I am practicing TDD using MsTest together with RhinoMocks, and I am trying to be as lazy as humanly possible, i.e. make use of VS2012 auto-generation wherever I can. But it doesn't always feel right to create an entire test method with the Arrange-Act-Assert methodology, just to set up my class and its constructors and properties.
Currently, I find it easiest to create some properties in my test class - even if I don't use them - solely for the purpose of code generation. My question is, is this a bad habit, and is there a better/easier way to do it? Any commentary, good or bad is welcome; Thank you!
[TestClass]
public class MainViewModelTest
{
private MainViewModel MainViewModel
{
get
{
var facilityDataEntity = MockRepository.GenerateStub<FacilityDataEntity>();
var viewModel = new MainViewModel(facilityDataEntity)
{
FacilityValue = string.Empty,
FacilityLabel = string.Empty
};
return viewModel;
}
}
private MainViewModel MainViewModelWithFacilityAndShopOrderData
{
get
{
var facilityDataEntity = MockRepository.GenerateStub<FacilityDataEntity>();
var shopOrderDataEntity = MockRepository.GenerateStub<ShopOrderDataEntity>();
var viewModel = new MainViewModel(facilityDataEntity, shopOrderDataEntity)
{
FacilityValue = string.Empty,
FacilityLabel = string.Empty,
ShopOrder = 99999999,
RequiredQuantity = 0M,
ItemCode = string.Empty,
ItemDescription = string.Empty
};
return viewModel;
}
}
[TestMethod]
public void MainViewModel_TranslateDataEntityListMethodReturnsMainViewModelRecords()
{
// Arrange
var facilityDataEntityList = MockRepository.GenerateStub<IEnumerable<FacilityDataEntity>>();
var shopOrderDataEntityList = MockRepository.GenerateStub<IEnumerable<ShopOrderDataEntity>>();
// Act
IEnumerable<MainViewModel> facilityResults = MainViewModel.TranslateDataEntityList(facilityDataEntityList);
IEnumerable<MainViewModel> shopOrderResults = MainViewModel.TranslateDataEntityList(facilityDataEntityList, shopOrderDataEntityList);
// Assert
Assert.IsInstanceOfType(facilityResults, typeof(IEnumerable<MainViewModel>));
Assert.IsInstanceOfType(shopOrderResults, typeof(IEnumerable<MainViewModel>));
}
}
It's not wrong to wrap up common code within your test classes, but I would avoid potentially sharing state between your tests.
There are two approaches you can use here.
Class/Test Initialization
As Peter mentions in his comments, it's easy enough to include initialization methods to do this sort of stuff for you.
//Only runs once per test run
[ClassInitialize]
public void InitClass(){
//Ideally this should be reserved for expensive operations
// or for setting properties that are static throughout
// the lifetime of your test.
}
//Runs for every test
[TestInitialize]
public void TestInit(){
//Here you can setup common stub/mock behavior
// that will be common for every test, but ensure
// it is clean for each test run
}
Setup/Factory Methods
Another option is to create specialized setup or factory methods that can be used to reduce repeated test code and make the intent of your test clearer.
[TestMethod]
public void ShouldFailIfUserNameIsTed(){
var user = SetupUserScenario("Ted");
var result = _myUserService.Validate(user);
Assert.IsFalse(result);
}
private User SetupUserScenario(String username){
var user = new User();
user.Name = username;
//Do a bunch of other necessary setup
return user;
}
Hopefully this all makes sense, but I would also caution you not to go too crazy with this. If you put too much stuff into setup methods, then your tests will be less clear. You should be able to read the test and figure out what is going on without having to inspect a bunch of other places in the code.
That's what the ClassInitialize functionality is for. I would choose expected and recommended means of doing something before anything else. It's more easily recognizable and takes less time to grok the code.
Related
Suppose we want to make steaks.
Public class Restaurant{
public void MakeSteak(Steak rawSteak) {
this.KitchenServices.AddSeasoning(rawSteak);
this.KitchenServices.Grill(rawSteak);
}
}
In the unit tests, I could make sure that given a raw steak, we both season it and grill it:
public void MakeSteakTest() {
var rawSteak = new Steak();
this.restaurant.MakeSteak(rawSteak);
this.KitchenServices.Verify(x => x.AddSeasoning(rawSteak) , Times.Once);
this.KitchenServices.Verify(x => x.Grill(rawSteak) , Times.Once);
}
My question is that should we have a test to make sure that the steak is not seasoned after it's grilled? If yes, How?
Generally you should test results, not implementation in a unit test. What happens in your system if MakeSteak were changed so that the operations were in a different order? Is that something that is observable? Since your only intput is a Steak object, is there some sort of validation that fails if Grill is called before AddSeasoning? That is what you should be testing.
One way would be to represent each operation as a command object which operates on the steak e.g.
interface ISteakOp {
void DoTo(Steak s);
}
class AddSeasoningOp : ISteakOp { ... }
class GrillOp : ISteakOp { ... }
then return a sequence of operations:
public List<ISteakOp> MakeSteakOps() {
return new List<ISteakOp> {
new AddSeasoningOp(),
new GrillOp()
};
}
then your test can assert that any grill op occurs before any seasoning:
var ops = MakeSteakOps();
var grillIndex = ops.IndexOf(o => o is GrillOp);
if (grillIndex != -1) {
var seasonIndex = ops.IndexOf(o = o is AddSeasoningOp);
Assert.That(seasonIndex == -1 || seasonIndex < grillIndex);
}
My question is that should we have a test to make sure that the steak is not seasoned after it's grilled?
First: Does it have an effect on behavior that is visible to the End User/Stakeholder, and do they care?
If yes, How?
Then:
How is it that the is able to detect that effect on behavior? Use that same method in your test.
What's the behavior that the user is expecting? Use that expectation in your test.
This might sound "too straightforward"/"dismissively simple", but I'm totally serious. That is the definition of proper behavioral testing.
I have a basic .NET application that I am being asked to write a unit test for, but unit tests have always confused me.
This application has two repositories (FoodRepository and DrinkRepository) that return data from a hardcoded list.
Here's the Program.cs:
public static void Main(string[] args)
{
var foodSvc = new FoodService();
var foodId = 12;
var grade = 98.2d;
foodSvc.UpdateFoodGrade(foodId, grade);
}
which calls:
public void UpdateFoodGrade(int foodId, double grade)
{
var foodRepo = new FoodRepository();
var food = foodRepo.GetFood(foodId);
food.Grade = grade;
if (!food.IsPassed)
{
var drinkRepository = new DrinkRepository();
var drink = drinkRepository.GetDrink(foodId);
if (grade >= drink.MinimumPassingGrade)
{
food.IsPassed = true;
}
else
{
food.IsPassed = false;
}
}
}
My question is, what unit test(s) typically would someone do here for this? And, can I get some examples?
Been googling and grinding on this, but the concept continues to escape me.
I've historically used full integration tests in test environments, and not really done unit tests.
If anyone needs more of the code to help with this please let me know. I'm super stuck.
Thanks
UPDATE:
I've gotten a lot further thanks to below, but I am still stuck on the rest of the test. Here's what my updated service looks like:
public class FoodService
{
private readonly FoodRepository _foodRepo;
private readonly DrinkRepository _drinkRepository;
public FoodService(FoodRepository foodRepo, DrinkRepository drinkRepository)
{
_foodRepo = foodRepo;
_drinkRepository = drinkRepository;
}
public void UpdateFoodGrade(int foodId, double grade)
{
var food = _foodRepo.GetFood(foodId);
food.Grade = grade;
if (!food.IsPassed)
{
var drink = _drinkRepository.GetDrink(foodId);
if (grade >= drink.MinimumPassingGrade)
{
food.IsPassed = true;
}
else
{
food.IsPassed = false;
}
}
}
}
Updated Main:
public class Program
{
public static void Main(string[] args)
{
var foodRepository = new FoodRepository();
var drinkRepository = new DrinkRepository();
var foodSvc = new FoodService(foodRepository, drinkRepository);
var foodId = 12;
var grade = 98.2d;
foodSvc.UpdateFoodGrade(foodId, grade);
}
}
Test So far (I have no idea what to do next)
[TestMethod]
public void UpdateFoodGrade_Test()
{
//Arrange
var foodId = 12;
var grade = 98.2d;
var expected = true;
var food = new Food() { FoodId = foodId };
var drink = new Drink() { DrinkId = foodId };
var foodRepositoryMock = new Mock<FoodRepository>();
foodRepositoryMock.Setup(m => m.GetFood(foodId)).Returns(food).Verifiable();
var drinkRepositoryMock = new Mock<DrinkRepository>();
drinkRepositoryMock.Setup(m => m.GetDrink(foodId)).Returns(drink).Verifiable();
var foodService = new FoodService(foodRepositoryMock.Object, drinkRepositoryMock.Object);
//Act
var actual = foodService.UpdateFoodGrade(foodId, grade);
//Assert
foodRepositoryMock.Verify();
drinkRepositoryMock.Verify();
Assert.AreEqual(expected, actual);
}
}
EDIT 2:
I went ahead and refactored in the interfaces, etc. Here's how it shook out:
[TestMethod]
public void UpdateLessonGrade_IsPassingGrade()
{
//Arrange
var lessonId = 12;
var lesson = new Lesson() { LessonId = lessonId };
var module = new Module() { ModuleId = lessonId };
var lessonRepositoryMock = new Mock<ILessonRepository>();
lessonRepositoryMock.Setup(x => x.GetLesson(lessonId)).Returns(lesson);
var moduleRepositoryMock = new Mock<IModuleRepository>();
moduleRepositoryMock.Setup(x => x.GetModule(lessonId)).Returns(module);
var lessonService = new LessonService(lessonRepositoryMock.Object, moduleRepositoryMock.Object);
//Act
lessonService.UpdateLessonGrade(12, 98.2d);
//Assert
Assert.IsTrue(lesson.IsPassed); // assuming it should pass in this condition
Assert.AreEqual(98.2d, lesson.Grade); // expected Lesson Grade should be what you expected the grade to be after you call UpdateLessonGrade
}
I'm on a mobile device right now, I can try to update the answer later this weekend, but this should get you started.
Refactor your method to use instance variables instead of direct instantiation in the method. Add them as parameters to your constructor. In the main method create your repository instances and pass them to the service constructor.
Now you can use something like Moq or the in memory provider for entity framework.
As for what to test, basically test every piece of branching logic. At a minimum, each piece of an if statement and the else conditions. You should also test what happens when your repository objects don't find what you're looking for (e.g. returns null). Offhand, I'm counting at least six tests.
Update: Bravo! Looking at your updated code in the question, everything is on the right track.
In your test method, you'll want to add:
var foodService = new FoodService(foodRepositoryMock.Object, drinkRepositoryMock.Object);
That will initialize your service with the mock objects.
Then you'll want to call your service with test parameters like:
foodService.UpdateFoodGrade(12, 98.2d);
The last part is check your food object using asserts like:
Assert.IsTrue(food.IsPassed) // assuming it should pass in this condition
Assert.Equals(98.2d, food.Grade); // expectedFoodGrade should be what you expected the grade to be after you call UpdateFoodGrade
It looks like you'll also need to flesh out the instance of your Drink object a little bit more. You need to specify a value for MinimumPassingGrade since it's used to drive the decision logic in your if statement, for example, if you want the food.IsPassed = true to trigger, you would instantiate the drink object like so:
var drink = new Drink() { DrinkId = foodId, MinimumPassingGrade = 50.0d };
You would create test methods for each of the other various test cases, failed the minimum, when it's equal to the score, if you can't find the food in the food repo, or the drink in the drink repo, etc.
One other note, you only need to worry about Verifiable mocks when you need to know that a method was/wasn't called. For these tests, I probably wouldn't verify that methods were called (creates tighter coupling between your test and the implementation vs. the behavior). You'd want to verify that the methods were called only if something in your service code truly depends on knowing that it was called. e.g. if you're using Entity Framework and you wanted to make sure you didn't forget to call SaveChanges().
Indeed, such code can't be "normally" unit-tested without preliminary refactoring. But you still have one (bit dirty) option: Shims mechanism of MS Fakes Library.
It allows you to substitute any method or property of any type (including static, non-public and system) with any arbitrary code. In your case you may create a ShimsContext in you test method, and give some fake behavior for FoodRepository.GetFood() and DrinkRepository.GetDrink() methods, for example, empty body doing nothing. So, when your test runs, your stub code gonna be executed instead of the actual code of repository classes. So you will test only Service code without executing code of repositories.
You may check this article for quick introduction to the library.
And please keep in mind that Shims is not a way of good unit-testing, It is just a tool to deal with such non-testable code in case when you absolutely need to unit-test it somehow without changing the code itself.
I've read more and more about unit testing, and determined to put it to work. I dug out a project which is written with ASP.NET MVC using the repository pattern, dependency injection and EF. My first task was to unit test a controller. Here is a snippet from the controller to test:
IUserRepository _userRepository;
IAttachmentRepository _attachmentRepository;
IPeopleRepository _peopleRepository;
ICountryRepository _countryRepository;
public UserController(IUserRepository userRepo, IAttachmentRepository attachRepo, IPeopleRepository peopleRepo, ICountryRepository countryRepo)
{
_userRepository = userRepo;
_attachmentRepository = attachRepo;
_peopleRepository = peopleRepo;
_countryRepository = countryRepo;
}
public ActionResult Details()
{
UserDetailsModel model = new UserDetailsModel();
foreach (var doc in _attachmentRepository.GetPersonAttachments(Globals.UserID))
{
DocumentItemModel item = new DocumentItemModel();
item.AttachmentID = doc.ID;
item.DocumentIcon = AttachmentHelper.GetIconFromFileName(doc.StoragePath);
item.DocumentName = doc.DocumentName;
item.UploadedBy = string.Format("{0} {1}", doc.Forename, doc.Surname);
item.Version = doc.VersionID;
model.Documents.Add(item);
}
var person = _peopleRepository.GetPerson();
var address = _peopleRepository.GetAddress();
model.PersonModel.DateOfBirth = person.DateOfBirth;
model.PersonModel.Forename = person.Forename;
model.PersonModel.Surname = person.Surname;
model.PersonModel.Title = person.Title;
model.AddressModel.AddressLine1 = address.AddressLine1;
model.AddressModel.AddressLine2 = address.AddressLine2;
model.AddressModel.City = address.City;
model.AddressModel.County = address.County;
model.AddressModel.Postcode = address.Postcode;
model.AddressModel.Telephone = address.Telephone;
model.DocumentModel.EntityType = 1;
model.DocumentModel.ID = Globals.UserID;
model.DocumentModel.NewFile = true;
var countries = _countryRepository.GetCountries();
model.AddressModel.Countries = countries.ToSelectListItem(1, c => c.ID, c => c.CountryName, c => c.CountryName, c => c.ID.ToString());
return View(model);
}
I want to test the Details method and have the following queries:
1) The Globals.UserID property retrieves the current user from the session object. How can I easily test this (I'm using the built in VS2010 unit testing and Moq)
2) I'm making a call to AttachmentHelper.GetIconFromFileName() here which simply looks at the extension of a file and displays an icon. I'm also making a call to GetPersonAttachments in the attachment repository, a call to GetPerson, GetAddress and GetCountries as well as a call to an extension method created transform a List to IEnumerable of SelectListItem.
Is this controller action an example of bad practice? It's using lots of repositories and also other helper methods. From what I can see, unit testing this single action will require lots and lots of code. Is this counter productive?
Unit testing a simple controller in a test project is one thing, but when you get into real life code such as this it could become a monster.
I guess my question really is should I refactor my code to make it easier to test, or should my tests become much more complex to satisfy the current code?
Complex tests are as bad as complex code: they're prone to bugs. So, in order to keep your tests simple it's generally a good idea to refactor your application code to make it easier to test. For example, you should pull out the mapping code from your Details() method into separate helper methods. You can then test those methods very easily and not have to worry so much about testing all the crazy combinations of Details().
I've pulled out the person and address mapping parts below, but you could pull it apart even more. I just wanted to give you an idea of what I meant.
public ActionResult Details() {
UserDetailsModel model = new UserDetailsModel();
foreach( var doc in _attachmentRepository.GetPersonAttachments( Globals.UserID ) ) {
DocumentItemModel item = new DocumentItemModel();
item.AttachmentID = doc.ID;
item.DocumentIcon = AttachmentHelper.GetIconFromFileName( doc.StoragePath );
item.DocumentName = doc.DocumentName;
item.UploadedBy = string.Format( "{0} {1}", doc.Forename, doc.Surname );
item.Version = doc.VersionID;
model.Documents.Add( item );
}
var person = _peopleRepository.GetPerson();
var address = _peopleRepository.GetAddress();
MapPersonToModel( model, person );
MapAddressToModel( model, address );
model.DocumentModel.EntityType = 1;
model.DocumentModel.ID = Globals.UserID;
model.DocumentModel.NewFile = true;
var countries = _countryRepository.GetCountries();
model.AddressModel.Countries = countries.ToSelectListItem( 1, c => c.ID, c => c.CountryName, c => c.CountryName, c => c.ID.ToString() );
return View( model );
}
public void MapAddressToModel( UserDetailsModel model, Address address ) {
model.AddressModel.AddressLine1 = address.AddressLine1;
model.AddressModel.AddressLine2 = address.AddressLine2;
model.AddressModel.City = address.City;
model.AddressModel.County = address.County;
model.AddressModel.Postcode = address.Postcode;
model.AddressModel.Telephone = address.Telephone;
}
public void MapPersonToModel( UserDetailsModel model, Person person ) {
model.PersonModel.DateOfBirth = person.DateOfBirth;
model.PersonModel.Forename = person.Forename;
model.PersonModel.Surname = person.Surname;
model.PersonModel.Title = person.Title;
}
Just wanted to elaborate a little bit on the subj. What we're trying to unit test is the logic. Not too much of it in the controller. So in this particular case I would do the next: extract method that returns the model not the view. Inject mocked repos into the controller object. And after exercising the mapping would insure that all the properties are filled with expected values. Another way of doing that is to generate JSON and insure that all the properties are filled appropriately. However, I would strive to put unit tests on the mapping part itself and then would consider BDD for the integration tests.
I'd move all of your Model construction code into the constructor of the model itself. I prefer to keep the controllers restricted to a very few simple tasks:
Selecting the proper view (if the controller action allows for more than one view)
Selecting the correct view model
Permissions/security
View model validation
Thus, your Details controller becomes much simpler and testing becomes more more managable:
public ActionResult Details() {
return View(new UserDetailsModel(Globals.UserId);
}
Now that your controller is tight and testable, let's look at your model:
public class UserDetailsModel {
public UserDetailsModel(int userId) {
... instantiation of properties goes here...
}
... public properties/methods ...
}
Again, the code in your model is encapsulated and only needs to worry specifically about it's properties.
As already mentioned by #KevinM1, if you're practicing TDD (you have that tag in your question), you're writing the test before the implementation.
You first write a test for your controller's Detail method. When you write this test you notice that you need to map a person to a UserDetailsModel. When writing test you "hide complexity" that don't belong to the actual implementation of what you want to test behind an abstraction. In this case, you'd probably create an IUserDetailModelMapper. When this first test is written, you make it green by creating the controller.
public class UserController
{
ctor(IUserRepository userRepo, IUserDetailModelMapper mapper){...}
public ActionResult Details()
{
var model = _mapper.Map(_userRepo.GetPerson());
return View(model);
}
}
When you later write test for your mapper, you said you need to use some static prop called Globals.UserId. Generally I would avoid static data if possible, but if this is a legacy system you need to "objectify" this to get i testable. One simple way is to hide it behind an interface, something like this...
interface IGlobalUserId
{
int GetIt();
}
...and do an implementation where you use your static data. From now on, you can inject this interface instead to hide the fact that it's static data.
The same thing goes for "AttachmentHelper". Hide it behind an interface. Generally though, there should be alarm bells for XXXHelpers - I would say it's a sign of not placing method where they should be (part of an object) but rather a mix of all kinds of stuff that been mixed together.
I know it's not so good to write tests after you actually wrote code. I'm unit-testing newbie and feel that unit-testing may deliver many good advantages so I obsessed with an idea to cover as much as possible.
For instance, let we have this code:
public class ProjectsPresenter : IProjectsViewObserver
{
private readonly IProjectsView _view;
private readonly IProjectsRepository _repository;
public ProjectsPresenter(IProjectsRepository repository, IProjectsView view)
{
_view = view;
_repository = repository;
Start();
}
public void Start()
{
_view.projects = _repository.FetchAll();
_view.AttachPresenter(this);
}
}
So looking on code above could you answer me what tests typically I should write on that piece of the code above?
I'm rolling on write tests on constructor to make sure that repository's FetchAll was called and on the view site AttachPresenter is called.
POST EDIT
Here is a my view interface:
public interface IProjectsView
{
List<Project> projects { set; }
Project project { set; }
void AttachPresenter(IProjectsViewObserver projectsPresenter);
}
Here is a view:
public partial class ProjectsForm : DockContent, IProjectsView
{
private IProjectsViewObserver _presenter;
public ProjectsForm()
{
InitializeComponent();
}
public Project project
{
set
{
listBoxProjects.SelectedItem = value;
}
}
public List<Project> projects
{
set
{
listBoxProjects.Items.Clear();
if ((value != null) && (value.Count() > 0))
listBoxProjects.Items.AddRange(value.ToArray());
}
}
public void AttachPresenter(IProjectsViewObserver projectsPresenter)
{
if (projectsPresenter == null)
throw new ArgumentNullException("projectsPresenter");
_presenter = projectsPresenter;
}
private void listBoxProjects_SelectedValueChanged(object sender, EventArgs e)
{
if (_presenter != null)
_presenter.SelectedProjectChanged((Project)listBoxProjects.SelectedItem);
}
}
POST EDIT #2
This is how I test interaction with repository. Is everything allright?
[Test]
public void ProjectsPresenter_RegularProjectsProcessing_ViewProjectsAreSetCorrectly()
{
// Arrange
MockRepository mocks = new MockRepository();
var view = mocks.StrictMock<IProjectsView>();
var repository = mocks.StrictMock<IProjectsRepository>();
List<Project> projList = new List<Project> {
new Project { ID = 1, Name = "test1", CreateTimestamp = DateTime.Now },
new Project { ID = 2, Name = "test2", CreateTimestamp = DateTime.Now }
};
Expect.Call(repository.FetchAll()).Return(projList);
Expect.Call(view.projects = projList);
Expect.Call(delegate { view.AttachPresenter(null); }).IgnoreArguments();
mocks.ReplayAll();
// Act
ProjectsPresenter presenter = new ProjectsPresenter(repository, view);
// Assert
mocks.VerifyAll();
}
I know it's not so good to write tests after you actually wrote code
It's better than not writing tests at all.
Your method works with two external components and that interaction should be verified (in addition to mentioned arguments validation). Checking whether FetchAll was called gives you no value (or checking it returns something - this belongs to ProjectsRepository tests itself) - you want to check that view's projects are set (which will indirectly check whether FetchAll was called). Tests you need are:
verify that view projects are set to expected value
verify that presenter is attached
validate input arguments
Edit: example of how you would test first case (projects are set)
// "RegularProcessing" in test name feels a bit forced;
// in such cases, you can simply skip 'conditions' part of test name
public void ProjectsPresenter_SetsViewProjectsCorrectly()
{
var view = MockRepository.GenerateMock<IProjectView>();
var repository = MockRepository.GenerateMock<IProjectsRepository>();
// Don't even need content;
// reference comparison will be enough
List<Project> projects = new List<Project>();
// We use repository in stub mode;
// it will simply provide data and that's all
repository.Stub(r => r.FetchAll()).Return(projects);
view.Expect(v => v.projects = projects);
ProjectsPresenter presenter = new ProjectsPresenter(repository, view);
view.VerifyAllExpecations();
}
In second case, you'll set expectations on view that its AttachPresenter is called with valid object:
public void ProjectsPresenter_AttachesPresenterToView()
{
// Arrange
var view = MockRepository.GenerateMock<IProjectView>();
view.Expect(v => v.AttachPresenter(Arg<IProjectsViewObserver>.Is.Anything));
var repository = MockRepository.GenerateMock<IProjectsRepository>();
// Act
var presenter = new ProjectsPresenter(repository, view);
// Assert
view.VerifyAllExpectations();
}
I would add simple tests at start , like:
null reference checks
FetchAll() returns any value
Do not add a lot of test code at first time, but refine them after as your dev code mutates.
I would add tests for exception e.g. ArgumentException, corner cases and usual ones of FetchAll().
PS. Does start have to be public?
Pex is an interesting tool that's worth checking out. It can generate suites of unit tests with high code coverage: http://research.microsoft.com/en-us/projects/pex/. It doesn't replace your own knowledge of your code - and which test scenarios are more important to you than others - but it's a nice addition to that.
The purpose of writing tests before writing production code is first and foremost to put you (the developer) in the mind-set of "how will i know when my code works?" When your development is focused on what the result of what working code will look like and not the code itself you are focused on the actual business value obtained by your code and not extraneous concerns (millions of man hours have been spent building and maintaining features users never asked for, wanted, or needed). When you do this you are doing "test driven development".
If you are doing pure TDD the answer is 100% code coverage. That is you do not write a single line of production code that is not already covered by a line of unit test code.
In Visual Studio if you go to Test->Analyze Code Coverage it will show you all of the lines of code that you do not have covered.
Practically speaking its not always feasible to enforce 100% code coverage. Also there are some lines of code that are much more important then others. Determining which depends once again on the business value provided by each line and the consequence of that line failing. Some lines (like logging) may have a smaller consequence then others.
Is it acceptable to do asserts in your callbacks if you later verify that the methods were called? Is this the preferred way of making sure my mock is getting the expected parameters passed to it, or should I set a local variable in my callback and do the asserts on that instance?
I have a situation where I have some logic in a Presenter class that derives values based on inputs and passes them to a Creator class. To test the logic in the Presenter class I want to verify that the proper derived values are observed when the Creator is called. I came up with the example below that works, but I'm not sure if I like this approach:
[TestFixture]
public class WidgetCreatorPresenterTester
{
[Test]
public void Properly_Generates_DerivedName()
{
var widgetCreator = new Mock<IWidgetCreator>();
widgetCreator.Setup(a => a.Create(It.IsAny<Widget>()))
.Callback((Widget widget) =>
Assert.AreEqual("Derived.Name", widget.DerivedName));
var presenter = new WidgetCreatorPresenter(widgetCreator.Object);
presenter.Save("Name");
widgetCreator.Verify(a => a.Create(It.IsAny<Widget>()), Times.Once());
}
}
I'm concerned because without the Verify call at the end, there is no guarantee that the assert in the callback would be invoked. Another approach would be to set a local variable in the callback:
[Test]
public void Properly_Generates_DerivedName()
{
var widgetCreator = new Mock<IWidgetCreator>();
Widget localWidget = null;
widgetCreator.Setup(a => a.Create(It.IsAny<Widget>()))
.Callback((Widget widget) => localWidget = widget);
var presenter = new WidgetCreatorPresenter(widgetCreator.Object);
presenter.Save("Name");
widgetCreator.Verify(a => a.Create(It.IsAny<Widget>()), Times.Once());
Assert.IsNotNull(localWidget);
Assert.AreEqual("Derived.Name", localWidget.DerivedName);
}
I feel that this approach is less error prone since it is more explicit, and it's easier to see that the Assert statements will be called. Is one approach preferable to the other? Is there a simpler way to test the input parameter passed to a mock that I'm missing?
In case it is helpful, here is the rest of the code for this example:
public class Widget
{
public string Name { get; set; }
public string DerivedName { get; set; }
}
public class WidgetCreatorPresenter
{
private readonly IWidgetCreator _creator;
public WidgetCreatorPresenter(IWidgetCreator creator)
{
_creator = creator;
}
public void Save(string name)
{
_creator.Create(
new Widget { Name = name, DerivedName = GetDerivedName(name) });
}
//This is the method I want to test
private static string GetDerivedName(string name)
{
return string.Format("Derived.{0}", name);
}
}
public interface IWidgetCreator
{
void Create(Widget widget);
}
EDIT
I updated the code to make the second approach I outlined in the question easier to use. I pulled creation of the expression used in Setup/Verify into a separate variable so I only have to define it once. I feel like this method is what I'm most comfortable with, it's easy to setup and fails with good error messages.
[Test]
public void Properly_Generates_DerivedName()
{
var widgetCreator = new Mock<IWidgetCreator>();
Widget localWidget = null;
Expression<Action<IWidgetCreator>> expressionCreate =
(w => w.Create(It.IsAny<Widget>()));
widgetCreator.Setup(expressionCreate)
.Callback((Widget widget) => localWidget = widget);
var presenter = new WidgetCreatorPresenter(widgetCreator.Object);
presenter.Save("Name");
widgetCreator.Verify(expressionCreate, Times.Once());
Assert.IsNotNull(localWidget);
Assert.AreEqual("Derived.Name", localWidget.DerivedName);
}
What I do is do the Verify with matches in keeping with AAA. And becuase of this the Setup is not required. You can inline it but I separated it out to make it look cleaner.
[Test]
public void Properly_Generates_DerivedName()
{
var widgetCreator = new Mock<IWidgetCreator>();
var presenter = new WidgetCreatorPresenter(widgetCreator.Object);
presenter.Save("Name");
widgetCreator.Verify(a => a.Create(MatchesWidget("Derived.Name"));
}
private Widget MatchesWidget(string derivedName)
{
return It.Is<Widget>(m => m.DerivedName == derivedName);
}
Because of the way your code is structured, you're kind of forced to test two things in one unit test. You're testing that A) your presenter is calling the injected WidgetCreator's create method and B) that the correct name is set on the new Widget. If possible, it'd be better if you can somehow make these two things two separate tests, but in this case I don't really see a way to do that.
Given all that, I think the second approach is cleaner. It's more explicit as to what you're expecting, and if it fails, it'd make perfect sense why and where it's failing.
Just to elaborate on #rsbarro's comment - the Moq failure error message:
Expected invocation on the mock at least once, but was never performed
... is less than helpful for complex types, when determining exactly which condition actually failed, when hunting down a bug (whether in the code or unit test).
I often encounter this when using Moq Verify to verify a large number of conditions in the Verify, where the method must have been called with specific parameter values which are not primitives like int or string.
(This is not typically a problem for primitive types, since Moq lists the actual "performed invocations" on the method as part of the exception).
As a result, in this instance, I would need to capture the parameters passed in (which to me seems to duplicate the work of Moq), or just move the Assertion inline with Setup / Callbacks.
e.g. the Verification:
widgetCreator.Verify(wc => wc.Create(
It.Is<Widget>(w => w.DerivedName == "Derived.Name"
&& w.SomeOtherCondition == true),
It.Is<AnotherParam>(ap => ap.AnotherCondition == true),
Times.Exactly(1));
Would be recoded as
widgetCreator.Setup(wc => wc.Create(It.IsAny<Widget>(),
It.IsAny<AnotherParam>())
.Callback<Widget, AnotherParam>(
(w, ap) =>
{
Assert.AreEqual("Derived.Name", w.DerivedName);
Assert.IsTrue(w.SomeOtherCondition);
Assert.IsTrue(ap.AnotherCondition, "Oops");
});
// *** Act => invoking the method on the CUT goes here
// Assert + Verify - cater for rsbarro's concern that the Callback might not have happened at all
widgetCreator.Verify(wc => wc.Create(It.IsAny<Widget>(), It.Is<AnotherParam>()),
Times.Exactly(1));
At first glance, this violates AAA, since we are putting the Assert inline with the Arrange (although the callback is only invoked during the Act), but at least we can get to the bottom of the issue.
Also see Hady's idea of moving the 'tracking' callback lambda into its own named function, or better still, in C#7, this can be moved to a Local Function at the bottom of the unit test method, so the AAA layout can be retained.
Building on top of StuartLC's answer in this thread, you follow what he is suggesting without violating AAA by writing an "inline" function that is passed to the Verify method of a mock object.
So for example:
// Arrange
widgetCreator
.Setup(wc => wc.Create(It.IsAny<Widget>(), It.IsAny<AnotherParam>());
// Act
// Invoke action under test here...
// Assert
Func<Widget, bool> AssertWidget = request =>
{
Assert.AreEqual("Derived.Name", w.DerivedName);
Assert.IsTrue(w.SomeOtherCondition);
Assert.IsTrue(ap.AnotherCondition, "Oops");
return true;
};
widgetCreator
.Verify(wc => wc.Create(It.Is<Widget>(w => AssertWidget(w)), It.Is<AnotherParam>()), Times.Exactly(1));