{
gl.LineWidth(2.5f);
gl.Color(1.0, 0.0, 0.0);
gl.Begin(OpenGL.GL_LINES);
int dx = Xend - X0;
int dy = Yend - Y0;
int steps, k;
float Xinc, Yinc;
float x = X0;
float y = Y0;
if (Math.Abs(dx) > Math.Abs(dy))
steps = Math.Abs(dx);
else
steps = Math.Abs(dy);
float fdx = (float)dx;
float fdy = (float)dy;
float fsteps = (float)steps;
Xinc = fdx / fsteps;
Yinc = fdy / fsteps;
gl.Vertex((int)x, (int)y);
for (k = 0; k < steps; k++)
{
x += Xinc;
y += Yinc;
gl.Vertex((int)x, (int)y);
}
gl.End();
}
and when I use
gl.Vertex(10, 100);
gl.Vertex(110, 110);
It's work!
EDIT:
This is call block in my code:
private void openGLControl_OpenGLDraw(object sender, PaintEventArgs e)
{
// Get the OpenGL object.
OpenGL gl = openGLControl.OpenGL;
// Clear the color and depth buffer.
gl.Clear(OpenGL.GL_COLOR_BUFFER_BIT | OpenGL.GL_DEPTH_BUFFER_BIT);
// Load the identity matrix.
gl.LoadIdentity();
Line_DDA(gl, int.Parse(txtLineX1.Text), int.Parse(txtLineY1.Text), int.Parse(txtLineX2.Text), int.Parse(txtLineY2.Text));
//drawLine(gl, 110, 120, 100, 100);
}
Why this happen?

When you draw lines using GL_LINES, you need to supply 2 vertices for each line segment. Instead, your code supply a single vertex for each line segment, as if the line should be connected with the previous vertex.
Indeed, the solution would be to set the draw mode to GL_LINE_STRIP or to supply two vertices for each line segment.
However, I don't understand why you want to draw a straight line with multiple vertices when when they are needed only two points.

Related

Drawing Parabola using DrawLine C#

Good evening, I know on the web there are similar questions and a few tutorials about it, but I'd like you to check my code and correct it. I mean, I'd like to know what's wrong with my project.
I have to draw a parabola graph given its equation on my main panel.
I also must include two buttons, zoom in and zoom out, which are used to reduce and enlarge the "view" panel's view (and so the parabola).
I was recommended to use a scale var.
This is my code:
note: x0, y0 are panel_main x center, y center.
I have x, y that are used to determine x,y from the equation.
xpc, ypc are converted for the window scale (so are pixels).
xmin, xmax are the extreme values that, with a certain scale, stay on the panel
I hope you can give me a hint, thanks a lot!
public void DisegnaParabola()
{
Graphics gs = panel_main.CreateGraphics();
pen.Color = Color.Black;
scale = (x0*2) / zoom; //Pixels equivalent to 1x or 1y
n_punti = (x0*2) / scale; //Number of x math points that are visible in window
xmin = -(n_punti / 2);
xmax = n_punti / 2;
precision = 1 / scale; //Increment of x to have 1px
if (asse_parabola.SelectedIndex == 0) //if Y axis
{
for (double i = xmin + precision; i < xmax; i += precision)
{
rifx = i - precision; //Old points
rifxpc = rifx * scale;
rify = (a * Math.Pow(rifx, 2)) + b * rifx + c;
rifypc = y0 - (rify * scale);
x = i; //New points
y = (a * Math.Pow(x, 2)) + b * x + c;
ypc = y0 - (y * scale);
gs.DrawLine(pen, (float)rifxpc, (float)rifypc, (float)xpc, (float)ypc);
}
}
else
{
scale = (y0*2) / zoom; //Pixels for 1y
n_punti = (y0*2) / scale; //Numbers of y in the window
ymin = -(n_punti / 2);
ymax = n_punti / 2;
for(double i=ymin+precision; i<ymax; i+=precision)
{
rify = y - precision;
rifypc = (y0*2) - rify * scale;
rifx = (a * Math.Pow(rify, 2)) + b * rify + c;
rifxpc = x0 + (rifx * scale);
y = i;
x = (a * Math.Pow(y, 2)) + b * y + c;
xpc = x0 + (x * scale);
gs.DrawLine(pen, (float)rifypc, (float)rifxpc, (float)ypc, (float)xpc);
}
}
lbl_canc.Visible = true;
}
Your question actually consists of several tasks and as usual the key is to take and break those apart..
One issue is getting the data, I will leave the details to you but show how to sparate it from the rest.
The next issue is to scale the data. I'll show you how to avoid this one altogether and scale the drawing tool instead.
And the third one is to draw them to a display surface. As you'll see this is really simple once the other issues are taken care of.
Let's start with the most important step: Collecting the data. You try to create and scale and draw them all in the same piece of code. This has many disadvantages..
Let's first collect the data in a suitable structure:
List<PointF> points = new List<PointF>();
List<T> is the collection of choice most of the time; certainly much nicer than arrays! In some method you should fill that list with your data, calculated from some formula.
Here is an example:
List<PointF> getPoints(float start, float end, int count, float ymax)
{
List<PointF> points = new List<PointF>();
float deltaX = (end - start) / count;
for (int i = 0; i < count; i++)
{
float x = i * deltaX;
// insert your own formula(s) here!
float y = ymax + (float)Math.Sin(x * somefactor) * ymax;
points.Add(new PointF(x, y));
}
return points;
}
Now for the second important part: How to scale the data? This can be done either when creating them; but again, separating the two taks makes them both a lot simpler.
So here is a function that, instead of scaling the data scales the Graphics object we will use to plot them:
void ScaleGraphics(Graphics g, List<PointF> data)
{
float xmax = data.Select(x => x.X).Max();
float ymax = data.Select(x => x.Y).Max();
float xmin = data.Select(x => x.X).Min();
float ymin = data.Select(x => x.Y).Min();
float width = Math.Abs(xmax - xmin);
float height = Math.Abs(ymax - ymin);
var vr = g.VisibleClipBounds;
g.ScaleTransform(vr.Width / width, vr.Height / height);
}
This method makes sure that all the data in our list will fit into the drawing surface. If you want to restrict them to a different size you can pass it in and change the code accordingly..
Finally we need to do the actual drawing. We do that where we should, that is in the Paint event of our drawing surface control..:
private void panel1_Paint(object sender, PaintEventArgs e)
{
if (points.Count < 2) return; // no lines to draw, yet
ScaleGraphics(e.Graphics, points);
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;
using ( Pen pen = new Pen(Color.Blue )
{ Width = 1.5f , LineJoin = LineJoin.Round, MiterLimit = 1f} )
e.Graphics.DrawLines(pen, points.ToArray());
}

GDI+ curve "overflowing"

I'm currently using GDI+ to draw a line graph, and using Graphics.DrawCurve to smooth out the line. The problem is that the curve doesn't always match the points I feed it, and that makes the curve grow out of the graph frame in some points, as seen below(red is Graphics.DrawLines, green is Graphics.DrawCurve).
How would I go about solving this?
The simplest solution is to set a tension:
The green curve is drawn with the default tension, the blue one set a tension of 0.1f:
private void panel1_Paint(object sender, PaintEventArgs e)
{
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;
e.Graphics.DrawLines(Pens.Red, points.ToArray());
e.Graphics.DrawCurve(Pens.Green, points.ToArray());
e.Graphics.DrawCurve(Pens.Blue, points.ToArray(), 0.1f);
}
You will need to test what is the best compromise, 0.2f is still ok, 0.3f is already overdrawing quite a bit..
For a really good solution you will need to use DrawBeziers. This will let you draw curves that can go through the points without any overdrawing and with full control of the radius of the curves; but to to so you will need to 'find', i.e. calculate good control points, which is anything but trivial..:
This result is by no means perfect but already complicated enough.. I have displayed the curve points and their respective control points in the same color. For each point there is an incoming and an outgoing control point. For a smooth curve they need to have the same tangents/gradients in their curve points.
I use a few helper functions to calculate a few things about the segments:
A list of gradients
A list of signs of the gradients
A list of segment lengths
Lists of horizontal and of vertical gaps between points
The main function calculates the array of bezier points, that is the curve points and between each pair the previous left and the next right control points.
In the Paint event it is used like this:
List<PointF> bezz = getBezz(points);
using (Pen pen = new Pen(Color.Black, 2f))
e.Graphics.DrawBeziers(pen, bezz.ToArray());
Here are the functions I used:
List<float> getGradients(List<PointF> p)
{
List<float> grads = new List<float>();
for (int i = 0; i < p.Count - 1; i++)
{
float dx = p[i + 1].X - p[i].X;
float dy = p[i + 1].Y - p[i].Y;
if (dx == 0) grads.Add(dy == 0 ? 0 : dy > 0 ?
float.PositiveInfinity : float.NegativeInfinity);
else grads.Add(dy / dx);
}
return grads;
}
List<float> getLengths(List<PointF> p)
{
List<float> lengs = new List<float>();
for (int i = 0; i < p.Count - 1; i++)
{
float dx = p[i + 1].X - p[i].X;
float dy = p[i + 1].Y - p[i].Y;
lengs.Add((float)Math.Sqrt(dy * dy + dx * dx));
}
return lengs;
}
List<float> getGaps(List<PointF> p, bool horizontal)
{
List<float> gaps = new List<float>();
for (int i = 0; i < p.Count - 1; i++)
{
float dx = p[i + 1].X - p[i].X;
float dy = p[i + 1].Y - p[i].Y;
gaps.Add(horizontal ? dx : dy);
}
return gaps;
}
List<int> getSigns(List<float> g)
{
return g.Select(x => x > 0 ? 1 : x == 0 ? 0 : -1).ToList();
}
And finally the main function; here I make a distinction: Extreme points ( minima & maxima) should have their control points on the same height as the points themselves. This will prevent vertical overflowing. They are easy to find: The signs of their gradients will always altenate.
Other points need to have the same gradient for incoming and outcoming control points. I use the average between the segments' gradients. (Maybe a weighed average would be better..) And I weigh their distance according to the segment lengths..
List<PointF> getBezz(List<PointF> points)
{
List<PointF> bezz = new List<PointF>();
int pMax = points.Count;
List<float> hGaps = getGaps(points, true);
List<float> vGaps = getGaps(points, false);
List<float> grads = getGradients(points);
List<float> lengs = getLengths(points);
List<int> signs = getSigns(grads);
PointF[] bezzA = new PointF[pMax * 3 - 2];
// curve points
for (int i = 0; i < pMax; i++) bezzA[i * 3] = points[i];
// left control points
for (int i = 1; i < pMax; i++)
{
float x = points[i].X - hGaps[i - 1] / 2f;
float y = points[i].Y;
if (i < pMax - 1 && signs[i - 1] == signs[i])
{
float m = (grads[i-1] + grads[i]) / 2f;
y = points[i].Y - hGaps[i-1] / 2f * m * vGaps[i-1] / lengs[i-1];
}
bezzA[i * 3 - 1] = new PointF(x, y);
}
// right control points
for (int i = 0; i < pMax - 1; i++)
{
float x = points[i].X + hGaps[i] / 2f;
float y = points[i].Y;
if (i > 0 && signs[i-1] == signs[i])
{
float m = (grads[i-1] + grads[i]) / 2f;
y = points[i].Y + hGaps[i] / 2f * m * vGaps[i] / lengs[i];
}
bezzA[i * 3 + 1] = new PointF(x, y);
}
return bezzA.ToList();
}
Note that I didn't code for the case of points with the same x-coordinate. So this is ok for 'functional graphs' but not for, say figures, like e.g. stars..
Maybe you just want to look at the "overshooting the bounds" problem as not a problem with the overshoot, but with the bounds. In which case, you can determine the actual bounds of a curve using the System.Drawing.Drawing2D.GraphicsPath object:
GraphicsPath gp = new GraphicsPath();
gp.AddCurve(listOfPoints);
RectangleF bounds = gp.GetBounds();
You can draw that GraphicsPath directly:
graphics.DrawPath(Pens.Black, gp);
As far as solving the bounds problem, the line necessarily overshoots the vertex on some axis. It's easier to see this fact when the lines are aligned to the bounds.
Given these points:
In order for them to be curved, they must exceed their bounds in some way:
If you never want to exceed their vertical bounds, you could simply ensure that the bezier handles have the same Y value as the vertex, but they will overshoot on the X:
Or vice-versa:
You could deliberately undershoot just enough to avoid the way curves can overshoot. This can be done by swapping the bezier handles, which would maybe be at the line-centers, with the vertices:

Transcribing a polygon on a circle

i am currently try to inscribe diagonals of a decagon inside a circle
like this
in c# my approach would be creating a circle
e.Graphics.DrawEllipse(myPen, 0, 0, 100, 100);
and draw lines inside using
e.Graphics.DrawLine(myPen, 20, 5, 50, 50);
after that i would draw a decagon polygon.
currently im stuck at how to divide the circle into 10 parts/ finding the correct coordiantes of the points on the circumference of the circles because im not good in math,
i want to know how would i know the next point in a circumference of the circle the size of my circle is indicated above.
and also i want also to ask a better approach for my problem.
Thank you :)
Just for grits and shins, here's a generic implementation that will inscribe an X-sided polygon into the Rectangle you pass it. Note that in this approach I'm not actually calculating any absolute points. Instead, I am translating the origin, rotating the surface, and drawing the lines only with respect to the origin using a fixed length and an angle. This is repeated in a loop to achieve the end result below, and is very similar to commanding the Turtle in Logo:
public partial class Form1 : Form
{
PictureBox pb = new PictureBox();
NumericUpDown nud = new NumericUpDown();
public Form1()
{
InitializeComponent();
this.Text = "Inscribed Polygon Demo";
TableLayoutPanel tlp = new TableLayoutPanel();
tlp.RowCount = 2;
tlp.RowStyles.Clear();
tlp.RowStyles.Add(new RowStyle(SizeType.AutoSize));
tlp.RowStyles.Add(new RowStyle(SizeType.Percent, 100));
tlp.ColumnCount = 2;
tlp.ColumnStyles.Clear();
tlp.ColumnStyles.Add(new ColumnStyle(SizeType.AutoSize));
tlp.ColumnStyles.Add(new ColumnStyle(SizeType.AutoSize));
tlp.Dock = DockStyle.Fill;
this.Controls.Add(tlp);
Label lbl = new Label();
lbl.Text = "Number of Sides:";
lbl.TextAlign = ContentAlignment.MiddleRight;
tlp.Controls.Add(lbl, 0, 0);
nud.Minimum = 3;
nud.Maximum = 20;
nud.AutoSize = true;
nud.ValueChanged += new EventHandler(nud_ValueChanged);
tlp.Controls.Add(nud, 1, 0);
pb.Dock = DockStyle.Fill;
pb.Paint += new PaintEventHandler(pb_Paint);
pb.SizeChanged += new EventHandler(pb_SizeChanged);
tlp.SetColumnSpan(pb, 2);
tlp.Controls.Add(pb, 0, 1);
}
void nud_ValueChanged(object sender, EventArgs e)
{
pb.Refresh();
}
void pb_SizeChanged(object sender, EventArgs e)
{
pb.Refresh();
}
void pb_Paint(object sender, PaintEventArgs e)
{
// make circle centered and 90% of PictureBox size:
int Radius = (int)((double)Math.Min(pb.ClientRectangle.Width, pb.ClientRectangle.Height) / (double)2.0 * (double).9);
Point Center = new Point((int)((double)pb.ClientRectangle.Width / (double)2.0), (int)((double)pb.ClientRectangle.Height / (double)2.0));
Rectangle rc = new Rectangle(Center, new Size(1, 1));
rc.Inflate(Radius, Radius);
InscribePolygon(e.Graphics, rc, (int)nud.Value);
}
private void InscribePolygon(Graphics G, Rectangle rc, int numSides)
{
if (numSides < 3)
throw new Exception("Number of sides must be greater than or equal to 3!");
float Radius = (float)((double)Math.Min(rc.Width, rc.Height) / 2.0);
PointF Center = new PointF((float)(rc.Location.X + rc.Width / 2.0), (float)(rc.Location.Y + rc.Height / 2.0));
RectangleF rcF = new RectangleF(Center, new SizeF(1, 1));
rcF.Inflate(Radius, Radius);
G.DrawEllipse(Pens.Black, rcF);
float Sides = (float)numSides;
float ExteriorAngle = (float)360 / Sides;
float InteriorAngle = (Sides - (float)2) / Sides * (float)180;
float SideLength = (float)2 * Radius * (float)Math.Sin(Math.PI / (double)Sides);
for (int i = 1; i <= Sides; i++)
{
G.ResetTransform();
G.TranslateTransform(Center.X, Center.Y);
G.RotateTransform((i - 1) * ExteriorAngle);
G.DrawLine(Pens.Black, new PointF(0, 0), new PointF(0, -Radius));
G.TranslateTransform(0, -Radius);
G.RotateTransform(180 - InteriorAngle / 2);
G.DrawLine(Pens.Black, new PointF(0, 0), new PointF(0, -SideLength));
}
}
}
I got the formula for the length of the side here at Regular Polygon Calculator.
One way of dealing with this is using trigonometric functions sin and cos. Pass them the desired angle, in radians, in a loop (you need a multiple of 2*π/10, i.e. a = i*π/5 for i between 0 and 9, inclusive). R*sin(a) will give you the vertical offset from the origin; R*cos(a) will give you the horizontal offset.
Note that sin and cos are in the range from -1 to 1, so you will see both positive and negative results. You will need to add an offset for the center of your circle to make the points appear at the right spots.
Once you've generated a list of points, connect point i to point i+1. When you reach the ninth point, connect it to the initial point to complete the polygon.
I don't test it, but i think it is ok.
#define DegreeToRadian(d) d * (Pi / 180)
float r = 1; // radius
float cX = 0; // centerX
float cY = 0; // centerY
int numSegment = 10;
float angleOffset = 360.0 / numSegment;
float currentAngle = 0;
for (int i = 0; i < numSegment; i++)
{
float startAngle = DegreeToRadian(currentAngle);
float endAngle = DegreeToRadian(fmod(currentAngle + angleOffset, 360));
float x1 = r * cos(startAngle) + cX;
float y1 = r * sin(startAngle) + cY;
float x2 = r * cos(endAngle) + cX;
float y2 = r * sin(endAngle) + cY;
currentAngle += angleOffset;
// [cX, cY][x1, y1][x2, y2]
}
(fmod is c++ function equals to floatNumber % floatNumber)

SharpGL: Can't draw all lines from List

I have:
float[,] nodesN = null; //indexes:
//number of node;
//value index 0->x, 1->y, 2->temperature
int[,] elements = null; //indexes:
//indexof element (triangle)
//1, 2, 3 - vertexes (from nodesN)
List<Pair> edges = null; //Pair is a class containing two int values which are
//indexes of nodesN
And function which is supposed do all elements and edges on SharpGL.OpenGLCtrl
private void openGLCtrl1_Load(object sender, EventArgs e)
{
gl = this.glCtrl.OpenGL;
gl.ClearColor(this.BackColor.R / 255.0f,
this.BackColor.G / 255.0f,
this.BackColor.B / 255.0f, 1.0f);
gl.Clear(OpenGL.COLOR_BUFFER_BIT | OpenGL.DEPTH_BUFFER_BIT);
}
private void openGLControl1_OpenGLDraw(object sender, PaintEventArgs e)
{
gl.Clear(OpenGL.COLOR_BUFFER_BIT | OpenGL.DEPTH_BUFFER_BIT);
gl.LoadIdentity();
gl.Translate(0.0f, 0.0f, -6.0f);
if (!draw) return;
bool drawElements = false;
if (drawElements)
{
gl.Begin(OpenGL.TRIANGLES);
for (int i = 0; i < elementNo; i++)
{
for (int j = 0; j < 3; j++)
{
float x, y, t;
x = nodesN[elements[i, j], 0];
y = nodesN[elements[i, j], 1];
t = nodesN[elements[i, j], 2];
gl.Color(t, 0.0f, 1.0f - t);
gl.Vertex(x, y, 0.0f);
}
}
gl.End();
}
gl.Color(0f, 0f, 0f);
gl.Begin(OpenGL.LINES);
//for(int i=edges.Count-1; i>=0; i--)
for(int i=0; i<edges.Count; i++)
{
float x1, y1, x2, y2;
x1 = nodesN[edges[i].First, 0];
y1 = nodesN[edges[i].First, 1];
x2 = nodesN[edges[i].Second, 0];
y2 = nodesN[edges[i].Second, 1];
gl.Vertex(x1, y1, 0.0f);
gl.Vertex(x2, y2, 0.0f);
}
gl.End();
}
But it doesn't draw all the edges. If i change drawElements it draws different number of edges. Changing for(int i=0; i<edges.Count; i++) to for(int i=edges.Count-1; i>=0; i--) shows that esges are generated correctly, but they are not drawn.
Images:
for(int i=0; i<edges.Count; i++)
drawElements=false
http://img225.imageshack.us/img225/9295/noup.jpg
for(int i=edges.Count-1; i>=0; i--)
drawElements=false
http://img828.imageshack.us/img828/9595/nodown.jpg
for(int i=0; i<edges.Count; i++)
drawElements=true
http://img64.imageshack.us/img64/4929/withup.jpg
for(int i=edges.Count-1; i>=0; i--)
drawElements=true
http://img833.imageshack.us/img833/9167/withdown.jpg
What is wrong with this? How can I draw all edges?
EDIT:
Never mind, I dropped SharpGL and wrote exactly the same code in OpenTK. It works excelent without me wondering what was wrong. This was a good call because SharpGL uses enormously big amount of memory.
Once I had a very similar problem.
It was due to z-buffer. If you have a plane and want to draw it's wireframe than the coordinates overlap and artifacts like those arise. It's numerically undefined behavior - drawing two objects on the same depth. You never know which one comes on top.
One solution is to offset the wireframe a bit. I noticed that in some 3d modelling packages. In game engines it's also common to offset sprites on geometry (gunshot marks on a wall). Another might be disabling the z-buffer and manually occlude hidden lines.
The case when you disable drawing of elements might be to another issue with z-buffer. It's bounded by far and near clipping planes. Most probably you draw the lines exactly at the depth of one of them (my guess is far one).
EDIT. I read Your code a bit. One I'd like to see is how You construct the projection matrix. If you didn't touch it at all than (If I recall correctly) the near and far clipping planes are at -1.0 and 1.0 respectively. But, I might be wrong since You draw at z=-6.0...
The other thing, try replacing:
gl.Vertex(x1, y1, 0.0f);
gl.Vertex(x2, y2, 0.0f);
With something along the lines of:
gl.Vertex(x1, y1, 0.01f);
gl.Vertex(x2, y2, 0.01f);

Draw simple circle in XNA

I want to draw a 2d, filled, circle. I've looked everywhere and cannot seem to find anything that will even remotely help me draw a circle. I simply want to specify a height and width and location on my canvas.
Anyone know how?
Thanks!
XNA doesn't normally have an idea of a canvas you can paint on. Instead you can either create a circle in your favorite paint program and render it as a sprite or create a series vertexes in a 3D mesh to approximate a circle and render that.
You could also check out the sample framework that Jeff Weber uses in Farseer:
http://www.codeplex.com/FarseerPhysics
The demos have a dynamic texture generator that let's him make circles and rectangles (which the samples then use as the visualization of the physics simulation). You could just re-use that :-)
Had the same problem, as others already suggested you need to draw a square or rectangle with a circle texture on it. Here follows my method to create a circle texture runtime. Not the most efficient or fancy way to do it, but it works.
Texture2D createCircleText(int radius)
{
Texture2D texture = new Texture2D(GraphicsDevice, radius, radius);
Color[] colorData = new Color[radius*radius];
float diam = radius / 2f;
float diamsq = diam * diam;
for (int x = 0; x < radius; x++)
{
for (int y = 0; y < radius; y++)
{
int index = x * radius + y;
Vector2 pos = new Vector2(x - diam, y - diam);
if (pos.LengthSquared() <= diamsq)
{
colorData[index] = Color.White;
}
else
{
colorData[index] = Color.Transparent;
}
}
}
texture.SetData(colorData);
return texture;
}
Out of the box, there's no support for this in XNA. I'm assuming you're coming from some GDI background and just want to see something moving around onscreen. In a real game though, this is seldom if ever needed.
There's some helpful info here:
http://forums.xna.com/forums/t/7414.aspx
My advice to you would be to just fire up paint or something, and create the basic shapes yourself and use the Content Pipeline.
Another option (if you want to use a more complex gradient brush or something) is to draw a quad aligned to the screen and use a pixel shader.
What I did to solve this was to paint a rectangular texture, leaving the area of the rectangle which doesn't contain the circle transparent. You check to see if a point in the array is contained within a circle originating from the center of the rectangle.
Using the color data array is a bit weird because its not a 2D array. My solution was to bring in some 2D array logic into the scenario.
public Texture2D GetColoredCircle(float radius, Color desiredColor)
{
radius = radius / 2;
int width = (int)radius * 2;
int height = width;
Vector2 center = new Vector2(radius, radius);
Circle circle = new Circle(center, radius,false);
Color[] dataColors = new Color[width * height];
int row = -1; //increased on first iteration to zero!
int column = 0;
for (int i = 0; i < dataColors.Length; i++)
{
column++;
if(i % width == 0) //if we reach the right side of the rectangle go to the next row as if we were using a 2D array.
{
row++;
column = 0;
}
Vector2 point = new Vector2(row, column); //basically the next pixel.
if(circle.ContainsPoint(point))
{
dataColors[i] = desiredColor; //point lies within the radius. Paint it.
}
else
{
dataColors[i] = Color.Transparent; //point lies outside, leave it transparent.
}
}
Texture2D texture = new Texture2D(GraphicsDevice, width, height);
texture.SetData(0, new Rectangle(0, 0, width, height), dataColors, 0, width * height);
return texture;
}
And here's the method to check whether or not a point is contained within your circle:
public bool ContainsPoint(Vector2 point)
{
return ((point - this.Center).Length() <= this.Radius);
}
Hope this helps!
public Texture2D createCircleText(int radius, GraphicsDevice Devise,Color color,int tickenes)
{
Texture2D texture = new Texture2D(Devise, radius, radius);
Color[] colorData = new Color[radius * radius];
if (tickenes >= radius) tickenes = radius - 5;
float diam = radius / 2f;
float diamsq = diam * diam;
float intdiam = (radius-tickenes) / 2f;
float intdiamsq = intdiam * intdiam;
for (int x = 0; x < radius; x++)
{
for (int y = 0; y < radius; y++)
{
int index = x * radius + y;
Vector2 pos = new Vector2(x - diam, y - diam);
if (pos.LengthSquared() <= diamsq)
{
colorData[index] = color;
}
else
{
colorData[index] = Color.Transparent;
}
if (pos.LengthSquared() <= intdiamsq)
{
colorData[index] = Color.Transparent;
}
}
}
texture.SetData(colorData);
return texture;
}

Categories