I am working to increase the performance of bulk loads; 100's of millions of records + daily.
I moved this over to use the IDatareader interface in lieu of the data tables and did get a noticeable performance boost (500,000 more records a minute). The current setup is:
A custom cached reader to parse the delimited files.
Wrapping the stream reader in a buffered stream.
A custom object reader class that enumerates over the objects and implements the IDatareader interface.
Then SqlBulkCopy writes to server
The bulk of the performance bottle neck is directly in SqlBulkCopy.WriteToServer. If I unit test the process up to but excluding just the WriteToServer the process returns in roughly 1 minute. WriteToServer is taking on an additional 15 minutes +. For the unit test it is on my local machine so the same drive the database lives on so it's not having to copy the data across the network.
I am using a heap table (no indexes; clustered or unclustered; I have played around various batch sizes without major differences in performance).
There is a need to decrease the load times so I am hoping someone might now a way to squeeze a little more blood out of this turn-up.
Why not use SSIS directly?
Anyway, if you did a treaming from parsing to IDataReader you're already on the right path. To optimize SqlBulkCopy itself you need to turn your focus to SQL Server. The key is minimally logged operations. You must read these MSDN articles:
Prerequisites for Minimal Logging in Bulk Import.
Optimizing Bulk Import Performance.
If your target is a B-Tree (ie a clustered indexed table) unfortunately one of the most important tenets of performant bulk insert, namely the sorted-input rowset, cannot be declared. Sis simple as this, ADO.Net SqlClient does not have the equivalent of SSPROP_FASTLOADOPTIONS -> ORDER(Column) (OleDb). Since the engine does not know that the data is already sorted it will add a Sort operator in the plan which is not that bad except when it spills. To avoid spills, use a small batch size (~10k). See my original point: all these are just options and clicks to set in SSIS rather than digging through OleDB MSDN spec...
If your data stream is unsorted to start with or the destination is a heap then my point above is mute.
However, achieving minimally logging is still a must for decent performance.
Related
EDIT: As result of the answers so far I like to add more focus in what I like to zero in on: A database that allows writing in-memory (could be simple C# code) with persistence to storage options in order to access the data from within R. Redis so far looks the most promising. I also consider to actually use something similar to Lockfree++ or ZeroMQ, in order to avoid writing data concurrently to the database, but rather sending all to be persisted data over a message bus/other implementation and to have one "actor" handle all write operations to an in-memory db or other solution. Any more ideas aside Redis (some mentioned SQLite and I will need to still test its performance). Any other suggestions?
I am searching for the ideal database structure/solution that meets most of my below requirements but so far I utterly failed. Can you please help?
My tasks: I run a process in .Net 4.5 (C#) and generate (generally) value types that I want to use for further analysis in other applications and therefore like to either preserve in-memory or persist on disk. More below. The data is generated within different tasks/threads and thus a row based data format does not lend itself well to match this situation (because the data generated in different threads is generated at different times and is thus not aligned). Thus I thought a columnar data structure may be suitable but please correct me if I am wrong.
Example:
Tasks/Thread #1 generates the following data at given time stamps
datetime.ticks / value of output data
1000000001 233.23
1000000002 233.34
1000000006 234.23
...
Taks/Thread #2 generates the following data at given time stamps
datetime.ticks / value of output data
1000000002 33.32
1000000005 34.34
1000000015 54.32
...
I do not need to align the time stamps at the .Net run-time, I am first and foremost after preserving the data and to process the data within R or Python at a later point.
My requirements:
Fast writes, fast writes, fast writes: It can happen that I generate 100,000- 1,000,000 data points per second and need to persist (worst case) or retain in memory the data. Its ok to run the writes on its own thread so this process can lag the data generation process but limitation is 16gb RAM (64bit code), more below.
Preference is for columnar db format as it lends itself well to how I want to query the data later but I am open to any other structure if it makes sense in regards to the examples above (document/key-value also ok if all other requirements are met, especially in terms of write speed).
API that can be referenced from within .Net. Example: HDF5 may be considered capable by some but I find their .Net port horrible.Something that supports .Net a little better would be a plus but if all other requirements are met then I can deal with something similar to the HDF5 .Net port.
Concurrent writes if possible: As described earlier I like to write data concurrently from different tasks/threads.
I am constrained by 16gb memory (run .Net process in 64bit) and thus I probably look for something that is not purely in-memory as I may sometimes generate more data than that. Something in-memory which persists at times or a pure persistence model is probably preferable.
Preference for embedded but if a server in a client/server solution can run as a windows service then no issue.
In terms of data access I have strong preference for a db solution for which interfaces from R and Python already exist because I like to use the Panda library within Python for time series alignments and other analysis and run analyses within R.
If the API/library supports in addition SQL/SQL-like/Linq/ like queries that would be terrific but generally I just need the absolute bare bones such as load columnar data in between start and end date (given the "key"/index is in such format) because I analyze and run queries within R/Python.
If it comes with a management console or data visualizer that would be a plus but not a must.
Should be open source or priced within "reach" (no, KDB does not qualify in that regards ;-)
OK, here is what I have so far, and again its all I got because most db solution simply fail already on the write performance requirement:
Infobright and Db4o. I like what I read so far but I admit I have not checked into any performance stats
Something done myself. I can easily store value types in binary format and index the data by datetime.ticks , I just would need to somehow write scripts to load/deserialize the data in Python/R. But it would be a massive tasks if I wanted to add concurrency, a query engine, and other goodies. Thus I look for something already out there.
I can't comment -- low rep (I'm new here) -- so you get a full answer instead...
First, are you sure you need a database at all? If fast write speed and portability to R is your biggest concern then have you just considered a flat file mechanism? According to your comments you're willing to batch writes out but you need persistence; if those were my requirements I'd write a straight-to-disck buffering system that was lightning fast then build a separate task that periodically took the disk files and moved them into a data store for R, and that's only if R reading the flat files wasn't sufficient in the first place.
If you can do alignment after-the-fact, then you could write the threads to separate files in your main parallel loop, cutting each file off every so often, and leave the alignment and database loading to the subprocess.
So (in crappy pseudo_code), build a thread process that you'd call with backgroundworker or some such and include a threadname string uniquely identifying each worker and thus each filestream (task/thread):
file_name = threadname + '0001.csv' // or something
open(file_name for writing)
while(generating_data) {
generate_data()
while (buffer_not_full and very_busy) {
write_data_to_buffer
generate_data()
}
flush_buffer_to_disk(file_name)
if(file is big enough or enough time has passed or we're not too busy) {
close(file_name)
move(file_name to bob's folder)
increment file_name
open(file_name for writing)
}
)
Efficient and speedy file I/O and buffering is a straightforward and common problem. Nothing is going to be faster than this. Then you can just write another process to do the database loads and not sweat the performance there:
while(file_name in list of files in bob's folder sorted by date for good measure)
{
read bob's file
load bob's file to database
align dates, make pretty
}
And I wouldn't write that part in C#, I'd batch script it and use the database's native loader which is going to be as fast as anything you can build from scratch.
You'll have to make sure the two loops don't interfere much if you're running on the same hardware. That is, run the task threads at a higher priority, or build in some mutex or performance limiters so that the database load doesn't hog resources while the threads are running. I'd definitely segregate the database server and hardware so that file I/O to the flat files isn't compromised.
FIFO queues would work if you're on Unix, but you're not. :-)
Also, hardware is going to have more of a performance impact for you than the database engine, I'd imagine. If you're on a budget I'm guessing you're on COTS hardware, so springing for a solid state drive may up performance fairly cheaply. As I said, separating the DB storage from the flat file storage would help, and the CPU/RAM for R, the Database, and your Threads should all be segregated ideally.
What I'm saying is that choice of DB vendor probably isn't your biggest issue, unless you have a lot of money to spend. You'll be hardware bound most of the time otherwise. Database tuning is an art, and while you can eek out minor performance gains at the top end, having a good database administrator will keep most databases in the same ballpark for performance. I'd look at what R and Python support well and that you're comfortable with. If you think in columnar fashion then look at R and C#'s support for Cassandra (my vote), Hana, Lucid, HBase, Infobright, Vertica and others and pick one based on price and support. For traditional databases on a single commodity machine, I haven't seen anything that MySQL can't handle.
This is not to answer my own question but to keep track of all data bases which I tested so far and why they have not met my requirements (yet): each time I attempted to write 1 million single objects (1 long, 2 floats) to the database. For ooDBs, I stuck the objects into a collection and wrote the collection itself, similar story for key/value such as Redis but also attempted to write simple ints (1mil) to columnar dbs such as InfoBright.
Db4o, awefully slow writes: 1mil objects within a collection took about 45 seconds. I later optimized the collection structure and also wrote each object individually, not much love here.
InfoBright: Same thing, very slow in terms of write speed, which surprised me quite a bit as it organizes data in columnar format but I think the "knowledge tree" only kicks in when querying data rather than when saving flat data structures/tables-like structures.
Redis (through BookSleeve): Great API for .Net: Full Redis functionality (though couple drawbacks to run the server on Windows machines vs. a Linux or Unix box). Performance was very fast...North of 1 million items per second. I serialized all objects using Protocol Buffers (protobuf-net, both written by Marc Gravell), still need to play a lot more with the library but R and Python both have full access to the Redis DB, which is a big plus. Love it so far. The Async framework that Marc wrote around the Redis base functions is awesome, really neat and it works so far. I wanna spend a little more time to experiment with the Redis Lists/Collection types as well, as I so far only serialized to byte arrays.
SqLite: I ran purely in-memory and managed to write 1 million value type elements in around 3 seconds. Not bad for a pure RDBMS, obviously the in-memory option really speeds things up. I only created one connection, one transaction, created one command, one parameter, and simply adjusted the value of the parameter within a loop and ran the ExecuteNonQuery on each iteration. The transaction commit was then run outside the loop.
HDF5: Though there is a .Net port and there also exists a library to somehow work with HDF5 files out of R, I strongly discourage anyone to do so. Its a pure nightmare. The .Net port is very badly written, heck, the whole HDF5 concept is more than questionable. Its a very old and in my opinion outgrown solution to store vectorized/columnar data. This is 2012 not 1995. If one cannot completely delete datasets and vectors out of the file in which they were stored before then I do not call that an annoyance but a major design flaw. The API in general (not just .Net) is very badly designed and written imho, there are tons of class objects that nobody, without having spent hours and hours of studying the file structure, understands how to use. I think that is somewhat evidenced by the very sparse amount of documentation and example code that is out there. Furthermore, the h5r R library is a drama, an absolute nightmare. Its badly written as well (often the file upon writing is not correctly close due to a faulty flush and it corrupts files), the library has issues to even be properly installed on 32 bit OSs...and it goes on and on. I write the most about HDF5 because I spent the most of my time on this piece of .... and ended up with the most frustration. The idea to have a fast columnar file storage system, accessible from R and .Net was enticing but it just does not deliver what it promised in terms of API integration and usability or lack thereof.
Update: I ditched testing velocityDB simply because there does not seem any adapter to access the db from within R available. I currently contemplate writing my own GUI with charting library which would access the generated data either from a written binary file or have it sent over a broker-less message bus (zeroMQ) or sent through LockFree++ to an "actor" (my gui). I could then call R from within C# and have results returned to my GUI. That would possibly allow me the most flexibility and freedom, but would obviously also be the most tedious to code. I am running into more and more limitations during my tests that with each db test I befriend this idea more and more.
RESULT: Thanks for the participation. In the end I awarded the bounty points to Chipmonkey because he suggested partly what I considered important points to the solution to my problem (though I chose my own, different solution in the end).
I ended up with a hybrid between Redis in memory storage and direct calls out of .Net to the R.dll. Redis allows access to its data stored in memory by different processes. This makes it a convenient solution to quickly store the data as key/value in Redis and to then access the same data out of R. Additionally I directly send data and invoke functions in R through its .dll and the excellent R.Net library. Passing a collection of 1 million value types to R takes about 2.3 seconds on my machine which is fast enough given that I get the convenience to just pass in the data, invoke computational functions within R out of the .Net environment and getting the results back sync or async.
Just a note: I once had a similar problem posted by a fellow in a delphi forum. I could help him with a simple ID-key-value database backend I wrote at that time (kind of a NoSQL engine). Basically, it uses a B-Tree to store triplets (32bit ObjectID, 32bit PropertyKey, 64bit Value). I could manage to save about 500k/sec Values in real time (about 5 years ago). Of course, the data was indexed on all three values (ID, property-ID and value). You could optimize this by ignoring the value index.
The source I still have is in Delphi, but I would think about implementing something like that using C#. I cannot tell you whether it will meet your needs for performance, but if all else fails, give it a try. Using a buffered write should also drastically improve performance.
I would go with way combining persistence storage (I personally prefer db4o, but you can use files as well as mentioned above) and storing objects into memory this way:
use BlockingCollection<T> to store objects in memory (I believe you will achieve better performance then 1000000/s to store objects in memory), and than have one or more processing threads which will consume the objects and store them into persistent database
// Producing thread
for (int i=0; i<1000000; i++)
blockingCollection.Add(myObject);
// Consuming threads
while (true)
{
var myObject = blockingCollection.Take();
db4oSession.Store(myObject); // or write it to the files or whathever
}
BlockingCollection pretty much solves Producer-Consumer workflow, and in case you will use multiple instance of them and use AddToAny/TakeFromAny you can reach any kind of multithreaded performance
each consuming thread could have different db4o session (file) to reach desired performance (db4o is singlethreaded).
Since you want to use ZeroMQ why not use memcache over Redis?
ZeroMQ offers no persistence as far as I know. Memcache also offers no persistence and is a bit faster than Redis.
Or perhaps the other way, if you use Redis why not use beanstalk MQ?
If you want to use Redis (for the persistence) you might want to switch from ZeroMQ to beanstalk MQ (also a fast in memory queue, but also has persistence via logging). Beanstalk also has C# libs.
I have a database that contains more than 100 million records. I am running a query that contains more than 10 million records. This process takes too much time so i need to shorten this time. I want to save my obtained record list as a csv file. How can I do it as quickly and optimum as possible? Looking forward your suggestions. Thanks.
I'm assuming that your query is already constrained to the rows/columns you need, and makes good use of indexing.
At that scale, the only critical thing is that you don't try to load it all into memory at once; so forget about things like DataTable, and most full-fat ORMs (which typically try to associate rows with an identity-manager and/or change-manager). You would have to use either the raw IDataReader (from DbCommand.ExecuteReader), or any API that builds a non-buffered iterator on top of that (there are several; I'm biased towards dapper). For the purposes of writing CSV, the raw data-reader is probably fine.
Beyond that: you can't make it go much faster, since you are bandwidth constrained. The only way you can get it faster is to create the CSV file at the database server, so that there is no network overhead.
Chances are pretty slim you need to do this in C#. This is the domain of bulk data loading/exporting (commonly used in Data Warehousing scenarios).
Many (free) tools (I imagine even Toad by Quest Software) will do this more robustly and more efficiently than you can write it in any platform.
I have a hunch that you don't actually need this for an end-user (the simple observation is that the department secretary doesn't actually need to mail out copies of that; it is too large to be useful in that way).
I suggest using the right tool for the job. And whatever you do,
donot roll your own datatype conversions
use CSV with quoted literals and think of escaping the double quotes inside these
think of regional options (IOW: always use InvariantCulture for export/import!)
"This process takes too much time so i need to shorten this time. "
This process consists of three sub-processes:
Retrieving > 10m records
Writing records to file
Transferring records across the network (my presumption is you are working with a local client against a remote database)
Any or all of those issues could be a bottleneck. So, if you want to reduce the total elapsed time you need to figure out where the time is spent. You will probably need to instrument your C# code to get the metrics.
If it turns out the query is the problem then you will need to tune it. Indexes won't help here as you're retrieving a large chunk of the table (> 10%), so increasing the performance of a full table scan will help. For instance increasing the memory to avoid disk sorts. Parallel query could be useful (if you have Enterprise Edition and you have sufficient CPUs). Also check that the problem isn't a hardware issue (spindle contention, dodgy interconnects, etc).
Can writing to a file be the problem? Perhaps your disk is slow for some reason (e.g. fragmentation) or perhaps you're contending with other processes writing to the same directory.
Transferring large amounts of data across a network is obviously a potential bottleneck. Are you certain you're only sending relevenat data to the client?
An alternative architecture: use PL/SQL to write the records to a file on the dataserver, using bulk collect to retrieve manageable batches of records, and then transfer the file to where you need it at the end, via FTP, perhaps compressing it first.
The real question is why you need to read so many rows from the database (and such a large proportion of the underlying dataset). There are lots of approaches which should make this scenario avoidable, obvious ones being synchronous processing, message queueing and pre-consolidation.
Leaving that aside for now...if you're consolidating the data or sifting it, then implementing the bulk of the logic in PL/SQL saves having to haul the data across the network (even if it's just to localhost, there's still a big overhead). Again if you just want to dump it out into a flat file, implementing this in C# isn't doing you any favours.
I am trying to use sqlite in my application as a sort of cache. I say sort of because items never expire from my cache and I am not storing anything. I simply need to use the cache to store all ids I processed before. I don't want to process anything twice.
I am entering items into the cache at 10,000 messages/sec for a total of 150 million messages. My table is pretty simple. It only has one text column which stores the id's. I was doing this all in memory using a dictionary, however, I am processing millions of messages and, although it is fast that way, I ran out of memory after some time.
I have researched sqlite and performance and I understand that configuration is key, however, I am still getting horrible performance on inserts (I haven't tried selects yet). I am not able to keep up with even 5000 inserts/sec. Maybe this is as good as it gets.
My connection string is as below:
Data Source=filename;Version=3;Count Changes=off;Journal Mode=off;
Pooling=true;Cache Size=10000;Page Size=4096;Synchronous=off
Thanks for any help you can provide!
If you are doing lots of inserts or updates at once, put them in a transaction.
Also, if you are executing essentially the same SQL each time, use a parameterized statement.
Have you looked at the SQLite Optimization FAQ (bit old).
SQLite performance tuning and optimization on embedded systems
If you have many threads writing to the same database, then you're going to run into concurrency problems with that many transactions per second. SQLite always locks the whole database for writes so only one write transaction can be processed at a time.
An alternative is Oracle Berkley DB with SQLite. This latest version of Berkley DB includes a SQLite front end that has a page-level locking mechanism instead of database level. This provides much higher numbers of transactions per second when there is a high concurrency requirement.
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
It includes the same SQLite.NET provider and is supposed to be a drop-in replacement.
Since you're requirements are so specific you may be better off with something more dedicated, like memcached. This will provide a very high throughput caching implementation that will be a lot more memory efficient than a simple hashtable.
Is there a port of memcache to .Net?
I have wrote a ETL process that perform ETL process. The ETL process needs to process more than 100+ million or rows overall for 2 years worth of records. To avoid out of memory issue, we chunk the data loading down to every 7 days. For each chunk process, it loads up all the required reference data, then the process open a sql connection and load the source data one by one, transform it, and write it to the data warehouse.
The drawback of processing the data by chunk is it is slow.
This process has been working fine for most of the tables, but there is one table I still run into out of memory. The process has loaded too many reference data. I would like to avoid chunk the data down to 3 days so that it has a decent performance.
Is there any other strategies that I can use to avoid OutOfMemoryException?
For example, local database, write the reference data to files, spawn another .NET process to hold more memory in Windows, use CLR stored procedure to do ETL...
Environment: Windows 7 32 bit OS. 4 GB of RAM. SQL Server Standard Edition.
The only one solution is to use a store procedure and let SQL Server handle the ETL. However, I am trying to avoid it because the program needs to support Oracle as well.
Other performance improvement I tried are added indexes to improve the loading queries. Create custom data access class to only load the necessary columns, instead of loading the entire row into memory.
Thanks
Without knowing how you exactly process the data it is hard to say, but a naive solution that can be implemented in any case is to use a 64-bit OS and compile your application as 64-bit. In 32-bit mode .NET heap will only grow to about 1.5GB which might be limiting you.
I know its old post but for people searching for better points to write data operations with programming languages.
I am not sure if you have considered to study how ETL tools perform their data loading operations and replicate similar strategy in your code.
One such suggestion, parallel data pipes. Here each pipe will perform the ETL on a single chunks based on partitioning of the data from the source. For example, you could consider spawning processes for different weeks data in parallel. This still will not solve your memory issues within a single process. Though can be used in case you reach a limit with memory allocation within heap within single process. This is also useful to read the data in parallel with random access. Though will require a master process to coordinate and complete the process as a single ETL operation.
I assume you perform in your transformation a lot of lookup operation before finally writing your data to database. Assuming the master transaction table is huge and reference data is small. You need to focus on data structure operation and alogirthm. There are few tips below for the same. Refer to the characteristics of your data before choosing what suites best when writing the algorithm.
Generally, Lookup data (reference data) is stored in cache. Choose a simple data structure that is efficient for read and search operation (say Array list). If possible sort this array by the key you will join to be efficient in your search algorithm.
There is different strategy for lookup operations in your transformation tasks. In database world you can call it as join operation.
Merge Join algorithm :
Ideal when the source is already sorted on join attribute key. The key idea of the sort-merge algorithm is to first sort the relations by the join attribute, so that interleaved linear scans will encounter these sets at the same time. For sample code, https://en.wikipedia.org/wiki/Sort-merge_join
Nested Join:
works like a nested loop, where each value of the index of the outer loop is taken as a limit (or starting point or whatever applicable) for the index of the inner loop, and corresponding actions are performed on the statement(s) following the inner loop. So basically, if the outer loop executes R times and for each such execution the inner loop executes S times, then the total cost or time complexity of the nested loop is O(RS).
Nested-loop joins provide efficient access when tables are indexed on join columns. Furthermore,in many small transactions, such as those affecting only a small set of rows, index nested loopsjoins are far superior to both sort -merge joins and hash joins
I am only describing two methods that can be thought in your lookup operation. The main idea to remember in ETL is all about lookup and retrieve the tuples (as set) for further operation. Search will be based on key and resultant transaction keys will extract all the records (projection). Take this and load the rows from the file in one reading operation. This is more of suggestion in case you don't need all the records for transformation operations.
Another very costly operation is writing back to the database. There might be tendency to process the extraction, transformation and loading one row at a time. Think of operations that can be vectorized where in you can perform it together with a data structure operation in bulk. For example, lambada operation on a multi dimensional vector rather than looping every row one at a time and performing transformation and operations across all columns for a given row. We then can write this vector into file or database. This will avoid memory pressure.
This was a very old question, and it is more a design question and I am sure there are many solutions to it, unless I get into more specific details.
Ultimately, I wrote SQL Stored Procedure using Merge to handle the ETL process for the data type that took too long to process thought C# application. In addition, the business requirement was changed such that we dropped Oracle support, and only support 64-bit server, which reduced maintenance cost and avoid ETL out of memory issue.
In addition, we added many indexes whenever we see an opportunity to improve the querying performance.
Instead of chunking by a day range, the ETL process also chunks the data by count (5000) and commit on every transaction, this reduced the transaction log file size and if the ETL fails , the process only needs to rollback a subset of the data.
Lastly, we implemented caches (key,value) so that frequently referenced data within the ETL date range are loaded in memory to reduce database querying.
I have about 6500 files for a sum of about 17 GB of data, and this is the first time that I've had to move what I would call a large amount of data. The data is on a network drive, but the individual files are relatively small (max 7 MB).
I'm writing a program in C#, and I was wondering if I would notice a significant difference in performance if I used BULK INSERT instead of SQLBulkCopy. The table on the server also has an extra column, so if I use BULK INSERT I'll have to use a format file and then run an UPDATE for each row.
I'm new to forums, so if there was a better way to ask this question feel free to mention that as well.
By test, BULK INSERT is much faster. After an hour using SQLBulkCopy, I was maybe a quarter of the way through my data, and I had finished writing the alternative method (and having lunch). By the time I finished writing this post (~3 minutes), BULK INSERT was about a third of the way through.
For anyone who is looking at this as a reference, it is also worth mentioning that the upload is faster without a primary key.
It should be noted that one of the major causes for this could be that the server was a significantly more powerful computer, and that this is not an analysis of the efficiency of the algorithm, however I would still recommend using BULK INSERT, as the average server is probably significantly faster than the average desktop computer.