The task is to find a triangle number which has at least 500 divisors.
For example 28 has 6 divisors: 1,2,4,7,14,28
My code works for up to 200 divisors, but for 500 it runs forever...
Is there any way to optimize the code. For instance I thought of dynamic optimization and memoization, but couldn't find a way to do it?
int sum = 0;
int counter = 0;
int count = 1;
bool isTrue = true;
while (isTrue)
{
counter = 0;
sum += count;
for (int j = 1; j <= sum; j++)
{
if (sum % j == 0)
{
counter++;
if (counter == 500)
{
isTrue = false;
Console.WriteLine("Triangle number: {0}", sum);
break;
}
}
}
count++;
}
Console.WriteLine("Number of divisors: {0}", counter);
Ignore the fact that the number is a triangle number. If you can solve this problem quickly:
given any number n, determine the number of divisors it has
then obviously you can solve Euler #12 quickly. Just list the triangle numbers, which are easy to calculate, determine the number of divisors of each, and stop when you get a result 500 or larger.
So how do you determine the number of divisors quickly? As you've discovered, when the numbers get big, it's a lot of work.
Here's a hint. Suppose you already have the prime factorization. Let's pick a number, say, 196. Factorize that into prime numbers:
196 = 2 x 2 x 7 x 7
I can tell you just by glancing at the factorization that 196 has nine divisors. How?
Because any divisor of 196 is of the form:
(1, 2 or 2x2) x (1, 7 or 7x7)
So obviously there are nine possible combinations:
1 x 1
1 x 7
1 x 7 x 7
2 x 1
2 x 7
2 x 7 x 7
2 x 2 x 1
2 x 2 x 7
2 x 2 x 7 x 7
Pick another number. 200, lets say. Thats 2 x 2 x 2 x 5 x 5. So there are twelve possibilities:
1 x 1
1 x 5
1 x 5 x 5
2 x 1
2 x 5
...
2 x 2 x 2 x 5 x 5
See the pattern? You take the prime factorization, group them by prime, and count how many are in each group. Then you add one to each of those numbers and multiply them together. Again, in 200 there are three twos and two fives in the prime factorization. Add one to each: four and three. Multiply them together: twelve. That's how many divisors there are.
So you can find the number of divisors very quickly if you know the prime factorization. We have reduced the divisor problem to a much easier problem: Can you figure out how to produce a prime factorization quickly?
here are some optimizations I'll just throw out there for you.
the easiest thing is to change
for (int j = 1; j <= sum; j++)
{
if (sum % j == 0)
{
counter++;
if (counter == 500)
{
isTrue = false;
Console.WriteLine("Triangle number: {0}", sum);
break;
}
}
}
if you've found 1 divisor, you've found 2 divisors, so change it to
for (int j = 1; j <= sum; j++)
{
if (sum % j == 0)
{
if(sum/j < j)
break;
else if(sum/j == j)
counter++;
else
counter +=2;
if (counter == 500)
{
isTrue = false;
Console.WriteLine("Triangle number: {0}", sum);
break;
}
}
}
this will reduce the runtime a lot, but it will still take a long time.
another optimization you can do is to not start checking form sum but calculate the smallest number that has 500 divisors.
and then you can find the largest triangle number after that, and start from there.
If you can figure something else special about the nature of this problem, than it is possible for you to reduce the runtime by a whole lot.
The number of divisors of a number is the product of the powers of the prime factors plus one. For example: 28 = 2^2*7^1, so the # of divisors is (2+1)*(1+1) = 6.
This means that, if you want many divisors compared to the size of the number, you don't want any one prime to occur too often. Put another way: it is likely that the smallest triangular number with at least 500 divisors is the product of small powers of small primes.
So, instead of checking every number to see if it divides the triangular number, go through a list of the smallest primes, and see how often each one occurs in the prime factorization. Then use the formula above to compute the number of divisors.
Take these steps:
1.) Calculate the first log(2, 499) prime numbers (not 500, as 1 is counted as a divisor if I am nit mistaken despite the fact that it is not prime, as it has only one divisor). There are many solutions out there, but you catch my drift.
2.) A triangle number is of the form of n * (n + 1) / 2, because
1 + 2 + ... + 100 = (1 + 100) + (2 + 99) + ... + (50 + 51) = 101 * 50 = 101 * 100 / 2 = 5050 (as Cauchy solved it when he was an eight-year boy and the teacher punished him with this task).
1 + ... + n = (1 + n) + (2 + n - 1) + ... = n * (n + 1) / 2.
3.) S = prod(first log(2, 499) prime numbers)
4.) Solve the equation of n * (n + 1) / 2 = S and calculate its ceiling. You will have an integer, let's call it m.
5.)
while (not(found))
found = isCorrect(m)
if (not(found)) then
m = m + 1
end if
end while
return m
and there you go. Let me know if I was able to help you.
As #EricLippert nad #LajosArpad mentioned, the key idea is to iterate over triangle numbers only. You can calculate them using the following formula:
T(n) = n * (n + 1) / 2
Here is JSFiddle which you may find helpful.
function generateTriangleNumber(n) {
return (n * (n + 1)) / 2;
}
function findTriangleNumberWithOver500Divisors() {
var nextTriangleNum;
var sqrt;
for (i = 2;; i++) {
var factors = [];
factors[0] = 1;
nextTriangleNum = generateTriangleNumber(i);
sqrt = Math.pow(nextTriangleNum, 0.5);
sqrt = Math.floor(sqrt);
var j;
for (j = 2; j <= sqrt; j++) {
if (nextTriangleNum % j == 0) {
var quotient = nextTriangleNum / j;
factors[factors.length] = j;
factors[factors.length] = quotient;
}
}
factors[factors.length] = nextTriangleNum;
if (factors.length > 500) {
break;
}
}
console.log(nextTriangleNum);
}
Incidentally, the first Google result for divisors of triangular number search query gives this :)
Project Euler 12: Triangle Number with 500 Divisors
See if it helps.
EDIT: Text from that article:
The first triangle number with over 500 digits is: 76576500 Solution
took 1 ms
Related
Hi I am sick of searching I could not find the exact code for my question.
I need to code the sum of the odd numbers from 1 to 100
and sum of the even numbers from 2 to 100.
This is what i have so far.
Thank you so much
// 1) using for statement to Sum Up a Range of values using Interactive
Console.WriteLine(" Sum Up a Range of values entered by User ");
Console.WriteLine();
// 2) Declare the Variables to be used in the Project
string strFromNumber, strToNumber;
int fromNumber, toNumber;
int sum = 0;
int i, even = 0, odd = 0;
int[] array = new int[10];
// 3) Prompt the User to Enter the From Number to Sum From
Console.Write("Enter the From Number to Sum From: ");
strFromNumber = Console.ReadLine();
fromNumber = Convert.ToInt32(strFromNumber);
// 4) Prompt the User to Enter the To Number to Sum To
Console.Write("Enter the To Number to Sum To: ");
strToNumber = Console.ReadLine();
toNumber = Convert.ToInt32(strToNumber);
// 5) Use for statement to Sum up the Range of Numbers
for (i = fromNumber; i <= toNumber; ++i)
{
sum += i;
}
if //(array[i] % 2 == 0) //here if condition to check number
{ // is divided by 2 or not
even = even + array[i]; //here sum of even numbers will be stored in even
}
else
{
odd = odd + array[i]; //here sum of odd numbers will be stored in odd.
}
Console.WriteLine("The Sum of Values from {0} till {1} = {2}",
fromNumber, toNumber, sum);
Console.ReadLine();
There is no need to write the complex code which you have written.
Problem is to calculate the sum of arithmetic progression. The formula to find the sum of an arithmetic progression is Sn = n/2[2a + (n − 1) × d] where, a = first term of arithmetic progression, n = number of terms in the arithmetic progression and d = common difference.
So in case of odd numbers its a = 1, n = 50 and d = 2
and in case of even numbers its a = 2, n = 50 and d = 2
and if you try to normalize these above formulas, it will be more easy based on your problem.
the sum of the first n odd numbers is Sn= n^2
the sum of the first n even numbers is n(n+1).
and obviously, it's very simple to loop from ( 1 to 99 with an increment of 2 ) and ( 2 to 100 with an increment of 2 )
In the simplest case, you can try looping in fromNumber .. toNumber range while adding
number either to even or to odd sum:
// long : since sum of int's can be large (beyond int.MaxValue) let's use long
long evenSum = 0;
long oddSum = 0;
for (int number = fromNumber; number <= toNumber; ++number) {
if (number % 2 == 0)
evenSum += number;
else
oddSum += number;
}
Console.WriteLine($"The Sum of Values from {fromNumber} till {toNumber}");
Console.WriteLine($"is {evenSum + oddSum}: {evenSum} (even) + {oddSum} (odd).");
Note, that you can compute both sums in one go with a help of arithmetics progression:
private static (long even, long odd) ComputeSums(long from, long to) {
if (to < from)
return (0, 0); // Or throw ArgumentOutOfRangeException
long total = (to + from) * (to - from + 1) / 2;
from = from / 2 * 2 + 1;
to = (to + 1) / 2 * 2 - 1;
long odd = (to + from) / 2 * ((to - from) / 2 + 1);
return (total - odd, odd);
}
Then
(long evenSum, long oddSum) = ComputeSums(fromNumber, toNumber);
Console.WriteLine($"The Sum of Values from {fromNumber} till {toNumber}");
Console.WriteLine($"is {evenSum + oddSum}: {evenSum} (even) + {oddSum} (odd).");
From the code snippet you shared, it seems like the user gives the range on which the sum is calculated. Adding to #vivek-nuna's answer,
Let's say the sum of the first N odd numbers is given by, f(n) = n^2 and
the sum of the first N even numbers is given by, g(n) = n(n + 1).
So the sum of odd numbers from (l, r) = f(r) - f(l - 1).
Similarly, the sum of even numbers from (l, r) = g(r) - g(l - 1).
Hope this helps.
Update 01
Thanks to Caius, found the main problem, the logic on the "if" was wrong, now fixed and giving the correct results. The loop still create more positions than needed on the secondary List, an extra position for each number on the main List.
I've updated the code bellow for refence for the following question:
-001 I can figure out why it create positions that needed, the for loop should run only after the foreach finishes its loops correct?
-002 To kind of solving this issue, I've used a List.Remove() to remove all the 0's, so far no crashes, but, the fact that I'm creating the extra indexes, and than removing them, does means a big performance down if I have large list of numbers? Or is an acceptable solution?
Description
It supposed to read all numbers in a central List1 (numberList), and count how many numbers are inside a certain (0|-15 / 15|-20) range, for that I use another List, that each range is a position on the List2 (numberSubList), where each number on List2, tells how many numbers exists inside that range.
-The range changes as the numbers grows or decrease
Code:
void Frequency()
{
int minNumb = numberList.Min();
int maxNumb = numberList.Max();
int size = numberList.Count();
numberSubList.Clear();
dGrdVFrequency.Rows.Clear();
dGrdVFrequency.Refresh();
double k = (1 + 3.3 * Math.Log10(size));
double h = (maxNumb - minNumb) / k;
lblH.Text = $"H: {Math.Round(h, 2)} / Rounded = {Math.Round(h / 5) * 5}";
lblK.Text = $"K: {Math.Round(k, 4)}";
if (h <= 5) { h = 5; }
else { h = Math.Round(h / 5) * 5; }
int counter = 1;
for (int i = 0; i < size; i++)
{
numberSubList.Add(0); // 001 HERE, creating more positions than needed, each per number.
foreach (int number in numberList)
{
if (number >= (h * i) + minNumb && number < (h * (i + 1)) + minNumb)
{
numberSubList[i] = counter++;
}
}
numberSubList.Remove(0); // 002-This to remove all the extra 0's that are created.
counter = 1;
}
txtBoxSubNum.Clear();
foreach (int number in numberSubList)
{
txtBoxSubNum.AppendText($"{number.ToString()} , ");
}
lblSubTotalIndex.Text = $"Total in List: {numberSubList.Count()}";
lblSubSumIndex.Text = $"Sum of List: {numberSubList.Sum()}";
int inc = 0;
int sum = 0;
foreach (int number in numberSubList)
{
sum = sum + number;
int n = dGrdVFrequency.Rows.Add();
dGrdVFrequency.Rows[n].Cells[0].Value = $"{(h * inc) + minNumb} |- {(h * (1 + inc)) + minNumb}";
dGrdVFrequency.Rows[n].Cells[1].Value = $"{number}";
dGrdVFrequency.Rows[n].Cells[2].Value = $"{sum}";
dGrdVFrequency.Rows[n].Cells[3].Value = $"{(number * 100) / size} %";
dGrdVFrequency.Rows[n].Cells[4].Value = $"{(sum * 100) / size} %";
inc++;
}
}
Screen shot showing the updated version.
I think, if your aim is to only store eg 17 in the "15 to 25" slot, this is wonky:
if (number <= (h * i) + minNumb) // Check if number is smaller than the range limit
Because it's found inside a loop that will move on to the next range, "25 to 35" and it only asks if the number 17 is less than the upper limit (and 17 is less than 35) so 17 is accorded to the 25-35 range too
FWIW the range a number should be in can be derived from the number, with (number - min) / number_of_ranges - at the moment you create your eg 10 ranges and then you visit each number 10 times looking to put it in a range, so you do 9 times more operations than you really need to
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 2 years ago.
Improve this question
For a given input n, the task is to find the largest integer that is <= n and has the highest digit sum.
For example:
solve(100) = 99. Digit Sum for 99 = 9 + 9 = 18. No other number <= 100 has a higher digit sum.
solve(10) = 9
solve(48) = 48. Note that 39 is also an option, but 48 is larger.
Input range is 0 < n < 1e11
What have I tried?
I tried 2 methods. Firstly, I tried getting each digit with Math operations like this:
public static long solve(long n)
{
var answer = 0;
var highestSum = 0;
for (var i = 1; i <= n; i++)
{
var temp = i;
var sum = 0;
while (temp > 0)
{
sum += temp % 10;
temp /= 10;
}
if (sum >= highestSum)
{
highestSum = sum;
answer = i;
}
}
return answer;
}
My second try, I tried using Linq extensions, like this:
public static long solve(long n)
{
var answer = 0;
var highestSum = 0;
for (var i = 1; i <= n; i++)
{
var sum = i.ToString().Sum(x => x - '0');
if (sum >= highestSum)
{
highestSum = sum;
answer = i;
}
}
return answer;
}
Both of my solutions seem to return the correct value and work for smaller values, but for larger input, they seem to take a very long time to execute. How to make it run through numbers faster? Is there a specific algorithm for this task, or am I doing something else wrong?
We can achieve this O(number of digits in n)
We can achieve this if we iteratively reduce a digit and change all other digits on its right to 9.
Let n be our current number.
We can find next number using the below :
b is a power of 10 to represent position of current digit. After every iteration we reduce n to n/10 and change b to b*10.
We use (n – 1) * b + (b – 1);
For eg, if the number is n = 521 and b = 1, then
(521 – 1) * 1 + (1-1) which gives you 520, which is the thing we need to do, reduce the position number by 1 and replace all other numbers to the right by 9.
After n /= 10 gives you n as 52 and b*=10 gives you b as 10, which is again executed as (52-1)*(10) + 9 which gives you 519, which is what we have to do, reduce the current index by 1 and increase all other rights by 9.
static int findMax(int x)
{
int b = 1, ans = x;
while (x!=0)
{
int cur = (x - 1) * b + (b - 1);
if (sumOfDigits(cur) >= sumOfDigits(ans) && cur > ans))
ans = cur;
x /= 10;
b *= 10;
}
return ans;
}
int sumOfDigits(int a)
{
int sum = 0;
while (a)
{
sum += a % 10;
a /= 10;
}
return sum;
}
The accepted answer is brilliant, but I was dead-set on figuring out a way to determine the correct answer without actually summing the digits and comparing the sums to each other.
I tried a few things (as you can see if you look at the edit history), but I couldn't find the formula. In desperation, I wrote a utility to show me all the numbers from 1 to 9999999 that did not have a smaller number with a larger sum to see what pattern I was missing by not looking on a large enough scale.
I was somewhat surprised that only 253 numbers out of the first 10 million have the largest sum compared to their lessers! Somehow I thought that number would be bigger.
Also, it turns out that there is an obvious pattern that appears fairly quickly, and it remained constant for 10 million iterations, so I think it's a good one.
Here's a small sample of some blocks of consecutive output:
0,1,2,3,4,5,6,7,8,9,
18,19,28,29,38,39,48,49,
58,59,68,69,78,79,88,89,98,99,189,198
8899,8989,8998,8999,
9899,9989,9998,9999,
18999,19899,19989,19998,19999
98999,99899,99989,99998,99999,
189999,198999,199899,199989,199998,199999
7899999,7989999,7998999,7999899,7999989,7999998,7999999,
8899999,8989999,8998999,8999899,8999989,8999998,8999999,
9899999,9989999,9998999,9999899,9999989,9999998,9999999
It's so obviously clear!
If the number is one digit, then it's the highest.
If all but the first digit are either all 9's or all 9's with a single 8, then it's sum is the highest.
Otherwise the highest number is the one whose first digit is one less than the original, followed by all 9's.
Here's a code implementation:
public static long Solve(long n)
{
if (HasValidSuffix(n)) return n;
long firstDigit;
int numDigits;
// Loop to determine the first digit and number of digits in the input
for (firstDigit = n, numDigits = 1; firstDigit > 9; firstDigit /= 10, numDigits++) ;
return Enumerable.Range(0, numDigits - 1)
.Aggregate(firstDigit - 1, (accumulator, next) => accumulator * 10 + 9);
}
// Returns true for positive numbers less than 10 or
// numbers that end in either all 9's or all 9's and one 8
public static bool HasValidSuffix(long input)
{
var foundAnEight = false;
for (var n = input; n > 9; n /= 10)
{
var lastDigit = n % 10;
if (lastDigit < 8) return false;
if (lastDigit == 9) continue;
if (foundAnEight) return false;
foundAnEight = true;
}
return true;
}
I have a task to find pairs of amicable numbers and I've already solved it. My solution is not efficient, so please help me to make my algorithm faster.
Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to the other number. The smallest pair of amicable numbers is (220, 284). They are amicable because the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, of which the sum is 284; and the proper divisors of 284 are 1, 2, 4, 71 and 142, of which the sum is 220.
Task: two long numbers and find the first amicable numbers between them. Let s(n) be the sum of the proper divisors of n:
For example:
s(10) = 1 + 2 + 5 = 8
s(11) = 1
s(12) = 1 + 2 + 3 + 4 + 6 = 16
If s(firstlong) == s(secondLong) they are amicable numbers
My code:
public static IEnumerable<long> Ranger(long length) {
for (long i = 1; i <= length; i++) {
yield return i;
}
}
public static IEnumerable<long> GetDivisors(long num) {
return from a in Ranger(num/2)
where num % a == 0
select a;
}
public static string FindAmicable(long start, long limit) {
long numberN = 0;
long numberM = 0;
for (long n = start; n <= limit; n++) {
long sumN = GetDivisors(n).Sum();
long m = sumN;
long sumM = GetDivisors(m).Sum();
if (n == sumM ) {
numberN = n;
numberM = m;
break;
}
}
return $"First amicable numbers: {numberN} and {numberM}";
}
I generally don't write C#, so rather than stumble through some incoherent C# spaghetti, I'll describe an improvement in C#-madeup-psuedo-code.
The problem seems to be in your GetDivisors function. This is linear O(n) time with respect to each divisor n, when it could be O(sqrt(n)). The trick is to only divide up to the square root, and infer the rest of the factors from that.
GetDivisors(num) {
// same as before, but up to sqrt(num), plus a bit for floating point error
yield return a in Ranger((long)sqrt(num + 0.5)) where num % a == 0
if ((long)sqrt(num + 0.5) ** 2 == num) { // perfect square, exists
num -= 1 // don't count it twice
}
// repeat, but return the "other half"- num / a instead of a
yield return num/a in Ranger((long)sqrt(num + 0.5)) where num % a == 0
}
This will reduce your complexity of that portion from O(n) to O(sqrt(n)), which should provide a noticeable speedup.
There is a simple formula giving the sum of divisors of a number knowing its prime decomposition:
let x = p1^a1 * ... * pn^an, where pi is a prime for all i
sum of divisors = (1+p1+...+p1^a1) * ... (1+pn+...+pn^an)
= (1-p1^(a1+1))/(1-p1) * ... ((1-pn^(an+1))/(1-pn)
In order to do a prime decomposition you must compute all prime numbers up to the square root of the maximal value in your search range. This is easily done using the sieve of Erathostenes.
I'm trying to calculate if a particular entry in the 100th row of Pascal's triangle is divisible by 3 or not.I'm calculating this using the formula nCr where n=100 and r is the different entries in the 100th row.
I'm using the below code to calculate combination
public static double Combination(int n, int m, double comb)
{
for (int r = -1; ++r < m; )
comb = comb * (n - r) / (r + 1);
return comb;
}
But for values such as 100C16 i'm getting large number containing decimal and e in it.
I searched on the internet found that actually there are 12 numbers which are not divisible by 3, but my program gives me 63 number which are not divisible by 3 in 100th row which is wrong.Can any tell me what is it that i'm doing wrong.
First of all you are using doubles, I don't think that's a good idea. Floating point numbers will give errors after a while.
If the number will not grow that huge one could use the following method:
public static long nCr (int m, int n) {
long tmp = 1;
int j = 2;
int k = m-n;
for(int i = m; i > k; i--) {
tmp *= i;
while(j <= n && tmp%j == 0) {
tmp /= j++;
}
}
while(j <= n) {
tmp /= j++;
}
return tmp;
}
In this case however this still isn't enough. In that case one can use the BigInteger struct in System.Numerics
public static BigInteger nCr (int m, int n) {
BigInteger tmp = 1;
int j = 2;
int k = m-n;
for(int i = m; i > k; i--) {
tmp *= i;
while(j <= n && tmp%j == 0) {
tmp /= j++;
}
}
while(j <= n) {
tmp /= j++;
}
return tmp;
}
You could argue that with a BigInteger one doesn't need to interleave devision and multiplication. However if BigInteger is quite big the operations on the data will take some time (because the number is represented as an array of a number of bytes). By keeping it small one can avoid long calculation times.
I assume "nCr" is shorthand for n-choose-r, or choose r from N, right?
To see if nCr is divisible by three, you don't need to calculate the result, you just need to figure out if it's divisible by 3. You have to see how many times n! is divisible by 3, and then how many times r! is divisible by 3 and how many times (n-r)! is.
It really is quite simple - 1! is not divisible by 3, 2! isn't, 3! is divisible once. 4! and 5! are also divisible once. 6! is divisible twice, and so are 7! and 8!. 9! is divisible 4 times, and so on. Go all the way up to n (or work out the formula without calculating incrementally, it's not all that hard), and check.
Clarification - my math studies where in Hebrew, so "How many times n! is divisible by 3" may not be the proper English way of saying it. By "n! is divisible by 3 m times" I mean that n!=3^m*k, where k is not divisible by 3 at all.
EDIT: An example. Let's see if 10c4 is divisible by 3.
Let's make a small table saying how many times k! is divisible by 3 (the k! column is just for demonstration, you don't actually need it when calculating the divisiblity column):
k k! Divisibility
1 1 0
2 2 0
3 6 1
4 24 1
5 120 1
6 720 2
7 5040 2
8 40320 2
9 362880 4
10 3628800 4
10c4 is 10! / (6! * 4!) .
10! is divisible 4 times (meaning 10! = 3^4 * something not divisible by 3),
6! is divisible 2 times
4! is divisible 1 time
So 10! (6! * 4!) is divisible by 3. It is in fact 3 * 70.