Java equivalent to IEnumerator from C#? - c#

Are there interfaces in Java library, which also enumerates some series, but follows slightly another logic than Iterator and Enumeration? Namely they should return boolean on next(), saying whether next element was reached, and should have getCurrent() method, which returns current element?
UPDATE
Iterator.next() is not equivalent of IEnumerator.Current since former will advance iterator on each call while latter won't.
UPDATE 2
I am designing my own class with my own functionality. My question was in order to find a "competent" analogy. The sample from C# was just a sample, I am not translating something from C# to Java.

This sounds like Guava's PeekingIterator; you can decorate a plain Iterator with Iterators.peekingIterator.

You have to use a different approach in Java.
e.g., instead of this C# code:
Dictionary<int?, int?> m = new Dictionary<int?, int?>();
for (IEnumerator<KeyValuePair<int?, int?>> it = m.GetEnumerator(); it.MoveNext();)
{
Console.Write(it.Current.Key);
Console.Write(it.Current.Value);
}
You will need to use:
java.util.HashMap<Integer, Integer> m = new java.util.HashMap<Integer, Integer>();
for (java.util.Iterator<java.util.Map.Entry<Integer, Integer>> it = m.entrySet().iterator(); it.hasNext();)
{
java.util.Map.Entry<Integer, Integer> current = it.next();
System.out.print(current.getKey());
System.out.print(current.getValue());
}
There should not be a high demand for this particular conversion since you would normally use a 'foreach' loop in C#, which would convert more cleanly to Java.

If you use a standard concrete Collection class, such as HashSet and ArrayList to name but two, you will have access to an iterator.
Calling the method: collection.hasNext() will return a boolean, but not advance the pointer. This will allow you to determine whether you should attempt to read collection.next().
Example:
Set<String> numbers = new HashSet<>();
// fill in set...
while (numbers.hasNext()) {
System.out.println(numbers.next());
}
Of course, you can also iterate through a collection using the for-each syntax:
for (String s : numbers) {
System.out.println(s)
}

Related

How can I compile a code written in runtime inside the game? [duplicate]

I can do an eval("something()"); to execute the code dynamically in JavaScript. Is there a way for me to do the same thing in C#?
An example of what I am trying to do is: I have an integer variable (say i) and I have multiple properties by the names: "Property1", "Property2", "Property3", etc.
Now, I want to perform some operations on the " Propertyi " property depending on the value of i.
This is really simple with Javascript. Is there any way to do this with C#?
Using the Roslyn scripting API (more samples here):
// add NuGet package 'Microsoft.CodeAnalysis.Scripting'
using Microsoft.CodeAnalysis.CSharp.Scripting;
await CSharpScript.EvaluateAsync("System.Math.Pow(2, 4)") // returns 16
You can also run any piece of code:
var script = await CSharpScript.RunAsync(#"
class MyClass
{
public void Print() => System.Console.WriteLine(1);
}")
And reference the code that was generated in previous runs:
await script.ContinueWithAsync("new MyClass().Print();");
DISCLAIMER: This answer was written back in 2008. The landscape has changed drastically since then.
Look at the other answers on this page, especially the one detailing Microsoft.CodeAnalysis.CSharp.Scripting.
Rest of answer will be left as it was originally posted but is no longer accurate.
Unfortunately, C# isn't a dynamic language like that.
What you can do, however, is to create a C# source code file, full with class and everything, and run it through the CodeDom provider for C# and compile it into an assembly, and then execute it.
This forum post on MSDN contains an answer with some example code down the page somewhat:
create a anonymous method from a string?
I would hardly say this is a very good solution, but it is possible anyway.
What kind of code are you going to expect in that string? If it is a minor subset of valid code, for instance just math expressions, it might be that other alternatives exists.
Edit: Well, that teaches me to read the questions thoroughly first. Yes, reflection would be able to give you some help here.
If you split the string by the ; first, to get individual properties, you can use the following code to get a PropertyInfo object for a particular property for a class, and then use that object to manipulate a particular object.
String propName = "Text";
PropertyInfo pi = someObject.GetType().GetProperty(propName);
pi.SetValue(someObject, "New Value", new Object[0]);
Link: PropertyInfo.SetValue Method
Not really. You can use reflection to achieve what you want, but it won't be nearly as simple as in Javascript. For example, if you wanted to set the private field of an object to something, you could use this function:
protected static void SetField(object o, string fieldName, object value)
{
FieldInfo field = o.GetType().GetField(fieldName, BindingFlags.Instance | BindingFlags.NonPublic);
field.SetValue(o, value);
}
This is an eval function under c#. I used it to convert anonymous functions (Lambda Expressions) from a string.
Source: http://www.codeproject.com/KB/cs/evalcscode.aspx
public static object Eval(string sCSCode) {
CSharpCodeProvider c = new CSharpCodeProvider();
ICodeCompiler icc = c.CreateCompiler();
CompilerParameters cp = new CompilerParameters();
cp.ReferencedAssemblies.Add("system.dll");
cp.ReferencedAssemblies.Add("system.xml.dll");
cp.ReferencedAssemblies.Add("system.data.dll");
cp.ReferencedAssemblies.Add("system.windows.forms.dll");
cp.ReferencedAssemblies.Add("system.drawing.dll");
cp.CompilerOptions = "/t:library";
cp.GenerateInMemory = true;
StringBuilder sb = new StringBuilder("");
sb.Append("using System;\n" );
sb.Append("using System.Xml;\n");
sb.Append("using System.Data;\n");
sb.Append("using System.Data.SqlClient;\n");
sb.Append("using System.Windows.Forms;\n");
sb.Append("using System.Drawing;\n");
sb.Append("namespace CSCodeEvaler{ \n");
sb.Append("public class CSCodeEvaler{ \n");
sb.Append("public object EvalCode(){\n");
sb.Append("return "+sCSCode+"; \n");
sb.Append("} \n");
sb.Append("} \n");
sb.Append("}\n");
CompilerResults cr = icc.CompileAssemblyFromSource(cp, sb.ToString());
if( cr.Errors.Count > 0 ){
MessageBox.Show("ERROR: " + cr.Errors[0].ErrorText,
"Error evaluating cs code", MessageBoxButtons.OK,
MessageBoxIcon.Error );
return null;
}
System.Reflection.Assembly a = cr.CompiledAssembly;
object o = a.CreateInstance("CSCodeEvaler.CSCodeEvaler");
Type t = o.GetType();
MethodInfo mi = t.GetMethod("EvalCode");
object s = mi.Invoke(o, null);
return s;
}
I have written an open source project, Dynamic Expresso, that can convert text expression written using a C# syntax into delegates (or expression tree). Expressions are parsed and transformed into Expression Trees without using compilation or reflection.
You can write something like:
var interpreter = new Interpreter();
var result = interpreter.Eval("8 / 2 + 2");
or
var interpreter = new Interpreter()
.SetVariable("service", new ServiceExample());
string expression = "x > 4 ? service.SomeMethod() : service.AnotherMethod()";
Lambda parsedExpression = interpreter.Parse(expression,
new Parameter("x", typeof(int)));
parsedExpression.Invoke(5);
My work is based on Scott Gu article http://weblogs.asp.net/scottgu/archive/2008/01/07/dynamic-linq-part-1-using-the-linq-dynamic-query-library.aspx .
All of that would definitely work. Personally, for that particular problem, I would probably take a little different approach. Maybe something like this:
class MyClass {
public Point point1, point2, point3;
private Point[] points;
public MyClass() {
//...
this.points = new Point[] {point1, point2, point3};
}
public void DoSomethingWith(int i) {
Point target = this.points[i+1];
// do stuff to target
}
}
When using patterns like this, you have to be careful that your data is stored by reference and not by value. In other words, don't do this with primitives. You have to use their big bloated class counterparts.
I realized that's not exactly the question, but the question has been pretty well answered and I thought maybe an alternative approach might help.
I don't now if you absolutely want to execute C# statements, but you can already execute Javascript statements in C# 2.0. The open-source library Jint is able to do it. It's a Javascript interpreter for .NET. Pass a Javascript program and it will run inside your application. You can even pass C# object as arguments and do automation on it.
Also if you just want to evaluate expression on your properties, give a try to NCalc.
You can use reflection to get the property and invoke it. Something like this:
object result = theObject.GetType().GetProperty("Property" + i).GetValue(theObject, null);
That is, assuming the object that has the property is called "theObject" :)
You also could implement a Webbrowser, then load a html-file wich contains javascript.
Then u go for the document.InvokeScript Method on this browser. The return Value of the eval function can be catched and converted into everything you need.
I did this in several Projects and it works perfectly.
Hope it helps
Uses reflection to parse and evaluate a data-binding expression against an object at run time.
DataBinder.Eval Method
I have written a package, SharpByte.Dynamic, to simplify the task of compiling and executing code dynamically. The code can be invoked on any context object using extension methods as detailed further here.
For example,
someObject.Evaluate<int>("6 / {{{0}}}", 3))
returns 3;
someObject.Evaluate("this.ToString()"))
returns the context object's string representation;
someObject.Execute(#
"Console.WriteLine(""Hello, world!"");
Console.WriteLine(""This demonstrates running a simple script"");
");
runs those statements as a script, etc.
Executables can be gotten easily using a factory method, as seen in the example here--all you need is the source code and list of any expected named parameters (tokens are embedded using triple-bracket notation, such as {{{0}}}, to avoid collisions with string.Format() as well as Handlebars-like syntaxes):
IExecutable executable = ExecutableFactory.Default.GetExecutable(executableType, sourceCode, parameterNames, addedNamespaces);
Each executable object (script or expression) is thread-safe, can be stored and reused, supports logging from within a script, stores timing information and last exception if encountered, etc. There is also a Copy() method compiled on each to allow creating cheap copies, i.e. using an executable object compiled from a script or expression as a template for creating others.
Overhead of executing an already-compiled script or statement is relatively low, at well under a microsecond on modest hardware, and already-compiled scripts and expressions are cached for reuse.
You could do it with a prototype function:
void something(int i, string P1) {
something(i, P1, String.Empty);
}
void something(int i, string P1, string P2) {
something(i, P1, P2, String.Empty);
}
void something(int i, string P1, string P2, string P3) {
something(i, P1, P2, P3, String.Empty);
}
and so on...
I was trying to get a value of a structure (class) member by it's name. The structure was not dynamic. All answers didn't work until I finally got it:
public static object GetPropertyValue(object instance, string memberName)
{
return instance.GetType().GetField(memberName).GetValue(instance);
}
This method will return the value of the member by it's name. It works on regular structure (class).
You might check the Heleonix.Reflection library. It provides methods to get/set/invoke members dynamically, including nested members, or if a member is clearly defined, you can create a getter/setter (lambda compiled into a delegate) which is faster than reflection:
var success = Reflector.Set(instance, null, $"Property{i}", value);
Or if number of properties is not endless, you can generate setters and chache them (setters are faster since they are compiled delegates):
var setter = Reflector.CreateSetter<object, object>($"Property{i}", typeof(type which contains "Property"+i));
setter(instance, value);
Setters can be of type Action<object, object> but instances can be different at runtime, so you can create lists of setters.
Unfortunately, C# doesn't have any native facilities for doing exactly what you are asking.
However, my C# eval program does allow for evaluating C# code. It provides for evaluating C# code at runtime and supports many C# statements. In fact, this code is usable within any .NET project, however, it is limited to using C# syntax. Have a look at my website, http://csharp-eval.com, for additional details.
the correct answer is you need to cache all the result to keep the mem0ry usage low.
an example would look like this
TypeOf(Evaluate)
{
"1+1":2;
"1+2":3;
"1+3":5;
....
"2-5":-3;
"0+0":1
}
and add it to a List
List<string> results = new List<string>();
for() results.Add(result);
save the id and use it in the code
hope this helps

Set variable value based on a function typed in a string [duplicate]

I can do an eval("something()"); to execute the code dynamically in JavaScript. Is there a way for me to do the same thing in C#?
An example of what I am trying to do is: I have an integer variable (say i) and I have multiple properties by the names: "Property1", "Property2", "Property3", etc.
Now, I want to perform some operations on the " Propertyi " property depending on the value of i.
This is really simple with Javascript. Is there any way to do this with C#?
Using the Roslyn scripting API (more samples here):
// add NuGet package 'Microsoft.CodeAnalysis.Scripting'
using Microsoft.CodeAnalysis.CSharp.Scripting;
await CSharpScript.EvaluateAsync("System.Math.Pow(2, 4)") // returns 16
You can also run any piece of code:
var script = await CSharpScript.RunAsync(#"
class MyClass
{
public void Print() => System.Console.WriteLine(1);
}")
And reference the code that was generated in previous runs:
await script.ContinueWithAsync("new MyClass().Print();");
DISCLAIMER: This answer was written back in 2008. The landscape has changed drastically since then.
Look at the other answers on this page, especially the one detailing Microsoft.CodeAnalysis.CSharp.Scripting.
Rest of answer will be left as it was originally posted but is no longer accurate.
Unfortunately, C# isn't a dynamic language like that.
What you can do, however, is to create a C# source code file, full with class and everything, and run it through the CodeDom provider for C# and compile it into an assembly, and then execute it.
This forum post on MSDN contains an answer with some example code down the page somewhat:
create a anonymous method from a string?
I would hardly say this is a very good solution, but it is possible anyway.
What kind of code are you going to expect in that string? If it is a minor subset of valid code, for instance just math expressions, it might be that other alternatives exists.
Edit: Well, that teaches me to read the questions thoroughly first. Yes, reflection would be able to give you some help here.
If you split the string by the ; first, to get individual properties, you can use the following code to get a PropertyInfo object for a particular property for a class, and then use that object to manipulate a particular object.
String propName = "Text";
PropertyInfo pi = someObject.GetType().GetProperty(propName);
pi.SetValue(someObject, "New Value", new Object[0]);
Link: PropertyInfo.SetValue Method
Not really. You can use reflection to achieve what you want, but it won't be nearly as simple as in Javascript. For example, if you wanted to set the private field of an object to something, you could use this function:
protected static void SetField(object o, string fieldName, object value)
{
FieldInfo field = o.GetType().GetField(fieldName, BindingFlags.Instance | BindingFlags.NonPublic);
field.SetValue(o, value);
}
This is an eval function under c#. I used it to convert anonymous functions (Lambda Expressions) from a string.
Source: http://www.codeproject.com/KB/cs/evalcscode.aspx
public static object Eval(string sCSCode) {
CSharpCodeProvider c = new CSharpCodeProvider();
ICodeCompiler icc = c.CreateCompiler();
CompilerParameters cp = new CompilerParameters();
cp.ReferencedAssemblies.Add("system.dll");
cp.ReferencedAssemblies.Add("system.xml.dll");
cp.ReferencedAssemblies.Add("system.data.dll");
cp.ReferencedAssemblies.Add("system.windows.forms.dll");
cp.ReferencedAssemblies.Add("system.drawing.dll");
cp.CompilerOptions = "/t:library";
cp.GenerateInMemory = true;
StringBuilder sb = new StringBuilder("");
sb.Append("using System;\n" );
sb.Append("using System.Xml;\n");
sb.Append("using System.Data;\n");
sb.Append("using System.Data.SqlClient;\n");
sb.Append("using System.Windows.Forms;\n");
sb.Append("using System.Drawing;\n");
sb.Append("namespace CSCodeEvaler{ \n");
sb.Append("public class CSCodeEvaler{ \n");
sb.Append("public object EvalCode(){\n");
sb.Append("return "+sCSCode+"; \n");
sb.Append("} \n");
sb.Append("} \n");
sb.Append("}\n");
CompilerResults cr = icc.CompileAssemblyFromSource(cp, sb.ToString());
if( cr.Errors.Count > 0 ){
MessageBox.Show("ERROR: " + cr.Errors[0].ErrorText,
"Error evaluating cs code", MessageBoxButtons.OK,
MessageBoxIcon.Error );
return null;
}
System.Reflection.Assembly a = cr.CompiledAssembly;
object o = a.CreateInstance("CSCodeEvaler.CSCodeEvaler");
Type t = o.GetType();
MethodInfo mi = t.GetMethod("EvalCode");
object s = mi.Invoke(o, null);
return s;
}
I have written an open source project, Dynamic Expresso, that can convert text expression written using a C# syntax into delegates (or expression tree). Expressions are parsed and transformed into Expression Trees without using compilation or reflection.
You can write something like:
var interpreter = new Interpreter();
var result = interpreter.Eval("8 / 2 + 2");
or
var interpreter = new Interpreter()
.SetVariable("service", new ServiceExample());
string expression = "x > 4 ? service.SomeMethod() : service.AnotherMethod()";
Lambda parsedExpression = interpreter.Parse(expression,
new Parameter("x", typeof(int)));
parsedExpression.Invoke(5);
My work is based on Scott Gu article http://weblogs.asp.net/scottgu/archive/2008/01/07/dynamic-linq-part-1-using-the-linq-dynamic-query-library.aspx .
All of that would definitely work. Personally, for that particular problem, I would probably take a little different approach. Maybe something like this:
class MyClass {
public Point point1, point2, point3;
private Point[] points;
public MyClass() {
//...
this.points = new Point[] {point1, point2, point3};
}
public void DoSomethingWith(int i) {
Point target = this.points[i+1];
// do stuff to target
}
}
When using patterns like this, you have to be careful that your data is stored by reference and not by value. In other words, don't do this with primitives. You have to use their big bloated class counterparts.
I realized that's not exactly the question, but the question has been pretty well answered and I thought maybe an alternative approach might help.
I don't now if you absolutely want to execute C# statements, but you can already execute Javascript statements in C# 2.0. The open-source library Jint is able to do it. It's a Javascript interpreter for .NET. Pass a Javascript program and it will run inside your application. You can even pass C# object as arguments and do automation on it.
Also if you just want to evaluate expression on your properties, give a try to NCalc.
You can use reflection to get the property and invoke it. Something like this:
object result = theObject.GetType().GetProperty("Property" + i).GetValue(theObject, null);
That is, assuming the object that has the property is called "theObject" :)
You also could implement a Webbrowser, then load a html-file wich contains javascript.
Then u go for the document.InvokeScript Method on this browser. The return Value of the eval function can be catched and converted into everything you need.
I did this in several Projects and it works perfectly.
Hope it helps
Uses reflection to parse and evaluate a data-binding expression against an object at run time.
DataBinder.Eval Method
I have written a package, SharpByte.Dynamic, to simplify the task of compiling and executing code dynamically. The code can be invoked on any context object using extension methods as detailed further here.
For example,
someObject.Evaluate<int>("6 / {{{0}}}", 3))
returns 3;
someObject.Evaluate("this.ToString()"))
returns the context object's string representation;
someObject.Execute(#
"Console.WriteLine(""Hello, world!"");
Console.WriteLine(""This demonstrates running a simple script"");
");
runs those statements as a script, etc.
Executables can be gotten easily using a factory method, as seen in the example here--all you need is the source code and list of any expected named parameters (tokens are embedded using triple-bracket notation, such as {{{0}}}, to avoid collisions with string.Format() as well as Handlebars-like syntaxes):
IExecutable executable = ExecutableFactory.Default.GetExecutable(executableType, sourceCode, parameterNames, addedNamespaces);
Each executable object (script or expression) is thread-safe, can be stored and reused, supports logging from within a script, stores timing information and last exception if encountered, etc. There is also a Copy() method compiled on each to allow creating cheap copies, i.e. using an executable object compiled from a script or expression as a template for creating others.
Overhead of executing an already-compiled script or statement is relatively low, at well under a microsecond on modest hardware, and already-compiled scripts and expressions are cached for reuse.
You could do it with a prototype function:
void something(int i, string P1) {
something(i, P1, String.Empty);
}
void something(int i, string P1, string P2) {
something(i, P1, P2, String.Empty);
}
void something(int i, string P1, string P2, string P3) {
something(i, P1, P2, P3, String.Empty);
}
and so on...
I was trying to get a value of a structure (class) member by it's name. The structure was not dynamic. All answers didn't work until I finally got it:
public static object GetPropertyValue(object instance, string memberName)
{
return instance.GetType().GetField(memberName).GetValue(instance);
}
This method will return the value of the member by it's name. It works on regular structure (class).
You might check the Heleonix.Reflection library. It provides methods to get/set/invoke members dynamically, including nested members, or if a member is clearly defined, you can create a getter/setter (lambda compiled into a delegate) which is faster than reflection:
var success = Reflector.Set(instance, null, $"Property{i}", value);
Or if number of properties is not endless, you can generate setters and chache them (setters are faster since they are compiled delegates):
var setter = Reflector.CreateSetter<object, object>($"Property{i}", typeof(type which contains "Property"+i));
setter(instance, value);
Setters can be of type Action<object, object> but instances can be different at runtime, so you can create lists of setters.
Unfortunately, C# doesn't have any native facilities for doing exactly what you are asking.
However, my C# eval program does allow for evaluating C# code. It provides for evaluating C# code at runtime and supports many C# statements. In fact, this code is usable within any .NET project, however, it is limited to using C# syntax. Have a look at my website, http://csharp-eval.com, for additional details.
the correct answer is you need to cache all the result to keep the mem0ry usage low.
an example would look like this
TypeOf(Evaluate)
{
"1+1":2;
"1+2":3;
"1+3":5;
....
"2-5":-3;
"0+0":1
}
and add it to a List
List<string> results = new List<string>();
for() results.Add(result);
save the id and use it in the code
hope this helps

C# pointers, iterators and generics

I am greatly stumped
How can I use an iterator in C# like a C++ iterator? I cannot find a Begin() or End() accessor, I cannot even find out how to declare an iterator. I have read about the Ienumerator. My goal is to implement the Merge Function. Here is part of my Merge function written in C++. Mostly, I am looking for the C# equivalent of what is shown, except I will be using a Reference type rather than integers.
void merge(vector<int>::iterator left, vector<int>::iterator right, vector<int>::iterator leftEnd, vector<int>::iterator rightEnd, vector<int>::iterator full)
{
while(left != leftEnd && right!= rightEnd) //compare left and right until the end of the vector is reached
{
if(*right < *left) //right < left so insert right to the output vector and advance the iterators
{
*full++ = *right++;
}
else //left < right so insert left to the output vector and advance the iterators
{
*full++ = *left++;
}
}
while(left != leftEnd) //copy any remaining elements into the output from left
{
*full++ = *left++;
}
}
Also, what collection(s) should I use? (currently I have been trying List<T> and LinkedList<T>).
It sounds like you want something like:
bool leftValid = left.MoveNext();
bool rightValid = right.MoveNext();
while (leftValid && rightValid)
{
if (right.Current < left.Current)
{
full.Add(right.Current);
rightValid = right.MoveNext();
}
else
{
full.Add(left.Current);
leftValid = left.MoveNext();
}
}
while (leftValid)
{
full.Add(left.Current);
leftValid = left.MoveNext();
}
while (rightValid)
{
full.Add(right.Current);
rightValid = right.MoveNext();
}
Here full would need to be some sort of IList<T> - .NET iterators don't let you make changes to the underlying collection.
You shouldn't try to write "bridging" code to let you use .NET iterators like C++ ones; it's much better to try to start thinking in terms of the .NET iterators when you're using .NET.
Note that it's quite rare to pass iterators around in .NET. It would be more natural to make your method to IEnumerable<T> parameters, and do something like:
using (IEnumerable<T> leftIterator = leftSequence.GetEnumerator())
{
using (IEnumerable<T> rightIterator = rightSequence.GetEnumerator())
{
// Code as above, just using leftIterator and rightIterator
// instead of left and right
}
}
.net containers don't support C++ style iterators. The only thing they have is a
simple forward iterator called IEnumerator<T>
which can't modify the collection
isn't random access
can't be copied (some collections have value type iterators which can be copied, but that's tricky business and rarely used)
and on most collections also gets invalidated whenever you modify the collection
Pretty much the only thing they can do is being iterated over in a foreach statement.
You might want to look into the IList<T> interface which allows random access, but is only supported on collections which support fast indexing. On such a collection you could implement in-place merge sort by using indices.
void Merge<T>(IList<T> container,int left, int right, int leftEnd, int rightEnd, int full)
and then use container[left] instead of *left.
Unfortunate consequence of this is, that you can't implement an efficient in-place container agnostic sorting function like C++ has.
I think you want GetEnumerator(), MoveNext(), and Current.
Normally, you can just use foreach to iterate, but your case is special.
If fact, rather than using "full", organize this as an iterator block and merge two enumerables lazily.
IEnumerable<T> Merge<T>(IEnumerable<T> left, IEnumerable<T> right)
{
... yield return Min<T>(left.Current, right.Current); ..,
}
You can use arrays, which have a fixed size, or List<T>, which are also called ArrayLists in other languages. Their items can be accessed through an indexer (list[i]) and items can be appended with list.Add(item);. They grow automatically. LinkedLists cannot be accessed via an indexer and must be traversed.
You would declare the method like this
void merge(IEnumerator<int> left, IEnumerator<int> right,
List<int> full)
{
// Jon Skeet's code goes here
}
You can get an enumerator like this
IEnumerable<int> intEnumerable = ...;
IEnumerator<int> intEnumerator = intEnumerable.GetEnumerator();
IEnumerable<T> is implemented by most generic collection types. Non generic collections usually implement IEnumerable.
(Edited in response to #CodeInChaos's comment).

using yield in C# like I would in Ruby

Besides just using yield for iterators in Ruby, I also use it to pass control briefly back to the caller before resuming control in the called method. What I want to do in C# is similar. In a test class, I want to get a connection instance, create another variable instance that uses that connection, then pass the variable to the calling method so it can be fiddled with. I then want control to return to the called method so that the connection can be disposed. I guess I'm wanting a block/closure like in Ruby. Here's the general idea:
private static MyThing getThing()
{
using (var connection = new Connection())
{
yield return new MyThing(connection);
}
}
[TestMethod]
public void MyTest1()
{
// call getThing(), use yielded MyThing, control returns to getThing()
// for disposal
}
[TestMethod]
public void MyTest2()
{
// call getThing(), use yielded MyThing, control returns to getThing()
// for disposal
}
...
This doesn't work in C#; ReSharper tells me that the body of getThing cannot be an iterator block because MyThing is not an iterator interface type. That's definitely true, but I don't want to iterate through some list. I'm guessing I shouldn't use yield if I'm not working with iterators. Any idea how I can achieve this block/closure thing in C# so I don't have to wrap my code in MyTest1, MyTest2, ... with the code in getThing()'s body?
What you want are lambda expressions, something like:
// not named GetThing because it doesn't return anything
private static void Thing(Action<MyThing> thing)
{
using (var connection = new Connection())
{
thing(new MyThing(connection));
}
}
// ...
// you call it like this
Thing(t=>{
t.Read();
t.Sing();
t.Laugh();
});
This captures t the same way yield does in Ruby. The C# yield is different, it constructs generators that can be iterated over.
You say you want to use C#'s yield keyword the same way you would use Ruby's yield keyword. You seem to be a little confused about what the two actually do: the two have absolutely nothing to do with each other, what you are asking for, is simply not possible.
The C# yield keyword is not the C# equivalent of the Ruby yield keyword. In fact, there is no equivalent to the Ruby yield keyword in C#. And the Ruby equivalent to C#'s yield keyword is not the yield keyword, it's the Enumerator::Yielder#yield method (also aliased as Enumerator::Yielder#<<).
IOW, it's for returning the next element of an iterator. Here's an abridged example from the official MSDN documentation:
public static IEnumerable Power(int number, int exponent) {
var counter = 0;
var result = 1;
while (counter++ < exponent) {
result *= number;
yield return result; }}
Use it like so:
foreach (int i in Power(2, 8)) { Console.Write("{0} ", i); }
The Ruby equivalent would be something like:
def power(number, exponent)
Enumerator.new do |yielder|
result = 1
1.upto(exponent-1) { yielder.yield result *= number } end end
puts power(2, 8).to_a
In C#, yield is used to yield a value to the caller and in Ruby, yield is used to yield control to a block argument
In fact, in Ruby, yield is just a shortcut for Proc#call.
Imagine, if yield didn't exist. How would you write an if method in Ruby? It would look like this:
class TrueClass
def if(code)
code.call
end
end
class FalseClass
def if(_); end
end
true.if(lambda { puts "It's true!" })
This is kind of cumbersome. In Ruby 1.9, we get proc literals and a shortcut syntax for Proc#call, which make it a little bit nicer:
class TrueClass
def if(code)
code.()
end
end
true.if(->{ puts "It's true!' })
However, Yukihiro Matsumoto noticed, that the vast majority of higher-order procedures only take one procedure argument. (Especially since Ruby has several control-flow constructs built into the language, which would otherwise require multiple procedure arguments, like if-then-else which would require two and case-when which would require n arguments.) So, he created a specialized way to pass exactly one procedural argument: the block. (In fact, we already saw an example of this at the very beginning, because Kernel#lambda is actually just a normal method which takes a block and returns a Proc.)
class TrueClass
def if(&code)
code.()
end
end
true.if { puts "It's true!" }
Now, since we can only ever pass exactly one block into a method, we really don't need to explicitly name the variable, since there can never be an ambiguity anyway:
def if
???.() # But what do we put here? We don't have a name to call #call on!
end
However, since we now no longer have a name that we can send messages to, we need some other way. And again, we get one of those 80/20 solutions that are so typical for Ruby: there are tons of things that one might want to do with a block: transform it, store it in an attribute, pass it to another method, inspect it, print it … However, by far the most common thing to do is to call it. So, matz added another specialized shortcut syntax for exactly this common case: yield means "call the block that was passed to the method". Therefore, we don't need a name:
def if; yield end
So, what is the C# equivalent to Ruby's yield keyword? Well, let's go back to the first Ruby example, where we explicitly passed the procedure as an argument:
def foo(bar)
bar.('StackOverflow')
end
foo ->name { puts "Higher-order Hello World from #{name}!" }
The C# equivalent is exactly the same:
void Foo(Action<string> bar) => bar("StackOverflow")
Foo(name => { Console.WriteLine("Higher-order Hello World from {0]!", name); })
I might pass a delegate into the iterator.
delegate void Action(MyThing myThing);
private static void forEachThing(Action action)
{
using (var connection = new Connection())
{
action(new MyThing(connection));
}
}
yield in C# is specifically for returning bits of an iterated collection. Specifically, your function has to return IEnumerable<Thing> or IEnumerable for yield to work, and it's meant to be used from inside of a foreach loop. It is a very specific construct in c#, and it can't be used in the way you're trying.
I'm not sure off the top of my head if there's another construct that you could use or not, possibly something with lambda expressions.
You can have GetThing take a delegate containing the code to execute, then pass anonymous methods from other functions.

Why do we need iterators in c#?

Can somebody provide a real life example regarding use of iterators. I tried searching google but was not satisfied with the answers.
You've probably heard of arrays and containers - objects that store a list of other objects.
But in order for an object to represent a list, it doesn't actually have to "store" the list. All it has to do is provide you with methods or properties that allow you to obtain the items of the list.
In the .NET framework, the interface IEnumerable is all an object has to support to be considered a "list" in that sense.
To simplify it a little (leaving out some historical baggage):
public interface IEnumerable<T>
{
IEnumerator<T> GetEnumerator();
}
So you can get an enumerator from it. That interface (again, simplifying slightly to remove distracting noise):
public interface IEnumerator<T>
{
bool MoveNext();
T Current { get; }
}
So to loop through a list, you'd do this:
var e = list.GetEnumerator();
while (e.MoveNext())
{
var item = e.Current;
// blah
}
This pattern is captured neatly by the foreach keyword:
foreach (var item in list)
// blah
But what about creating a new kind of list? Yes, we can just use List<T> and fill it up with items. But what if we want to discover the items "on the fly" as they are requested? There is an advantage to this, which is that the client can abandon the iteration after the first three items, and they don't have to "pay the cost" of generating the whole list.
To implement this kind of lazy list by hand would be troublesome. We would have to write two classes, one to represent the list by implementing IEnumerable<T>, and the other to represent an active enumeration operation by implementing IEnumerator<T>.
Iterator methods do all the hard work for us. We just write:
IEnumerable<int> GetNumbers(int stop)
{
for (int n = 0; n < stop; n++)
yield return n;
}
And the compiler converts this into two classes for us. Calling the method is equivalent to constructing an object of the class that represents the list.
Iterators are an abstraction that decouples the concept of position in a collection from the collection itself. The iterator is a separate object storing the necessary state to locate an item in the collection and move to the next item in the collection. I have seen collections that kept that state inside the collection (i.e. a current position), but it is often better to move that state to an external object. Among other things it enables you to have multiple iterators iterating the same collection.
Simple example : a function that generates a sequence of integers :
static IEnumerable<int> GetSequence(int fromValue, int toValue)
{
if (toValue >= fromValue)
{
for (int i = fromValue; i <= toValue; i++)
{
yield return i;
}
}
else
{
for (int i = fromValue; i >= toValue; i--)
{
yield return i;
}
}
}
To do it without an iterator, you would need to create an array then enumerate it...
Iterate through the students in a class
The Iterator design pattern provides
us with a common method of enumerating
a list of items or array, while hiding
the details of the list's
implementation. This provides a
cleaner use of the array object and
hides unneccessary information from
the client, ultimately leading to
better code-reuse, enhanced
maintainability, and fewer bugs. The
iterator pattern can enumerate the
list of items regardless of their
actual storage type.
Iterate through a set of homework questions.
But seriously, Iterators can provide a unified way to traverse the items in a collection regardless of the underlying data structure.
Read the first two paragraphs here for a little more info.
A couple of things they're great for:
a) For 'perceived performance' while maintaining code tidiness - the iteration of something separated from other processing logic.
b) When the number of items you're going to iterate through is not known.
Although both can be done through other means, with iterators the code can be made nicer and tidier as someone calling the iterator don't need to worry about how it finds the stuff to iterate through...
Real life example: enumerating directories and files, and finding the first [n] that fulfill some criteria, e.g. a file containing a certain string or sequence etc...
Beside everything else, to iterate through lazy-type sequences - IEnumerators. Each next element of such sequence may be evaluated/initialized upon iteration step which makes it possible to iterate through infinite sequences using finite amount of resources...
The canonical and simplest example is that it makes infinite sequences possible without the complexity of having to write the class to do that yourself:
// generate every prime number
public IEnumerator<int> GetPrimeEnumerator()
{
yield return 2;
var primes = new List<int>();
primesSoFar.Add(2);
Func<int, bool> IsPrime = n => primes.TakeWhile(
p => p <= (int)Math.Sqrt(n)).FirstOrDefault(p => n % p == 0) == 0;
for (int i = 3; true; i += 2)
{
if (IsPrime(i))
{
yield return i;
primes.Add(i);
}
}
}
Obviously this would not be truly infinite unless you used a BigInt instead of int but it gives you the idea.
Writing this code (or similar) for each generated sequence would be tedious and error prone. the iterators do that for you. If the above example seems too complex for you consider:
// generate every power of a number from start^0 to start^n
public IEnumerator<int> GetPowersEnumerator(int start)
{
yield return 1; // anything ^0 is 1
var x = start;
while(true)
{
yield return x;
x *= start;
}
}
They come at a cost though. Their lazy behaviour means you cannot spot common errors (null parameters and the like) until the generator is first consumed rather than created without writing wrapping functions to check first. The current implementation is also incredibly bad(1) if used recursively.
Wiriting enumerations over complex structures like trees and object graphs is much easier to write as the state maintenance is largely done for you, you must simply write code to visit each item and not worry about getting back to it.
I don't use this word lightly - a O(n) iteration can become O(N^2)
An iterator is an easy way of implementing the IEnumerator interface. Instead of making a class that has the methods and properties required for the interface, you just make a method that returns the values one by one and the compiler creates a class with the methods and properties needed to implement the interface.
If you for example have a large list of numbers, and you want to return a collection where each number is multiplied by two, you can make an iterator that returns the numbers instead of creating a copy of the list in memory:
public IEnumerable<int> GetDouble() {
foreach (int n in originalList) yield return n * 2;
}
In C# 3 you can do something quite similar using extension methods and lambda expressions:
originalList.Select(n => n * 2)
Or using LINQ:
from n in originalList select n * 2
IEnumerator<Question> myIterator = listOfStackOverFlowQuestions.GetEnumerator();
while (myIterator.MoveNext())
{
Question q;
q = myIterator.Current;
if (q.Pertinent == true)
PublishQuestion(q);
else
SendMessage(q.Author.EmailAddress, "Your question has been rejected");
}
foreach (Question q in listOfStackOverFlowQuestions)
{
if (q.Pertinent == true)
PublishQuestion(q);
else
SendMessage(q.Author.EmailAddress, "Your question has been rejected");
}

Categories